1
|
Genetic variability of avian influenza virus subtype H5N8 in Egypt in 2017 and 2018. Arch Virol 2020; 165:1357-1366. [PMID: 32285202 DOI: 10.1007/s00705-020-04621-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/24/2020] [Indexed: 01/07/2023]
Abstract
Since the incursion of avian influenza virus subtype H5N8 in Egypt in late 2016, it has spread rapidly, causing severe losses in poultry production. Multiple introductions of different reassorted strains were observed in 2017. In this study, a genetic characterization of the HA gene was carried out with 31 isolates selected from different governorates and sectors. Fifteen isolates were selected for NA gene sequence analysis. The HA and NA genes were divided into two subgroups (I and II) with positive selection pressure identified at positions 174 and 29, respectively. The HA gene contained two novel mutations in the antigenic sites, A and E. The HA nucleotide sequence identity ranged from 77 to 90% with different vaccine seeds. Full-genome sequence analysis was carried out for eight viruses, representing different governorates and sectors, to identify the predominant reassorted strain in Egypt. All viruses were similar to a reassorted strain of clade 2.3.4.4b that has been identified in Germany, among other countries. Analysis of these viruses revealed mutations specific to Egyptian strains and not the original virus characterized in 2017 (A/duck/Egypt/F446/2017), with a novel antiviral resistance marker, V27A, indicating resistance to amantadine in the M2 protein of two strains. The results indicate increased variability of circulating H5N8 viruses compared to earlier viruses sequenced in 2016 and 2017. The predominant reassorted virus circulating in 2017 and 2018 originated from an early 2017 strain. It is important to continue this surveillance of avian influenza viruses to monitor the evolution of circulating viruses.
Collapse
|
2
|
Schoofs T, Barnes CO, Suh-Toma N, Golijanin J, Schommers P, Gruell H, West AP, Bach F, Lee YE, Nogueira L, Georgiev IS, Bailer RT, Czartoski J, Mascola JR, Seaman MS, McElrath MJ, Doria-Rose NA, Klein F, Nussenzweig MC, Bjorkman PJ. Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity 2019; 50:1513-1529.e9. [PMID: 31126879 PMCID: PMC6591006 DOI: 10.1016/j.immuni.2019.04.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 12/30/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 envelope (Env) inform vaccine design and are potential therapeutic agents. We identified SF12 and related bNAbs with up to 62% neutralization breadth from an HIV-infected donor. SF12 recognized a glycan-dominated epitope on Env's silent face and was potent against clade AE viruses, which are poorly covered by V3-glycan bNAbs. A 3.3Å cryo-EM structure of a SF12-Env trimer complex showed additional contacts to Env protein residues by SF12 compared with VRC-PG05, the only other known donor-derived silentface antibody, explaining SF12's increased neutralization breadth, potency, and resistance to Env mutation routes. Asymmetric binding of SF12 was associated with distinct N-glycan conformations across Env protomers, demonstrating intra-Env glycan heterogeneity. Administrating SF12 to HIV-1-infected humanized mice suppressed viremia and selected for viruses lacking the N448gp120 glycan. Effective bNAbs can therefore be raised against HIV-1 Env's silent face, suggesting their potential for HIV-1 prevention, therapy, and vaccine development.
