1
|
Gao C, Ding Z, Qian J, Liu X, Zhang X, Cong Y, Ding C, Yu S, Hu S, Liu X, Stoeger T, Yin R. The virulence of NDV NA-1 strain regulated by the 3' leader or 5' trailer sequences. Microb Pathog 2018; 126:109-115. [PMID: 30391534 DOI: 10.1016/j.micpath.2018.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022]
Abstract
The 3' and 5' terminal regions of Newcastle disease virus (NDV) genome are cis-acting regulatory elements involved in replication, transcription, and packaging of genomic and anti-genomic viral RNA. There are 6 different nucleotides (nts) at the 3' and 34 different nts at the 5' end of genome in the velogenic NA-1 strain and lentogenic LaSota strain, sharing 90.00% and 70.18% identity, respectively. We investigated the roles of 3' and 5' terminus in the NA-1 strain in viral replication, virulence and pathogenicity. Three NA-1 strain-based recombinant viruses (rNA-L, rNA-T, and rNA-LT) were generated using reverse genetics by either replacing the 3' leader or 5' trailer sequence of NA-1 strain or both with the corresponding sequences of the LaSota strain. Viral replication kinetics and pathogenicity of rNA-L and rNA-T were indistinguishable to that of the parental NA-1 strain, demonstrating that individual replacement or 3' or 5' terminal sequences had little influence. However, the synchronal replacement of both 3' and 5' terminal sequences resulted in decreased viral plaque size, reduced virulence and weaker pathogenicity in 2-week-old chickens. Therefore, our results suggest that the 3' and 5' terminal sequences of NDV genome could only influence the viral virulence when worked collaboratively, while separate replacement would not alter its biological characteristics.
Collapse
Affiliation(s)
- Chao Gao
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, 210014, China
| | - Xinxin Liu
- College of Quartermaster Technology Science, Jilin University, Changchun, 130062, China
| | - Xiaodong Zhang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Shenqing Yu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg/Munich, Germany
| | - Renfu Yin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Yau EH, Butler MC, Sullivan JM. A cellular high-throughput screening approach for therapeutic trans-cleaving ribozymes and RNAi against arbitrary mRNA disease targets. Exp Eye Res 2016; 151:236-55. [PMID: 27233447 DOI: 10.1016/j.exer.2016.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/25/2016] [Accepted: 05/22/2016] [Indexed: 12/11/2022]
Abstract
Major bottlenecks in development of therapeutic post transcriptional gene silencing (PTGS) agents (e.g. ribozymes, RNA interference, antisense) include the challenge of mapping rare accessible regions of the mRNA target that are open for annealing and cleavage, testing and optimization of agents in human cells to identify lead agents, testing for cellular toxicity, and preclinical evaluation in appropriate animal models of disease. Methods for rapid and reliable cellular testing of PTGS agents are needed to identify potent lead candidates for optimization. Our goal was to develop a means of rapid assessment of many RNA agents to identify a lead candidate for a given mRNA associated with a disease state. We developed a rapid human cell-based screening platform to test efficacy of hammerhead ribozyme (hhRz) or RNA interference (RNAi) constructs, using a model retinal degeneration target, human rod opsin (RHO) mRNA. The focus is on RNA Drug Discovery for diverse retinal degeneration targets. To validate the approach, candidate hhRzs were tested against NUH↓ cleavage sites (N = G,C,A,U; H = C,A,U) within the target mRNA of secreted alkaline phosphatase (SEAP), a model gene expression reporter, based upon in silico predictions of mRNA accessibility. HhRzs were embedded in a larger stable adenoviral VAI RNA scaffold for high cellular expression, cytoplasmic trafficking, and stability. Most hhRz expression plasmids exerted statistically significant knockdown of extracellular SEAP enzyme activity when readily assayed by a fluorescence enzyme assay intended for high throughput screening (HTS). Kinetics of PTGS knockdown of cellular targets is measureable in live cells with the SEAP reporter. The validated SEAP HTS platform was transposed to identify lead PTGS agents against a model hereditary retinal degeneration target, RHO mRNA. Two approaches were used to physically fuse the model retinal gene target mRNA to the SEAP reporter mRNA. The most expedient way to evaluate a large set of potential VAI-hhRz expression plasmids against diverse NUH↓ cleavage sites uses cultured human HEK293S cells stably expressing a dicistronic Target-IRES-SEAP target fusion mRNA. Broad utility of this rational RNA drug discovery approach is feasible for any ophthalmological disease-relevant mRNA targets and any disease mRNA targets in general. The approach will permit rank ordering of PTGS agents based on potency to identify a lead therapeutic compound for further optimization.
