1
|
Hai-Na Z, Jun-Jie J, Guang-Meng X. Peptides derived from growth factors: Exploring their diverse impact from antimicrobial properties to neuroprotection. Biomed Pharmacother 2024; 176:116830. [PMID: 38824833 DOI: 10.1016/j.biopha.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Growth factor-derived peptides are bioactive molecules that play a crucial role in various physiological processes within the human body. Over the years, extensive research has revealed their diverse applications, ranging from antimicrobial properties to their potential in neuroprotection and treating various diseases. These peptides exhibit innate immune responses and have been found to possess potent antimicrobial properties against a wide range of pathogens. Growth factor-derived peptides have demonstrated the ability to promote neuronal survival, prevent cell death, and stimulate neural regeneration. As a result, they hold immense promise in the treatment of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, as well as in the management of traumatic brain injuries. Moreover, growth factor-derived peptides have shown potential for supporting tissue repair and wound healing processes. By enhancing cell proliferation and migration, these peptides contribute to the regeneration of damaged tissues and promote a more efficient healing response. The applications of growth factor-derived peptides extend beyond their therapeutic potential in health; they also have a role in various disease conditions. For example, researchers have explored their influence on cancer cells, where some peptides have demonstrated anti-cancer properties, inhibiting tumor growth and promoting apoptosis in cancer cells. Additionally, their immunomodulatory properties have been investigated for potential applications in autoimmune disorders. Despite the immense promise shown by growth factor-derived peptides, some challenges need to be addressed. Nevertheless, ongoing research and advancements in biotechnology offer promising avenues to overcome these obstacles. The review summarizes the foundational biology of growth factors and the intricate signaling pathways in various physiological processes as well as diseases such as cancer, neurodegenerative disorders, cardiovascular ailments, and metabolic syndromes.
Collapse
Affiliation(s)
- Zhang Hai-Na
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Jiang Jun-Jie
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Xu Guang-Meng
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, PR China.
| |
Collapse
|
2
|
Tarvestad-Laise KE, Ceresa BP. Modulating Growth Factor Receptor Signaling to Promote Corneal Epithelial Homeostasis. Cells 2023; 12:2730. [PMID: 38067157 PMCID: PMC10706396 DOI: 10.3390/cells12232730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The corneal epithelium is the first anatomical barrier between the environment and the cornea; it is critical for proper light refraction onto the retina and prevents pathogens (e.g., bacteria, viruses) from entering the immune-privileged eye. Trauma to the highly innervated corneal epithelium is extremely painful and if not resolved quickly or properly, can lead to infection and ultimately blindness. The healthy eye produces its own growth factors and is continuously bathed in tear fluid that contains these proteins and other nutrients to maintain the rapid turnover and homeostasis of the ocular surface. In this article, we review the roles of growth factors in corneal epithelial homeostasis and regeneration and some of the limitations to their use therapeutically.