Collapse
Affiliation(s)
- Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nina Suh-Toma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Westridge High School, 324 Madeline Drive, Pasadena, CA 91105, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Franziska Bach
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Yu Erica Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
3
|
Shadabi E, Liang B, Plummer F, Luo M. Identification and Characterization of Positively Selected Mutations in Nef of Four HIV-1 Major Subtypes from Los Alamos National Laboratory. Curr HIV Res 2019; 16:130-142. [PMID: 29600767 DOI: 10.2174/1570162x16666180330140807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human immunodeficiency virus-1 (HIV-1) mutates rapidly to escape host immune pressure. This results in the generation of positively selected mutations (PSM) throughout the viral genome. Escape mutations in Nef, one of the accessory proteins of HIV-1, which plays an important role in viral pathogenicity have previously been identified in several large cohort studies, but the evolution of PSMs overtime in various HIV-1 subtypes remains unknown. METHODS 161 clade A1, 3093 clade B, 647 clade C and 115 clade D HIV-1 nef sequences were obtained from the HIV Database of Los Alamos National Laboratory and aligned using MEGA 6.0. The sequences from each clade were grouped based on the year of collection. Quasi analysis was used to identify PSMs and the number and locations of PSMs were compared among different subtypes. RESULTS PSMs for all four subtypes were distributed across the sequence of Nef, and conserved residues F90, W113, PxxPxR (a.a 72-77) remain unaltered overtime. The frequency of PSMs was stable among subtype B sequences but increased overtime for other subtypes. Phylogenetic analysis shows that sequences containing PSMs tend to cluster together at both inter and intra- subtype levels. CONCLUSION Identification of PSMs and their changes overtime within various subtypes of HIV-1 is important in defining global viral evolutionary patterns that can provide insights for designing therapeutic strategies.
Collapse
Affiliation(s)
- Elnaz Shadabi
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Binhua Liang
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Frank Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ma Luo
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Zhou T, Zheng A, Baxa U, Chuang GY, Georgiev IS, Kong R, O'Dell S, Shahzad-Ul-Hussan S, Shen CH, Tsybovsky Y, Bailer RT, Gift SK, Louder MK, McKee K, Rawi R, Stevenson CH, Stewart-Jones GBE, Taft JD, Waltari E, Yang Y, Zhang B, Shivatare SS, Shivatare VS, Lee CCD, Wu CY, Mullikin JC, Bewley CA, Burton DR, Polonis VR, Shapiro L, Wong CH, Mascola JR, Kwong PD, Wu X. A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets the Silent Face of the HIV Envelope. Immunity 2018; 48:500-513.e6. [PMID: 29548671 PMCID: PMC6421865 DOI: 10.1016/j.immuni.2018.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 01/26/2023]
Abstract
Virtually the entire surface of the HIV-1-envelope trimer is recognized by neutralizing antibodies, except for a highly glycosylated region at the center of the "silent face" on the gp120 subunit. From an HIV-1-infected donor, #74, we identified antibody VRC-PG05, which neutralized 27% of HIV-1 strains. The crystal structure of the antigen-binding fragment of VRC-PG05 in complex with gp120 revealed an epitope comprised primarily of N-linked glycans from N262, N295, and N448 at the silent face center. Somatic hypermutation occurred preferentially at antibody residues that interacted with these glycans, suggesting somatic development of glycan recognition. Resistance to VRC-PG05 in donor #74 involved shifting of glycan-N448 to N446 or mutation of glycan-proximal residue E293. HIV-1 neutralization can thus be achieved at the silent face center by glycan-recognizing antibody; along with other known epitopes, the VRC-PG05 epitope completes coverage by neutralizing antibody of all major exposed regions of the prefusion closed trimer.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Anqi Zheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Vanderbilt Vaccine Center, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, and Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Syed Shahzad-Ul-Hussan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Syna K Gift
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Catherine H Stevenson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Justin D Taft
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Eric Waltari
- Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY 10016, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sachin S Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Vidya S Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chang-Chun D Lee
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - James C Mullikin
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Xueling Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|
5
|
Kavianpour H, Vasighi M. Structural classification of proteins using texture descriptors extracted from the cellular automata image. Amino Acids 2016; 49:261-271. [DOI: 10.1007/s00726-016-2354-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
|
6
|
Montarry J, Doumayrou J, Simon V, Moury B. Genetic background matters: a plant-virus gene-for-gene interaction is strongly influenced by genetic contexts. MOLECULAR PLANT PATHOLOGY 2011; 12:911-20. [PMID: 21726391 PMCID: PMC6640445 DOI: 10.1111/j.1364-3703.2011.00724.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Evolutionary processes responsible for parasite adaptation to their hosts determine our capacity to manage sustainably resistant plant crops. Most plant-parasite interactions studied so far correspond to gene-for-gene models in which the nature of the alleles present at a plant resistance locus and at a pathogen pathogenicity locus determine entirely the outcome of their confrontation. The interaction between the pepper pvr2 resistance locus and Potato virus Y (PVY) genome-linked protein VPg locus obeys this kind of model. Using synthetic chimeras between two parental PVY cDNA clones, we showed that the viral genetic background surrounding the VPg pathogenicity locus had a strong impact on the resistance breakdown capacity of the virus. Indeed, recombination of the cylindrical inclusion (CI) coding region between two PVY cDNA clones multiplied by six the virus capacity to break down the pvr2(3) -mediated resistance. High-throughput sequencing allowed the exploration of the diversity of PVY populations in response to the selection pressure of the pvr2(3) resistance. The CI chimera, which possessed an increased resistance breakdown capacity, did not show an increased mutation accumulation rate. Instead, selection of the most frequent resistance-breaking mutation seemed to be more efficient for the CI chimera than for the parental virus clone. These results echoed previous observations, which showed that the plant genetic background in which the pvr2(3) resistance gene was introduced modified strongly the efficiency of selection of resistance-breaking mutations by PVY. In a broader context, the PVY CI coding region is one of the first identified genetic factors to determine the evolvability of a plant virus.