Collapse
Affiliation(s)
- Edwin H Yau
- Department of Pharmacology/Toxicology, University at Buffalo- SUNY, Buffalo, NY 14209, USA; Department of Ophthalmology (Ira G. Ross Eye Institute), University at Buffalo- SUNY, Buffalo, NY 14209, USA
| | - Mark C Butler
- Department of Ophthalmology (Ira G. Ross Eye Institute), University at Buffalo- SUNY, Buffalo, NY 14209, USA
| | - Jack M Sullivan
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Ophthalmology (Ira G. Ross Eye Institute), University at Buffalo- SUNY, Buffalo, NY 14209, USA; Department of Pharmacology/Toxicology, University at Buffalo- SUNY, Buffalo, NY 14209, USA; Department of Physiology/Biophysics, University at Buffalo- SUNY, Buffalo, NY 14209, USA; Neuroscience Program, University at Buffalo- SUNY, Buffalo, NY 14209, USA; SUNY Eye Institute, University at Albany- SUNY, USA; RNA Institute, University at Albany- SUNY, USA.
| |
Collapse
|
3
|
Garcia-Martin JA, Clote P. RNA Thermodynamic Structural Entropy. PLoS One 2015; 10:e0137859. [PMID: 26555444 PMCID: PMC4640541 DOI: 10.1371/journal.pone.0137859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/23/2015] [Indexed: 01/01/2023] Open
Abstract
Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http://bioinformatics.bc.edu/clotelab/RNAentropy, including source code and ancillary programs.
Collapse
Affiliation(s)
| | - Peter Clote
- Department of Biology, Boston College, Chestnut Hill, MA 02467, United States of America
| |
Collapse
|
4
|
Kharma N, Varin L, Abu-Baker A, Ouellet J, Najeh S, Ehdaeivand MR, Belmonte G, Ambri A, Rouleau G, Perreault J. Automated design of hammerhead ribozymes and validation by targeting the PABPN1 gene transcript. Nucleic Acids Res 2015; 44:e39. [PMID: 26527730 PMCID: PMC4770207 DOI: 10.1093/nar/gkv1111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/12/2015] [Indexed: 12/23/2022] Open
Abstract
We present a new publicly accessible web-service, RiboSoft, which implements a comprehensive hammerhead ribozyme design procedure. It accepts as input a target sequence (and some design parameters) then generates a set of ranked hammerhead ribozymes, which target the input sequence. This paper describes the implemented procedure, which takes into consideration multiple objectives leading to a multi-objective ranking of the computer-generated ribozymes. Many ribozymes were assayed and validated, including four ribozymes targeting the transcript of a disease-causing gene (a mutant version of PABPN1). These four ribozymes were successfully tested in vitro and in vivo, for their ability to cleave the targeted transcript. The wet-lab positive results of the test are presented here demonstrating the real-world potential of both hammerhead ribozymes and RiboSoft. RiboSoft is freely available at the website http://ribosoft.fungalgenomics.ca/ribosoft/.
Collapse
Affiliation(s)
- Nawwaf Kharma
- Electrical & Computer Eng. Dept., Concordia University, 1455 boul. de Maisonneuve O., Montreal, QC, H3G 1M8, Canada
| | - Luc Varin
- Biology Department, Concordia University, 7141 rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| | - Aida Abu-Baker
- Montreal Neurological Hospital and Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jonathan Ouellet
- INRS - Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Sabrine Najeh
- INRS - Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | | | - Gabriel Belmonte
- Electrical & Computer Eng. Dept., Concordia University, 1455 boul. de Maisonneuve O., Montreal, QC, H3G 1M8, Canada
| | - Anas Ambri
- Electrical & Computer Eng. Dept., Concordia University, 1455 boul. de Maisonneuve O., Montreal, QC, H3G 1M8, Canada
| | - Guy Rouleau
- Montreal Neurological Hospital and Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jonathan Perreault
- INRS - Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| |
Collapse
|
5
|
Carter JR, Nawtaisong P, Balaraman V, Fraser MJ. Design and analysis of hammerhead ribozyme activity against an artificial gene target. Methods Mol Biol 2014; 1103:57-66. [PMID: 24318886 PMCID: PMC4219533 DOI: 10.1007/978-1-62703-730-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In vitro cleavage assays are routinely conducted to properly assess the catalytic activity of hammerhead ribozymes (HHR) against target RNA molecules like dengue virus RNA. These experiments are performed for initial assessment of HHR catalysis in a cell-free system and have been simplified by the substitution of agarose gel electrophoresis for SDS-PAGE. Substituting mobility assays enables the analysis of ribozymes in a more rapid fashion without radioisotopes. Here we describe the in vitro transcription of an HHR and corresponding target from T7-promoted plasmids into RNA molecules leading to the analysis of HHR activity against the RNA target by in vitro cleavage assays.
