1
|
Li C, Alemany-Ribes M, Raftery RM, Nwoko U, Warman ML, Craft AM. Directed differentiation of human pluripotent stem cells into articular cartilage reveals effects caused by absence of WISP3, the gene responsible for progressive pseudorheumatoid arthropathy of childhood. Ann Rheum Dis 2023; 82:1547-1557. [PMID: 37679035 DOI: 10.1136/ard-2023-224304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVES Progressive pseudorheumatoid arthropathy of childhood (PPAC), caused by deficiency of WNT1 inducible signalling pathway protein 3 (WISP3), has been challenging to study because no animal model of the disease exists and cartilage recovered from affected patients is indistinguishable from common end-stage osteoarthritis. Therefore, to gain insights into why precocious articular cartilage failure occurs in this disease, we made in vitro derived articular cartilage using isogenic WISP3-deficient and WISP3-sufficient human pluripotent stem cells (hPSCs). METHODS We generated articular cartilage-like tissues from induced-(i) PSCs from two patients with PPAC and one wild-type human embryonic stem cell line in which we knocked out WISP3. We compared these tissues to in vitro-derived articular cartilage tissues from two isogenic WISP3-sufficient control lines using histology, bulk RNA sequencing, single cell RNA sequencing and in situ hybridisation. RESULTS WISP3-deficient and WISP3-sufficient hPSCs both differentiated into articular cartilage-like tissues that appeared histologically similar. However, the transcriptomes of WISP3-deficient tissues differed significantly from WISP3-sufficient tissues and pointed to increased TGFβ, TNFα/NFκB, and IL-2/STAT5 signalling and decreased oxidative phosphorylation. Single cell sequencing and in situ hybridisation revealed that WISP3-deficient cartilage contained a significantly higher fraction (~4 fold increase, p<0.001) of superficial zone chondrocytes compared with deeper zone chondrocytes than did WISP3-sufficient cartilage. CONCLUSIONS WISP3-deficient and WISP3-sufficient hPSCs can be differentiated into articular cartilage-like tissues, but these tissues differ in their transcriptomes and in the relative abundances of chondrocyte subtypes they contain. These findings provide important starting points for in vivo studies when an animal model of PPAC or presymptomatic patient-derived articular cartilage becomes available.
Collapse
Affiliation(s)
- Chaochang Li
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Mireia Alemany-Ribes
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rosanne M Raftery
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Uzochi Nwoko
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Matthew L Warman
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - April M Craft
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Marinkovic M, Dai Q, Gonzalez AO, Tran ON, Block TJ, Harris SE, Salmon AB, Yeh CK, Dean DD, Chen XD. Matrix-bound Cyr61/CCN1 is required to retain the properties of the bone marrow mesenchymal stem cell niche but is depleted with aging. Matrix Biol 2022; 111:108-132. [PMID: 35752272 PMCID: PMC10069241 DOI: 10.1016/j.matbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Previously, we showed that extracellular matrices (ECMs), produced ex vivo by various types of stromal cells, direct bone marrow mesenchymal stem cells (BM-MSCs) in a tissue-specific manner and recapitulate physiologic changes characteristic of the aging microenvironment. In particular, BM-MSCs obtained from elderly donors and cultured on ECM produced by young BM stromal cells showed improved quantity, quality and osteogenic differentiation. In the present study, we searched for matrix components that are required for a functional BM-MSC niche by comparing ECMs produced by BM stromal cells from "young" (≤25 y/o) versus "elderly" (≥60 y/o) donors. With increasing donor age, ECM fibrillar organization and mechanical integrity deteriorated, along with the ability to promote BM-MSC proliferation and responsiveness to growth factors. Proteomic analyses revealed that the matricellular protein, Cyr61/CCN1, was present in young, but undetectable in elderly, BM-ECM. To assess the role of Cyr61 in the BM-MSC niche, we used genetic methods to down-regulate the incorporation of Cyr61 during production of young ECM and up-regulate its incorporation in elderly ECM. The results showed that Cyr61-depleted young ECM lost the ability to promote BM-MSC proliferation and growth factor responsiveness. However, up-regulating the incorporation of Cyr61 during synthesis of elderly ECM restored its ability to support BM-MSC responsiveness to osteogenic factors such as BMP-2 and IGF-1. We next examined aging bone and compared bone mineral density and Cyr61 content of L4-L5 vertebral bodies in "young" (9-11 m/o) and "elderly" (21-33 m/o) mice. Our analyses showed that low bone mineral density was associated with decreased amounts of Cyr61 in osseous tissue of elderly versus young mice. Our results strongly demonstrate a novel role for ECM-bound Cyr61 in the BM-MSC niche, where it is responsible for retention of BM-MSC proliferation and growth factor responsiveness, while depletion of Cyr61 from the BM niche contributes to an aging-related dysregulation of BM-MSCs. Our results also suggest new potential therapeutic targets for treating age-related bone loss by restoring specific ECM components to the stem cell niche.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States
| | - Qiuxia Dai
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Aaron O Gonzalez
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Travis J Block
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, TX 78229, United States
| | - Adam B Salmon
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States.