Collapse
Affiliation(s)
- Kate E. Tarvestad-Laise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Department of Ophthalmology and Vision Sciences, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Knockdown of LncRNA SNHG1 Suppresses Corneal Angiogenesis by the Regulation of miR-195-5p/VEGF-A. J Ophthalmol 2021; 2021:6646512. [PMID: 34712495 PMCID: PMC8548121 DOI: 10.1155/2021/6646512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
LncRNA SNHG1 (SNHG1) has been widely studied as the causative factor of angiogenesis and proliferative agent in gastric, lung, cervical, and hepatocellular carcinomas. However, its significance of angiogenesis and progression of corneal neovascularization (CRNV) is least understood. This study focuses on the molecular mechanisms followed by SNHG1 to establish CRNV and its angiogenesis. Bioinformatics analysis to identify potential miRNA targets of SNHG1 and vascular endothelial growth factor A (VEGF-A) was conducted using StarBase and was subsequently confirmed by the luciferase reporter assay. Relative quantitative expression of SNHG1 in human umbilical vein endothelial cells (HUVECs) was detected through qRT-PCR and western blot analysis. Cell proliferation was detected through CCK-8 assay, whereas migratory abilities of the cells were determined with transwell assay. A capillary-like tube formation assay was performed to detect the tube formation ability of the cells. Following this, relative expression of miR-195-5p and VEGF-A was determined through qRT-PCR and western blot analysis. Results from the experiments manifested upregulated levels of SNHG1 and VEGF-A in HUVECs and CRNV tissues as compared with the control group, whereas downregulated levels of miR-195-5p were measured in the CRNV tissues and HUVECs, suggesting the negative correlation between lncRNA and miRNA. Overexpressed vascular endothelial growth factor promoted cell proliferation and tube formation; however, its silencing leads to inhibition in angiogenesis and proliferation. Potential binding sites of SNHG1 showed miR-195-5p as its direct target and SNHG1 as a sponge for this miRNA. Knockdown and downregulated levels of SNHG1 showed a notable decrease and inhibition in angiogenesis and migration of CRNV cells. The study showed that SNHG1 inhibition significantly reduced cell proliferation, migration, and tube formation in HUVECs transfect with lncRNA SNHG1. Mechanistic insights into the SNHG1 showed that SNHG1 acts as a sponge for miR-195-5p and upregulates the levels of VEGF-A.
Collapse
|
4
|
Huang X, Wang Y, Zhang P, Zou H. A HGF‑derived peptide suppresses EMT in human lens epithelial cells via the TGF‑β/Smad and Akt/mTOR signaling pathways. Mol Med Rep 2020; 22:551-558. [PMID: 32377724 DOI: 10.3892/mmr.2020.11097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/01/2020] [Indexed: 11/05/2022] Open
Abstract
Posterior capsule opacification (PCO) as a result of proliferation and fibrogenesis of lens epithelial cells (LECs) is the most frequent long‑term complication of modern cataract surgery. LECs may undergo epithelial‑mesenchymal transition (EMT) that resembles the morphological and molecular characteristics of PCO. A pre‑identified novel, hepatocyte growth factor (HGF)‑derived peptide H‑RN, was reported to exhibit anti‑angiogenic activity and anti‑inflammatory effects in ocular cells both in vitro and in vivo. However, the role of H‑RN in the promotion of the development of EMT in LECs is unknown. In the present study, the effects of H‑RN on the development of EMT induced by transforming growth factor (TGF)‑β in human LECs, and the possible signaling pathways participating in this process were investigated. The results showed that H‑RN promoted the expression of the EMT‑associated markers, α‑smooth muscle actin and fibronectin, whereas the expression of E‑cadherin and connexin 43 were reduced. The morphological changes typically associated with EMT seen in LECs induced by TGF‑β2 were inhibited by H‑RN, which was consistent with the effects of a TGF‑β2 inhibitor, SB431542. Smad2 and Smad3 phosphorylation induced by TGF‑β2 were reduced by H‑RN, and phosphorylation of Akt, mTOR and P70S6K induced by TGF‑β2 were also notably reduced by H‑RN in LECs. Therefore, the results of the present study showed that H‑RN treatment significantly suppressed the development of EMT induced by TGF‑β2, at least partially through the TGF‑β/Smad and Akt/mTOR signaling pathways in human LECs. The present study highlights that H‑RN, a novel HGF‑derived peptide, may be a novel therapeutic agent for prevention and treatment of PCO.