Collapse
Affiliation(s)
- James R Carter
- Department of Biology, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | |
Collapse
|
6
|
Shang X, Wang Y, Zhao Q, Wu K, Li X, Ji X, He R, Zhang W. siRNAs target sites selection of ezrin and the influence of RNA interference on ezrin expression and biological characters of osteosarcoma cells. Mol Cell Biochem 2012; 364:363-71. [PMID: 22286748 DOI: 10.1007/s11010-012-1238-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/13/2012] [Indexed: 12/27/2022]
Abstract
Ezrin, one of the ezrin/radixin/moesin (ERM) protein family which act as membrane organizers and linkers between plasma membrane and cytoskeleton, has attracted much attention as a crucial factor for tumor metastasis. Overexpression of ezrin has been correlated with the metastatic potential of several cancers especially for osteosarcoma. Short interfering RNA (siRNA) downregulate gene expression through an enzyme-mediated process named RNA interference (RNAi). RNAi has rapidly come to be recognized as a powerful tool for the study of gene function and a potential target therapy. In the present study, the human osteosarcoma cell line MG63 was cultured. Three siRNAs targeting ezrin mRNA were designed by the multiple computational methods and then were sythesized. These siRNAs were transfected into osteosarcoma cells. Then the expression of ezrin mRNA and protein in osteosarcoma cells was detected. The cellular proliferation and apoptosis was evaluated. C726–U730, C1653–A1661 and G1749–A1771 were selected to be the suitable target sites through the multiple computational methods because of their ideal secondary structures and hybridization thermodynamics. siRNAs against G1749–A1771 downregulated the expression level of ezrin mRNA and protein, inhibit the cellular proliferation and promoted the cellular apoptosis effectively. There is a significant correlation between the multiple computational methods and the efficacy of the corresponding siRNAs. siRNAs targeting ezrin may have therapeutic potential as inhibitors of osteosarcoma metastasis.
Collapse
Affiliation(s)
- XiFu Shang
- Department of Orthopedic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, No.17 LuJiang Road, Hefei 230001, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Meluzzi D, Olson KE, Dolan GF, Arya G, Müller UF. Computational prediction of efficient splice sites for trans-splicing ribozymes. RNA (NEW YORK, N.Y.) 2012; 18:590-602. [PMID: 22274956 PMCID: PMC3285945 DOI: 10.1261/rna.029884.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/02/2011] [Indexed: 05/31/2023]
Abstract
Group I introns have been engineered into trans-splicing ribozymes capable of replacing the 3'-terminal portion of an external mRNA with their own 3'-exon. Although this design makes trans-splicing ribozymes potentially useful for therapeutic application, their trans-splicing efficiency is usually too low for medical use. One factor that strongly influences trans-splicing efficiency is the position of the target splice site on the mRNA substrate. Viable splice sites are currently determined using a biochemical trans-tagging assay. Here, we propose a rapid and inexpensive alternative approach to identify efficient splice sites. This approach involves the computation of the binding free energies between ribozyme and mRNA substrate. We found that the computed binding free energies correlate well with the trans-splicing efficiency experimentally determined at 18 different splice sites on the mRNA of chloramphenicol acetyl transferase. In contrast, our results from the trans-tagging assay correlate less well with measured trans-splicing efficiency. The computed free energy components suggest that splice site efficiency depends on the following secondary structure rearrangements: hybridization of the ribozyme's internal guide sequence (IGS) with mRNA substrate (most important), unfolding of substrate proximal to the splice site, and release of the IGS from the 3'-exon (least important). The proposed computational approach can also be extended to fulfill additional design requirements of efficient trans-splicing ribozymes, such as the optimization of 3'-exon and extended guide sequences.