| |
Collapse
|
3
|
Pulsatelli L, Manferdini C, Gabusi E, Mariani E, Ursini F, Ciaffi J, Meliconi R, Lisignoli G. Mesenchymal stromal cells from a progressive pseudorheumatoid dysplasia patient show altered osteogenic differentiation. Eur J Med Res 2022; 27:57. [PMID: 35462544 PMCID: PMC9036808 DOI: 10.1186/s40001-022-00683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Progressive pseudorheumatoid dysplasia (PPRD) is a rare autosomal recessive non-inflammatory skeletal disease with childhood onset and is characterized by a progressive chondropathy in multiple joints, and skeletal abnormalities. To date, the etiopathological relationship between biological modification occurring in PPRD and genetic mutation remains an open issue, partially due to the limited availability of biological samples obtained from PPRD patients for experimental studies. Case presentation We describe the clinical features of a PPRD patient and experimental results obtained from the biological characterization of PPRD mesenchymal stromal cells (MSCs) and osteoblasts (OBs) compared to normal cell populations. Phenotypic profile modifications were found in PPRD compared to normal subjects, essentially ascribed to decreased expression of CD146, osteocalcin (OC) and bone sialoprotein in PPRD MSCs and enhanced CD146, OC and collagen type I expression in PPRD OBs. Gene expression of Dickkopf-1, a master inhibitor of WNT signaling, was remarkably increased in PPRD MSCs compared to normal expression range, whereas PPRD OBs essentially exhibited higher OC gene expression levels. PPRD MSCs failed to efficiently differentiate into mature OBs, so showing a greatly impaired osteogenic potential. Conclusions Since all regenerative processes require stem cell reservoirs, compromised functionality of MSCs may lead to an imbalance in bone homeostasis, suggesting a potential role of MSCs in the pathological mechanisms of PPRD caused by WNT1-inducible signaling pathway protein-3 (WISP3) mutations. In consideration of the lack of compounds with proven efficacy in such a rare disease, these data might contribute to better identify new specific and effective therapeutic approaches.
Collapse
|
4
|
WISP-3 Stimulates VEGF-C-Dependent Lymphangiogenesis in Human Chondrosarcoma Cells by Inhibiting miR-196a-3p Synthesis. Biomedicines 2021; 9:biomedicines9101330. [PMID: 34680447 PMCID: PMC8533311 DOI: 10.3390/biomedicines9101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 11/24/2022] Open
Abstract
Chondrosarcoma is a malignant bone tumor with high metastatic potential. Lymphangiogenesis is a critical biological step in cancer metastasis. WNT1-inducible signaling pathway protein 3 (WISP-3) regulates angiogenesis and facilitates chondrosarcoma metastasis, but the role of WISP-3 in chondrosarcoma lymphangiogenesis is unclear. In this study, incubation of chondrosarcoma cells with WISP-3 increased the production of VEGF-C, an important lymphangiogenic factor. Conditioned medium from WISP-3-treated chondrosarcoma cells significantly enhanced lymphatic endothelial cell tube formation. WISP-3-induced stimulation of VEGF-C-dependent lymphangiogenesis inhibited miR-196a-3p synthesis in the ERK, JNK, and p38 signaling pathways. This evidence suggests that the WISP-3/VEGF-C axis is worth targeting in the treatment of lymphangiogenesis in human chondrosarcoma.