Collapse
|
7
|
Topakas E, Moukouli M, Dimarogona M, Christakopoulos P. Expression, characterization and structural modelling of a feruloyl esterase from the thermophilic fungus Myceliophthora thermophila. Appl Microbiol Biotechnol 2011; 94:399-411. [PMID: 22012339 DOI: 10.1007/s00253-011-3612-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/20/2011] [Accepted: 09/28/2011] [Indexed: 11/25/2022]
Abstract
A ferulic acid esterase (FAE) from the thermophilic fungus Myceliophthora thermophila (synonym Sporotrichum thermophile), belonging to the carbohydrate esterase family 1 (CE-1), was functionally expressed in methylotrophic yeast Pichia pastoris. The putative FAE from the genomic DNA was successfully cloned in P. pastoris X-33 to confirm that the enzyme exhibits FAE activity. The recombinant FAE was purified to its homogeneity (39 kDa) and subsequently characterized using a series of model substrates including methyl esters of hydroxycinnamates, alkyl ferulates and monoferuloylated 4-nitrophenyl glycosides. The substrate specificity profiling reveals that the enzyme shows a preference for the hydrolysis of methyl caffeate and p-coumarate and a strong preference for the hydrolysis of n-butyl and iso-butyl ferulate. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose, whilst it was found capable of de-esterifying acetylated glucuronoxylans. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with an M3 xylanase from Trichoderma longibrachiatum (a maximum of 41% total FA released after 1 h incubation). Prediction of the secondary structure of MtFae1a was performed in the PSIPRED server whilst modelling the 3D structure was accomplished by the use of the HH 3D structure prediction server.
Collapse
Affiliation(s)
- Evangelos Topakas
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
8
|
Liang B, Luo M, Ball TB, Jones SJM, Plummer FA. QUASI analysis of host immune responses to Gag polyproteins of human immunodeficiency virus type 1 by a systematic bioinformatics approach. Biochem Cell Biol 2010; 88:671-81. [PMID: 20651839 DOI: 10.1139/o10-002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There is a consensus that Gag-specific cytotoxic T lymphocyte (CTL) response plays a key role in the immune control of human immunodeficiency virus type 1 (HIV-1) infection. In this study, we analyzed all currently available gag sequences in the Los Alamos HIV sequence database and identified positive selection (PS) sites likely restricted by the host immune responses. We found that between 23.4% and 47.4% of PS sites were shared by clades A, B, and C of Gag, indicating similar positive selection pressure on Gag in different subtypes of HIV-1. Furthermore, a significant correlation was observed between the combined CTL and antibody responses and PS sites. The Gag regions of free from PS contained 9 CTL epitopes restricted by 11 HLA class I alleles associated with disease progression to acquired immune deficiency syndrome (AIDS). These analyses provide information important for the identification of cross-clade epitopes and development of a global HIV-1 vaccine.