Collapse
Affiliation(s)
- Dario Meluzzi
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA
- Department of NanoEngineering, University of California, San Diego, California 92093, USA
| | - Karen E. Olson
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA
| | - Gregory F. Dolan
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA
| | - Gaurav Arya
- Department of NanoEngineering, University of California, San Diego, California 92093, USA
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA
| |
Collapse
|
8
|
Ezrin mRNA target site selection for DNAzymes using secondary structure and hybridization thermodynamics. Tumour Biol 2011; 32:809-17. [PMID: 21559778 DOI: 10.1007/s13277-011-0183-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022] Open
Abstract
Ezrin, a membrane organizer and linker between plasma membrane and cytoskeleton, is well documented to play an important role in the metastatic capacity of cancer cells especially for osteosarcoma cells. It has provided an ideal target for cancer gene therapy. RNA-cleaving 10-23 DNAzymes, consisting of a 15-nucleotide catalytical domain flanked by two target-specific complementary arms, can cleave the target mRNA at purine-pyrimidine dinucleotide effectively. In the present study, we designed and screened the target sites for 10-23 DNAzymes against ezrin mRNA by using multiple computational methods with combination of secondary structural and hybridization thermodynamic parameters. Then, we testified the activities of the DNAzymes directed against these selected target sites in vitro. Our results show that AU1751 is the most effective target site of ezrin mRNA for DNAzymes because of its ideal secondary structure and hybridization thermodynamics. So, there is a significant correlation between the multiple computational methods and the efficacy of the corresponding DNAzymes. These provide a rational, efficient way for DNAzymes selection.
Collapse
|
9
|
Nawtaisong P, Keith J, Fraser T, Balaraman V, Kolokoltsov A, Davey RA, Higgs S, Mohammed A, Rongsriyam Y, Komalamisra N, Fraser MJ. Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome. Virol J 2009; 6:73. [PMID: 19497123 PMCID: PMC2704196 DOI: 10.1186/1743-422x-6-73] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 06/04/2009] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of Dengue impose a heavy economic burden on developing countries in terms of vector control and human morbidity. Effective vaccines against all four serotypes of Dengue are in development, but population replacement with transgenic vectors unable to transmit the virus might ultimately prove to be an effective approach to disease suppression, or even eradication. A key element of the refractory transgenic vector approach is the development of transgenes that effectively prohibit viral transmission. In this report we test the effectiveness of several hammerhead ribozymes for suppressing DENV in lentivirus-transduced mosquito cells in an attempt to mimic the transgenic use of these effector molecules in mosquitoes. A lentivirus vector that expresses these ribozymes as a fusion RNA molecule using an Ae. aegypti tRNAval promoter and terminating with a 60A tail insures optimal expression, localization, and activity of the hammerhead ribozyme against the DENV genome. Among the 14 hammerhead ribozymes we designed to attack the DENV-2 NGC genome, several appear to be relatively effective in reducing virus production from transduced cells by as much as 2 logs. Among the sequences targeted are 10 that are conserved among all DENV serotype 2 strains. Our results confirm that hammerhead ribozymes can be effective in suppressing DENV in a transgenic approach, and provide an alternative or supplementary approach to proposed siRNA strategies for DENV suppression in transgenic mosquitoes.
Collapse
Affiliation(s)
- Pruksa Nawtaisong
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
A structural interpretation of the effect of GC-content on efficiency of RNA interference. BMC Bioinformatics 2009; 10 Suppl 1:S33. [PMID: 19208134 PMCID: PMC2648742 DOI: 10.1186/1471-2105-10-s1-s33] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful technique for eukaryotic gene knockdown. siRNA GC-content negatively correlates with RNAi efficiency, and it is of interest to have a convincing mechanistic interpretation of this observation. We here examine this issue by considering the secondary structures for both the target messenger RNA (mRNA) and the siRNA guide strand. RESULTS By analyzing a unique homogeneous data set of 101 shRNAs targeted to 100 endogenous human genes, we find that: 1) target site accessibility is more important than GC-content for efficient RNAi; 2) there is an appreciable negative correlation between GC-content and RNAi activity; 3) for the predicted structure of the siRNA guide strand, there is a lack of correlation between RNAi activity and either the stability or the number of free dangling nucleotides at an end of the structure; 4) there is a high correlation between target site accessibility and GC-content. For a set of representative structural RNAs, the GC content of 62.6% for paired bases is significantly higher than the GC content of 38.7% for unpaired bases. Thus, for a structured RNA, a region with higher GC content is likely to have more stable secondary structure. Furthermore, by partial correlation analysis, the correlation for GC-content is almost completely diminished, when the effect of target accessibility is controlled. CONCLUSION These findings provide a target-structure-based interpretation and mechanistic insight for the effect of GC-content on RNAi efficiency.
Collapse
|