Collapse
|
5
|
Sun Z, Cai S, Zabkiewicz C, Liu C, Ye L. Bone morphogenetic proteins mediate crosstalk between cancer cells and the tumour microenvironment at primary tumours and metastases (Review). Int J Oncol 2020; 56:1335-1351. [PMID: 32236571 DOI: 10.3892/ijo.2020.5030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/28/2020] [Indexed: 11/05/2022] Open
Abstract
Bone morphogenetic proteins (BMP) are pluripotent molecules, co‑ordinating cellular functions from early embryonic and postnatal development to tissue repair, regeneration and homeostasis. They are also involved in tumourigenesis, disease progression and the metastasis of various solid tumours. Emerging evidence has indicated that BMPs are able to promote disease progression and metastasis by orchestrating communication between cancer cells and the surrounding microenvironment. The interactions occur between BMPs and epidermal growth factor receptor, hepatocyte growth factor, fibroblast growth factor, vascular endothelial growth factor and extracellular matrix components. Overall, these interactions co‑ordinate the cellular functions of tumour cells and other types of cell in the tumour to promote the growth of the primary tumour, local invasion, angiogenesis and metastasis, and the establishment and survival of cancer cells in the metastatic niche. Therefore, the present study aimed to provide an informative summary of the involvement of BMPs in the tumour microenvironment.
Collapse
Affiliation(s)
- Zhiwei Sun
- VIP‑II Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Shuo Cai
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Catherine Zabkiewicz
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Chang Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
6
|
Kaasbøll OJ, Gadicherla AK, Wang JH, Monsen VT, Hagelin EMV, Dong MQ, Attramadal H. Connective tissue growth factor (CCN2) is a matricellular preproprotein controlled by proteolytic activation. J Biol Chem 2018; 293:17953-17970. [PMID: 30262666 DOI: 10.1074/jbc.ra118.004559] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/23/2018] [Indexed: 11/06/2022] Open
Abstract
Connective tissue growth factor (CTGF; now often referred to as CCN2) is a secreted protein predominantly expressed during development, in various pathological conditions that involve enhanced fibrogenesis and tissue fibrosis, and in several cancers and is currently an emerging target in several early-phase clinical trials. Tissues containing high CCN2 activities often display smaller degradation products of full-length CCN2 (FL-CCN2). Interpretation of these observations is complicated by the fact that a uniform protein structure that defines biologically active CCN2 has not yet been resolved. Here, using DG44 CHO cells engineered to produce and secrete FL-CCN2 and cell signaling and cell physiological activity assays, we demonstrate that FL-CCN2 is itself an inactive precursor and that a proteolytic fragment comprising domains III (thrombospondin type 1 repeat) and IV (cystine knot) appears to convey all biologically relevant activities of CCN2. In congruence with these findings, purified FL-CCN2 could be cleaved and activated following incubation with matrix metalloproteinase activities. Furthermore, the C-terminal fragment of CCN2 (domains III and IV) also formed homodimers that were ∼20-fold more potent than the monomeric form in activating intracellular phosphokinase cascades. The homodimer elicited activation of fibroblast migration, stimulated assembly of focal adhesion complexes, enhanced RANKL-induced osteoclast differentiation of RAW264.7 cells, and promoted mammosphere formation of MCF-7 mammary cancer cells. In conclusion, CCN2 is synthesized and secreted as a preproprotein that is autoinhibited by its two N-terminal domains and requires proteolytic processing and homodimerization to become fully biologically active.