Collapse
Affiliation(s)
- Xiaobo Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yulan Wang
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai 200040, P.R. China
| | - Pei Zhang
- Department of Ophthalmology, Shanghai Gonghui Hospital, Shanghai 200041, P.R. China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| |
Collapse
|
5
|
Bai Y, Wang W, Zhang Y, Zhang F, Zhang H. lncRNA MIAT suppression alleviates corneal angiogenesis through regulating miR-1246/ACE. Cell Cycle 2019; 18:661-669. [PMID: 30782069 DOI: 10.1080/15384101.2019.1578143] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Corneal neovascularization (CRNV) is a prevalence eye disorder that affects the transparency and refraction properties of eyes. To explore the correlation between the level of Angiotensin II (Ang II) and corneal angiogenesis, the rat model of CRNV was established using alkali-burn, while the human umbilical vein endothelial cells (HUVECs) were stimulated using VEGF to induce the CRNV cells in vitro. RNA immunoprecipitation (RIP) and RNA pull-down were performed to validate the relationship between MIAT and miR-1246. The expression of MIAT and Ang II was increased, while miR-1246 was decreased in CRNV rat model. VEGF stimulation significantly promoted cell proliferation and migration of HUVECs, knockdown of MIAT dramatically reversed the effects of VEGF, while cells co-transfected with miR-1246 inhibitor obviously abolished the effect of VEGF+si-MIAT, however, enalaprilat abolished the effects of VEGF+si-MIAT+miR-1246 inhibitor. MIAT directly regulated the expression of miR-1246. In conclusion, VEGF stimulation promoted cell proliferation and migration of HUVECs mainly through regulating MIAT/miR-1246/ACE.
Collapse
Affiliation(s)
- Yanhui Bai
- a Department of Ophthalmology , First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Weiqun Wang
- a Department of Ophthalmology , First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Youmei Zhang
- a Department of Ophthalmology , First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Fengyan Zhang
- a Department of Ophthalmology , First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Haohao Zhang
- b Division of Endocrinology, Department of Internal Medicine , First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
6
|
Chalenko YM, Sysolyatina EV, Kalinin EV, Sobyanin KA, Ermolaeva SA. Natural variants of Listeria monocytogenes internalin B with different ability to stimulate cell proliferation and cytoskeleton rearrangement in HEp-2 cells. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2017. [DOI: 10.3103/s0891416817020021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Lin YK, Sharma R, Ma H, Chen WS, Yao CL. In situ polymerizable hydrogel incorporated with specific pathogen-free porcine platelet-rich plasma for the reconstruction of the corneal endothelium. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Liu CH, Wang Z, Sun Y, Chen J. Animal models of ocular angiogenesis: from development to pathologies. FASEB J 2017; 31:4665-4681. [PMID: 28739642 DOI: 10.1096/fj.201700336r] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Pathological angiogenesis in the eye is an important feature in the pathophysiology of many vision-threatening diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, as well as corneal diseases with abnormal angiogenesis. Development of reproducible and reliable animal models of ocular angiogenesis has advanced our understanding of both the normal development and the pathobiology of ocular neovascularization. These models have also proven to be valuable experimental tools with which to easily evaluate potential antiangiogenic therapies beyond eye research. This review summarizes the current available animal models of ocular angiogenesis. Models of retinal and choroidal angiogenesis, including oxygen-induced retinopathy, laser-induced choroidal neovascularization, and transgenic mouse models with deficient or spontaneous retinal/choroidal neovascularization, as well as models with induced corneal angiogenesis, are widely used to investigate the molecular and cellular basis of angiogenic mechanisms. Theoretical concepts and experimental protocols of these models are outlined, as well as their advantages and potential limitations, which may help researchers choose the most suitable models for their investigative work.-Liu, C.-H., Wang, Z., Sun, Y., Chen, J. Animal models of ocular angiogenesis: from development to pathologies.