Collapse
Affiliation(s)
- Binhua Liang
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
9
|
Duvvuri VRSK, Duvvuri B, Cuff WR, Wu GE, Wu J. Role of positive selection pressure on the evolution of H5N1 hemagglutinin. GENOMICS PROTEOMICS & BIOINFORMATICS 2009; 7:47-56. [PMID: 19591791 PMCID: PMC5054228 DOI: 10.1016/s1672-0229(08)60032-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The surface glycoprotein hemagglutinin (HA) helps the influenza A virus to evade the host immune system by antigenic variation and is a major driving force for viral evolution. In this study, the selection pressure on HA of H5N1 influenza A virus was analyzed using bioinformatics algorithms. Most of the identified positive selection (PS) sites were found to be within or adjacent to epitope sites. Some of the identified PS sites are consistent with previous experimental studies, providing further support to the biological significance of our findings. The highest frequency of PS sites was observed in recent strains isolated during 2005-2007. Phylogenetic analysis was also conducted on HA sequences from various hosts. Viral drift is almost similar in both avian and human species with a progressive trend over the years. Our study reports new mutations in functional regions of HA that might provide markers for vaccine design or can be used to predict isolates of pandemic potential.
Collapse
Affiliation(s)
- Venkata R S K Duvvuri
- Center for Disease Modeling, York Institute of Health Research, York University, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
10
|
Semeniuk CA, Capina RE, Mendoza MGR, Kimani J, Ball TB, Luo M, Plummer FA. Identification and characterization of HLA-A*0301 epitopes in HIV-1 gag proteins using a novel approach. J Immunol Methods 2009; 352:118-25. [PMID: 19903485 DOI: 10.1016/j.jim.2009.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 11/30/2022]
Abstract
Identification of CTL epitopes correlated to immune protection is important for the development of vaccines that enhance T-cell mediated immune responses. The correlation of positively selected amino acids (PS) of HIV-1 with host HLA alleles can identify regions containing potential T-cell epitopes. However, the specific epitopes have to be identified and characterized using overlapping peptides through T-cell functional assays. In this study we used a new approach to identify and characterize potential epitopes in the gag region containing PS mutations that significantly correlated with HLA-A*0301. The iTopia Epitope Discovery System was used to rapidly screen a panel of peptides overlapping the regions containing PS mutations and the peptides identified were assessed for relative affinity and complex stability. The potential epitopes were then validated by interferon gamma (IFN-gamma) ELISpot assays with patient PBMCs. Using this approach we identified/confirmed the predicted HLA-A*0301 epitopes in two regions of gag containing PS mutations V7I and K403R, one previously reported and the other novel. Five of the seven peptides that bound to A*0301 contained the K403R mutation and corresponded to the documented LARNCRAPRK-A3 supertype epitope. Two epitope variants, RASVLSGGK and RASILSGGK containing the V7I mutation, were identified using the iTopia Epitope Discovery System, however only the consensus variant (RAK9C) was confirmed using the ELISpot assay and it represents a novel A*0301 epitope.
Collapse
Affiliation(s)
- Christina A Semeniuk
- National Microbiology Laboratory, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Multiple T-cell epitopes overlap positively-selected residues in the p1 spacer protein of HIV-1 gag. AIDS 2009; 23:771-7. [PMID: 19287301 DOI: 10.1097/qad.0b013e32832995e0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The p1 region of HIV-1 gag contains the frameshift stem-loop, gag-pol transframe and a protease cleavage site that are crucial for viral assembly, replication and infectivity. Identifying and characterizing CD8+ epitopes that are under host immune selection in this region will help in designing effective vaccines for HIV-1. DESIGN An approach combining bioinformatical analysis and interferon gamma enzyme-linked immunosorbent spot (ELISPOT) assays is used to identify and characterize the epitopes. Potential human leukocyte antigen (HLA)-restricted epitopes were identified by correlating the positively-selected mutations with host HLA alleles. METHODS ELISPOT analysis with overlapping peptides was used to confirm and characterize the epitopes. RESULTS Four positively-selected residues were significantly associated with HLA class I alleles, including HLA B*1302 (K4R, P = 0.0008 and I5L, P = 0.0108), A*7401 (S9N, P = 0.0002) and A*30 genotypes (P7S, P = 0.009), suggesting epitopes restricted by these alleles are present in this region. ELISPOT analysis with patient peripheral blood mononuclear cells (PBMCs) identified seven novel epitopes restricted by the 3 alleles. Two types of epitopes were observed in this region based on the ELISPOT responses, Type I: the positively-selected variation does not affect CD8+ T-cell responses; and Type II: the CD8+ T-cell responses are determined by the epitope variants. CONCLUSION We identified and characterized seven novel CD8+ epitopes in the p1 spacer protein region. Classifying the effects of positively-selected variants on CD8+ T-cell responses will help in designing effective vaccines for HIV-1.