Collapse
Affiliation(s)
- Ole Jørgen Kaasbøll
- From the Institute for Surgical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway; Center for Heart Failure Research, University of Oslo, NO-0316 Oslo, Norway
| | - Ashish K Gadicherla
- From the Institute for Surgical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway; Center for Heart Failure Research, University of Oslo, NO-0316 Oslo, Norway
| | - Jian-Hua Wang
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Vivi Talstad Monsen
- From the Institute for Surgical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway; Center for Heart Failure Research, University of Oslo, NO-0316 Oslo, Norway
| | - Else Marie Valbjørn Hagelin
- From the Institute for Surgical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway; Center for Heart Failure Research, University of Oslo, NO-0316 Oslo, Norway
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Håvard Attramadal
- From the Institute for Surgical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway; Center for Heart Failure Research, University of Oslo, NO-0316 Oslo, Norway.
| |
Collapse
|
7
|
Thiel A, Reumann MK, Boskey A, Wischmann J, von Eisenhart-Rothe R, Mayer-Kuckuk P. Osteoblast migration in vertebrate bone. Biol Rev Camb Philos Soc 2017. [PMID: 28631442 DOI: 10.1111/brv.12345] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three-dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Antonia Thiel
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Marie K Reumann
- Siegfried Weller Institute, BG Hospital, University of Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Adele Boskey
- Mineralized Tissue Laboratory, Research Division, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, U.S.A
| | - Johannes Wischmann
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Rüdiger von Eisenhart-Rothe
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Philipp Mayer-Kuckuk
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| |
Collapse
|
8
|
Gründker C, Bauerschmitz G, Schubert A, Emons G. Invasion and increased expression of S100A4 and CYR61 in mesenchymal transformed breast cancer cells is downregulated by GnRH. Int J Oncol 2016; 48:2713-21. [PMID: 27098123 DOI: 10.3892/ijo.2016.3491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/17/2016] [Indexed: 11/05/2022] Open
Abstract
S100 calcium binding protein A4 (S100A4) and cysteine-rich angiogenic inducer 61 (CYR61) play important roles in epithelial-mesenchymal-transition (EMT), invasion and metastasis by promoting cancer cell motility. Recently we were able to show that invasion of GnRH receptor-positive breast cancer cells is time- and dose-dependently reduced by GnRH analogs. We have now analyzed whether GnRH treatment affects S100A4 and CYR61 in mesenchymal transformed breast cancer cells. S100A4 and CYR61 expression was analyzed using RT-PCR. Invasion was quantified by assessment of breast cancer cell migration rate through an artificial basement membrane. The role of S100A4 and CYR61 in invasion of breast cancer cells was analyzed by neutralizing their biological activity. Expression of S100A4, CYR61 and GnRH receptor in human breast cancers, normal and other non-malignant breast tissues was analyzed by immuno-histochemistry. Invasion and expression of S100A4 and CYR61 in MDA-MB-231 breast cancer cells were significant higher as compared with MCF-7 breast cancer cells. Invasion and expression of S100A4 and CYR61 were significantly increased in mesenchymal transformed MCF-7 cells (MCF-7-EMT). The increased invasion of MCF-7-EMT cells could be reduced by anti-S100A4 and anti-CYR61 antibodies. In addition, invasion of MDA-MB-231 cells was decreased by anti-S100A4 and anti-CYR61 antibodies. Treatment of MCF-7-EMT and MDA-MB-231 cells with GnRH agonist Triptorelin resulted in a significant decrease of invasion and expression of S100A4 and CYR61. Both, S100A4 and CYR61 were found highly expressed in biopsy specimens of breast hyperplasia and malignant breast cancers. GnRH receptor expression was detectable in approximately 71% of malignant breast cancers. Our findings suggest that S100A4 and CYR61 play major roles in breast cancer invasion. Both, invasion and expression of S100A4 and CYR61 can be inhibited by GnRH treatment.