Collapse
Affiliation(s)
- Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Zhu S, Xu X, Wang L, Su L, Gu Q, Wei F, Liu K. Inhibitory effect of a novel peptide, H-RN, on keratitis induced by LPS or poly(I:C) in vitro and in vivo via suppressing NF-κB and MAPK activation. J Transl Med 2017; 15:20. [PMID: 28125988 PMCID: PMC5270222 DOI: 10.1186/s12967-017-1121-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022] Open
Abstract
Background Keratitis is a common cause of blindness. Current anti-inflammatory drugs used in keratitis have profound side effects. Small peptides derived from endogenous proteins potentially display both desired efficiency and safety. We identified an 11-amino-acid peptide, H-RN, from hepatocyte growth factor (HGF), an endogenous protein with anti-inflammatory properties. We evaluated the effects of H-RN in keratitis in vitro and in vivo. Methods In vitro, corneal fibroblasts were stimulated with LPS or poly(I:C), surrogates for bacteria and viruses. Inflammatory cytokines, intercellular cell adhesion molecule-1 (ICAM-1), translocation of NF-κB p65, activation of IκBα, NF-κB, and MAPKs were detected. In vivo, keratitis in rats was induced by LPS. Clinical, histological observation, and quantification of cytokines in the cornea were conducted. H-RN safety was measured by cell viability, clinical, histological, and microstructural observations. Results H-RN inhibited IL-6, monocyte chemotactic protein-1(MCP-1), Interferon- γ(IFN-γ), and ICAM-1 expression triggered by LPS or poly(I:C), alleviated the clinical manifestation and reduced the clinical score in keratitis in vivo. The histological disorder and proinflammatory cytokines of the cornea were also reduced. The translocation of NF-κB and phosphorylation of IκBα, NF-κB, p38, JNK, and ERK were significantly inhibited by H-RN. No sign of toxicity was observed. Conclusions H-RN effectively attenuated keratitis in vivo and in vitro induced by LPS or poly(I:C) through blocking NF-κB and MAPK signaling pathways. It may be a promising and safe agent in treating keratitis.
Collapse
Affiliation(s)
- Shaopin Zhu
- Department of Ophthalmology, School of Medicine, Shanghai First People's Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Fundus Disease, No. 100, Haining Road, Shanghai, People's Republic of China
| | - Xun Xu
- Department of Ophthalmology, School of Medicine, Shanghai First People's Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Fundus Disease, No. 100, Haining Road, Shanghai, People's Republic of China
| | - Lili Wang
- Department of Ophthalmology, School of Medicine, Shanghai First People's Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Fundus Disease, No. 100, Haining Road, Shanghai, People's Republic of China
| | - Li Su
- Department of Ophthalmology, School of Medicine, Shanghai First People's Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Fundus Disease, No. 100, Haining Road, Shanghai, People's Republic of China
| | - Qing Gu
- Department of Ophthalmology, School of Medicine, Shanghai First People's Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Fundus Disease, No. 100, Haining Road, Shanghai, People's Republic of China
| | - Fang Wei
- Department of Ophthalmology, School of Medicine, Shanghai First People's Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Fundus Disease, No. 100, Haining Road, Shanghai, People's Republic of China
| | - Kun Liu
- Department of Ophthalmology, School of Medicine, Shanghai First People's Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Fundus Disease, No. 100, Haining Road, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Feng Y, Xu X, Zhang Y, Ding J, Wang Y, Zhang X, Wu Z, Kang L, Liang Y, Zhou L, Song S, Zhao K, Ye Q. HPIP is upregulated in colorectal cancer and regulates colorectal cancer cell proliferation, apoptosis and invasion. Sci Rep 2015; 5:9429. [PMID: 25800793 PMCID: PMC4371107 DOI: 10.1038/srep09429] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/05/2015] [Indexed: 11/28/2022] Open
Abstract
Hematopoietic pre-B cell leukemia transcription factor (PBX)-interacting protein (HPIP) was shown to play a role in cancer development and progression. However, the role of HPIP in colorectal cancer (CRC) is unknown. Here, we report that HPIP is overexpressed in most of CRC patients and predicts poor clinical outcome in CRC. HPIP promotes CRC cell proliferation via activation of G1/S and G2/M checkpoint transitions, concomitant with a marked increase of the positive cell cycle regulators, including cyclin D1, cyclin A, and cyclin B1. HPIP inhibits CRC cell apoptosis accompanied by the decreased levels of BAX and PIG3, the inducers of apoptosis, and the increased level of the apoptosis inhibitor BCL2. HPIP blocks caspase-3-mediated cleavage of PARP, an important apoptosis marker. HPIP promotes CRC cell migration and invasion, and regulates epithelial-mesenchymal transition (EMT), which plays a critical role in cancer cell migration and invasion. Activation of MAPK/ERK1/2 and PI3k/AKT pathways is required for HPIP modulation of CRC cell proliferation, migration and EMT. Moreover, HPIP knockdown suppresses colorectal tumor growth in nude mice. These data highlight the important role of HPIP in CRC cell proliferation and progression and suggest that HPIP may be a useful target for CRC therapy.