Collapse
|
12
|
Liu T, Zheng X, Wang J. Prediction of protein structural class using a complexity-based distance measure. Amino Acids 2009; 38:721-8. [PMID: 19330425 DOI: 10.1007/s00726-009-0276-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 03/11/2009] [Indexed: 11/30/2022]
Abstract
Knowledge of structural class plays an important role in understanding protein folding patterns. So it is necessary to develop effective and reliable computational methods for prediction of protein structural class. To this end, we present a new method called NN-CDM, a nearest neighbor classifier with a complexity-based distance measure. Instead of extracting features from protein sequences as done previously, distance between each pair of protein sequences is directly evaluated by a complexity measure of symbol sequences. Then the nearest neighbor classifier is adopted as the predictive engine. To verify the performance of this method, jackknife cross-validation tests are performed on several benchmark datasets. Results show that our approach achieves a high prediction accuracy over some classical methods.
Collapse
Affiliation(s)
- Taigang Liu
- Department of Applied Mathematics, Dalian University of Technology, 116024 Dalian, China.
| | | | | |
Collapse
|
13
|
Prediction of protein structure class by coupling improved genetic algorithm and support vector machine. Amino Acids 2008; 35:581-90. [DOI: 10.1007/s00726-008-0084-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|
14
|
An integrative bioinformatic approach for studying escape mutations in human immunodeficiency virus type 1 gag in the Pumwani Sex Worker Cohort. J Virol 2007; 82:1980-92. [PMID: 18057233 DOI: 10.1128/jvi.02742-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is able to evade the host cytotoxic T-lymphocyte (CTL) response through a variety of escape avenues. Epitopes that are presented to CTLs are first processed in the presenting cell in several steps, including proteasomal cleavage, transport to the endoplasmic reticulum, binding by the HLA molecule, and finally presentation to the T-cell receptor. An understanding of the potential of the virus to escape CTL responses can aid in designing an effective vaccine. To investigate such a potential, we analyzed HIV-1 gag from 468 HIV-1-positive Kenyan women by using several bioinformatic approaches that allowed the identification of positively selected amino acids in the HIV-1 gag region and study of the effects that these mutations could have on the various stages of antigen processing. Correlations between positively selected residues and mean CD4 counts also allowed study of the effect of mutation on HIV disease progression. A number of mutations that could create or destroy proteasomal cleavage sites or reduce binding affinity of the transport antigen processing protein, effectively hindering epitope presentation, were identified. Many mutations correlated with the presence of specific HLA alleles and with lower or higher CD4 counts. For instance, the mutation V190I in subtype A1-infected individuals is associated with HLA-B*5802 (P = 4.73 x 10(-4)), a rapid-progression allele according to other studies, and also to a decreased mean CD4 count (P = 0.019). Thus, V190I is a possible HLA escape mutant. This method classifies many positively selected mutations across the entire gag region according to their potential for immune escape and their effect on disease progression.
