1
|
Li Z, Bi Y, Wang X, Wang Y, Yang S, Zhang Z, Chen J, Lou Q. Chromosome identification in Cucumis anguria revealed by cross-species single-copy gene FISH. Genome 2018; 61:397-404. [DOI: 10.1139/gen-2017-0235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cucumis anguria is a potential genetic resource for improving crops of the genus Cucumis, owing to its broad-spectrum resistance. However, few cytogenetic studies on C. anguria have been reported because of its small metaphase chromosomes and the scarcity of distinguished chromosomal landmarks. In this study, 14 single-copy genes from cucumber and rDNAs were used as probes for FISH to identify the individual chromosomes of C. anguria. The distinctive signal distribution patterns of the probes allowed us to distinguish each chromosome of C. anguria (A01–A12). Further, detailed chromosome characteristics were obtained through pachytene chromosome FISH. The lengths of pachytene chromosomes varied from 54.80 to 143.41 μm. The proportion of heterochromatin regions varied from 13.56% to 63.86%. Finally, the chromosomal homeologous relationship between C. anguria and cucumber (C1–C7) was analyzed. The results showed that A06 + A09, A03 + A12, A02 + A04, and A01 + A11 were homeologs of C1, C2, C3, and C6, respectively. Furthemore, chromosomes A08, A10, and A05 were homeologs of C4, C5, and C7, respectively. Chromosome identification and homeologous relationship analysis between C. anguria and cucumber lay the foundation for further research of genome structure evolution in species of Cucumis.
Collapse
Affiliation(s)
- Ziang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunfei Bi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunzhu Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuqiong Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhentao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Niku M, Liljavirta J, Durkin K, Schroderus E, Iivanainen A. The bovine genomic DNA sequence data reveal three IGHV subgroups, only one of which is functionally expressed. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:457-61. [PMID: 22369780 DOI: 10.1016/j.dci.2012.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 05/05/2023]
Abstract
A comprehensive analysis of cattle shotgun sequencing data reveals 36 immunoglobulin heavy chain variable genes. The previously described bovine subgroup IGHV1 contains 10 functional genes with a conserved promoter including the consensus octamer and several other transcription factor binding sites, intact exons and matching cDNA sequences. Subgroups IGHV2 and IGHV3 consist entirely of pseudogenes. Thus, the bovine germline IGHV repertoire is very limited. The IGHV genes are distributed in mammalian clans I and II, while no clan III genes were detected. Clan-specific PCR of genomic DNA from cattle, sheep, Eurasian elk, white-tailed deer, pig and dolphin indicates highly dynamic evolution of IGHV gene usage within Cetartiodactyla. The bovine germline IGHV repertoire was probably generated by recent duplications of an IGHV1-IGHV2 homology unit. Immunoglobulin heavy chain genes are largely incorrectly assembled in the current cattle genome versions Btau_4.2 and UMD_3.1. FISH experiments confirm an IGHV locus close to terminus of BTA21.
Collapse
Affiliation(s)
- Mikael Niku
- Department of Veterinary Biosciences, University of Helsinki, PO Box 66, FI-00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
3
|
Heslop-Harrison JSP, Schwarzacher T. Organisation of the plant genome in chromosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:18-33. [PMID: 21443620 DOI: 10.1111/j.1365-313x.2011.04544.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant genome is organized into chromosomes that provide the structure for the genetic linkage groups and allow faithful replication, transcription and transmission of the hereditary information. Genome sizes in plants are remarkably diverse, with a 2350-fold range from 63 to 149,000 Mb, divided into n=2 to n= approximately 600 chromosomes. Despite this huge range, structural features of chromosomes like centromeres, telomeres and chromatin packaging are well-conserved. The smallest genomes consist of mostly coding and regulatory DNA sequences present in low copy, along with highly repeated rDNA (rRNA genes and intergenic spacers), centromeric and telomeric repetitive DNA and some transposable elements. The larger genomes have similar numbers of genes, with abundant tandemly repeated sequence motifs, and transposable elements alone represent more than half the DNA present. Chromosomes evolve by fission, fusion, duplication and insertion events, allowing evolution of chromosome size and chromosome number. A combination of sequence analysis, genetic mapping and molecular cytogenetic methods with comparative analysis, all only becoming widely available in the 21st century, is elucidating the exact nature of the chromosome evolution events at all timescales, from the base of the plant kingdom, to intraspecific or hybridization events associated with recent plant breeding. As well as being of fundamental interest, understanding and exploiting evolutionary mechanisms in plant genomes is likely to be a key to crop development for food production.
Collapse
|