Collapse
Affiliation(s)
- Yingying Feng
- 1] Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China [2] Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China [3] Department of Colorectal Surgery, the Second Artillery General Hospital, Beijing, People's Republic of China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Yunjing Zhang
- 1] Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China [2] Department of Traditional Chinese Medicine, the Second Artillery General Hospital, Beijing, People's Republic of China
| | - Jianhua Ding
- Department of Colorectal Surgery, the Second Artillery General Hospital, Beijing, People's Republic of China
| | - Yonggang Wang
- Department of Colorectal Surgery, the Second Artillery General Hospital, Beijing, People's Republic of China
| | - Xiaopeng Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Zhe Wu
- Department of Colorectal Surgery, the Second Artillery General Hospital, Beijing, People's Republic of China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yingchun Liang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - LiYing Zhou
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Santai Song
- Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Ke Zhao
- Department of Colorectal Surgery, the Second Artillery General Hospital, Beijing, People's Republic of China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| |
Collapse
|
11
|
Overexpression of nuclear apoptosis-inducing factor 1 altered the proteomic profile of human gastric cancer cell MKN45 and induced cell cycle arrest at G1/S phase. PLoS One 2014; 9:e100216. [PMID: 24926661 PMCID: PMC4057436 DOI: 10.1371/journal.pone.0100216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 05/23/2014] [Indexed: 02/07/2023] Open
Abstract
Nuclear apoptosis-inducing factor 1 (NAIF1) was previously reported to induce apoptosis. Moreover, the expression of NAIF1 was significantly down-regulated in human gastric cancer tissues compared to adjacent normal tissues. However, the mechanism by which the NAIF1 gene induces apoptosis is not fully understood. Our results show that NAIF1 was minimally expressed in all the tested gastric cancer cell lines. Our data also demonstrates that NAIF1 is localized in the nuclei of cells as detected by monitoring the green fluorescence of NAIF1-GFP fusion protein using fluorescent confocal microscopy. Next, a comparative proteomic approach was used to identify the differential expression of proteins between gastric cancer cell lines MKN45/NAIF1 (−) and MKN45/NAIF1 (+). We found five proteins (proteasome 26S subunit 2, proteasome 26S subunit 13, NADH dehydrogenase Fe-S protein 1, chaperonin containing TCP1 subunit 3 and thioredoxin reductase 1) that were up-regulated and three proteins (ribonuclease inhibitor 1, 14-3-3 protein epsilon isoform and apolipoprotein A-I binding protein) that were down-regulated in the MKN45 cells overexpressing NAIF1. We also discovered that NAIF1 could induce cell cycle arrest at G1/S phase by altering the expression of cell cycle proteins cyclinD1, cdc2 and p21. The differentially expressed proteins identified here are related to various cellular programs involving cell cycle, apoptosis, and signal transduction regulation and suggest that NAIF1 may be a tumor suppressor in gastric cancer. Our research provides evidence that elucidates the role of how NAIF1 functions in gastric cancer.
Collapse
|
12
|
Wang L, Xu Y, Yu Q, Sun Q, Xu Y, Gu Q, Xu X. H-RN, a novel antiangiogenic peptide derived from hepatocyte growth factor inhibits inflammation in vitro and in vivo through PI3K/AKT/IKK/NF-κB signal pathway. Biochem Pharmacol 2014; 89:255-65. [DOI: 10.1016/j.bcp.2014.02.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/11/2022]
|