Collapse
|
15
|
Liang B, Luo M, Ball TB, Plummer FA. QUASI analysis of the HIV-1 envelope sequences in the Los Alamos National Laboratory HIV sequence database: pattern and distribution of positive selection sites and their frequencies over years. Biochem Cell Biol 2007; 85:259-64. [PMID: 17534408 DOI: 10.1139/o06-143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The envelope (env) protein of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in virus entry and is a central target for HIV vaccine design. Using the QUASI program, we analyzed the conserved regions of all currently available env sequences in the Los Alamos National Laboratory HIV Sequence Database and identified positive selection (PS) sites that are likely to be restricted by host immune responses. We found that PS sites are dispersed across conserved regions of env sequence, and that the C3, C4, and C5 regions were the most targeted. Several regions were identified as being PS free and were mainly distributed in the C1 and C2 regions. When comparing individual QUASI PS site frequencies across clades and geographical regions with the overall frequency of the entire env database, the env sequences from North America showed significantly lower PS site frequency, while those from Asia were significantly higher using Student's t test. The QUASI PS site frequency of env proteins from viruses isolated from different years showed that the PS site frequencies of the env population increased over time. Our study provides an overview of PS sites across the conserved regions of HIV-1 env sequences.
Collapse
Affiliation(s)
- Binhua Liang
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
16
|
Bose B, Sinha S. Problems in using statistical analysis of replacement and silent mutations in antibody genes for determining antigen-driven affinity selection. Immunology 2005; 116:172-83. [PMID: 16162266 PMCID: PMC1817819 DOI: 10.1111/j.1365-2567.2005.02208.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The analysis of molecular signatures of antigen-driven affinity selection of B cells is of immense use in studies on normal and abnormal B cell development. Most of the published literature compares the expected and observed frequencies of replacement (R) and silent (S) mutations in the complementarity-determining regions (CDRs) and the framework regions (FRs) of antibody genes to identify the signature of antigenic selection. The basic assumption of this statistical method is that antigenic selection creates a bias for R mutations in the CDRs and for S mutations in the FRs. However, it has been argued that the differences in intrinsic mutability among different regions of an antibody gene can generate a statistically significant bias even in the absence of any antigenic selection. We have modified the existing statistical method to include the effects of intrinsic mutability of different regions of an antibody gene. We used this method to analyse sequences of several B cell-derived monoclonals against T-dependent antigens, T-independent antigens, clones derived from lymphoma and amyloidogenic clones. Our sequence analysis indicates that even after correcting for the intrinsic mutability of antibody genes, statistical parameters fail to reflect the role of antigen-driven affinity selection in maturation of many clones. We suggest that, contrary to the basic assumption of such statistical methods, selection can act both for and against R mutations in the CDR as well as in the FR regions. In addition we have identified different methodological difficulties in the current uses of such statistical analysis of antibody genes.
Collapse
Affiliation(s)
- Biplab Bose
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
17
|
Mackay GA, Niu Y, Liu ZQ, Mukherjee S, Li Z, Adany I, Buch S, Zhuge W, McClure HM, Narayan O, Smith MS. Presence of Intact vpu and nef genes in nonpathogenic SHIV is essential for acquisition of pathogenicity of this virus by serial passage in macaques. Virology 2002; 295:133-46. [PMID: 12033772 DOI: 10.1006/viro.2002.1368] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Use of the macaque model of human immunodeficiency virus (HIV) pathogenesis has shown that the accessory genes nef and vpu are important in the pathogenicity of simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV). We examined the ability of two nonpathogenic SHIVs, SHIV(PPC) and DeltavpuDeltanefSHIV(PPC), to gain pathogenicity by rapid serial passage in macaques. In this study, each virus was passaged by blood intravenously four times at 4-week intervals in macaques. Animals were monitored for 40 weeks for levels of CD4 T cells and quantitative measures of virus infection. DeltavpuDeltanefSHIV(PPC) maintained a limited phase of productive replication in the four animals, with no loss of CD4(+) T cells, whereas SHIV(PPC) became more pathogenic in later passages, judging by plasma viral load and viral mRNA in lymph nodes, infectious peripheral blood mononuclear cells and CD4(+) T cell loss. The nef, LTR, and env of the SHIV(PPC) viruses underwent numerous mutations, compared to DeltavpuDeltanefSHIV(PPC). This study confirms the seminal role that nef, LTR, and vpu could play in regulation of pathogenesis of HIV infection.
Collapse
Affiliation(s)
- Glenn A Mackay
- Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|