Collapse
Affiliation(s)
- Carsten Gründker
- Department of Gynecology and Obstetrics, Georg-August-University, D-37075 Göttingen, Germany
| | - Gerd Bauerschmitz
- Department of Gynecology and Obstetrics, Georg-August-University, D-37075 Göttingen, Germany
| | - Antje Schubert
- Department of Gynecology and Obstetrics, Georg-August-University, D-37075 Göttingen, Germany
| | - Günter Emons
- Department of Gynecology and Obstetrics, Georg-August-University, D-37075 Göttingen, Germany
| |
Collapse
|
9
|
Malik AR, Liszewska E, Jaworski J. Matricellular proteins of the Cyr61/CTGF/NOV (CCN) family and the nervous system. Front Cell Neurosci 2015; 9:237. [PMID: 26157362 PMCID: PMC4478388 DOI: 10.3389/fncel.2015.00237] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022] Open
Abstract
Matricellular proteins are secreted proteins that exist at the border of cells and the extracellular matrix (ECM). However, instead of playing a role in structural integrity of the ECM, these proteins, that act as modulators of various surface receptors, have a regulatory function and instruct a multitude of cellular responses. Among matricellular proteins are members of the Cyr61/CTGF/NOV (CCN) protein family. These proteins exert their activity by binding directly to integrins and heparan sulfate proteoglycans and activating multiple intracellular signaling pathways. CCN proteins also influence the activity of growth factors and cytokines and integrate their activity with integrin signaling. At the cellular level, CCN proteins regulate gene expression and cell survival, proliferation, differentiation, senescence, adhesion, and migration. To date, CCN proteins have been extensively studied in the context of osteo- and chondrogenesis, angiogenesis, and carcinogenesis, but the expression of these proteins is also observed in a variety of tissues. The role of CCN proteins in the nervous system has not been systematically studied or described. Thus, the major aim of this review is to introduce the CCN protein family to the neuroscience community. We first discuss the structure, interactions, and cellular functions of CCN proteins and then provide a detailed review of the available data on the neuronal expression and contribution of CCN proteins to nervous system development, function, and pathology.
Collapse
Affiliation(s)
- Anna R Malik
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Ewa Liszewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology Warsaw, Poland
| |
Collapse
|
10
|
Guthrie HC, Martin KR, Taylor C, Spear AM, Whiting R, Macildowie S, Clasper JC, Watts SA. A pre-clinical evaluation of silver, iodine and Manuka honey based dressings in a model of traumatic extremity wounds contaminated with Staphylococcus aureus. Injury 2014; 45:1171-8. [PMID: 24908627 DOI: 10.1016/j.injury.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/25/2014] [Accepted: 05/06/2014] [Indexed: 02/02/2023]
Abstract
Prevention of extremity war wound infection remains a clinical challenge. Staphylococcus aureus is the most common pathogen in delayed infection. We hypothesised that choice of wound dressings may affect bacterial burden over 7 days reflecting the current practice of delayed primary closure of wounds within this timeframe. A randomised controlled trial of 3 commercially available dressings (Inadine(®) (Johnson & Johnson, NJ, USA), Acticoat(®) (Smith & Nephew, Hull, UK), Activon Tulle (Advancis Medical, Nottingham, UK)) was conducted in a rabbit model of contaminated forelimb muscle injury. A positive control group treated with antibiotics was included. Groups were compared to a saline soaked gauze control. The primary outcome was a statistically significant reduction (p < 0.05) in tissue S. aureus at 7 days post-injury. Secondary outcome measurements included bacteraemias, observational data, whole blood determination, ELISA for plasma biomarkers, PCR array analysis of wound healing gene expression and muscle/lymph node histopathology. Antibiotic, Inadine and Acticoat groups had statistically significant lower bacterial counts (mean 7.13 [95% CI 0.00-96.31]×10(2); 1.66 [0.94-2.58]×10(5); 8.86 [0.00-53.35]×10(4)cfu/g, respectively) and Activon Tulle group had significantly higher counts (2.82 [0.98-5.61]×10(6)cfu/g) than saline soaked gauze control (7.58 [1.65-17.83]×10(5)cfu/g). There were no bacteraemias or significant differences in observational data or whole blood determination. There were no significant differences in muscle/loss or pathology and lymph node cross-sectional area or morphology. There were some significant differences between treatment groups in the plasma cytokines IL-4, TNFα and MCP-1 in comparison to the control. PCR array data demonstrated more general changes in gene expression in the muscle tissue from the Activon Tulle group than the Inadine or Acticoat dressings with a limited number of genes showing significantly altered expression compared to control. This study has demonstrated that both Acticoat(®) and Inadine(®) dressings can reduce the bacteria burden in a heavily contaminated soft tissue wound and so they may offer utility in the clinical setting particularly where surgical treatment is delayed.
Collapse
Affiliation(s)
- Hugo C Guthrie
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom; Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Birmingham B15 2SQ, United Kingdom.
| | - Kevin R Martin
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom
| | - Christopher Taylor
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom
| | - Abigail M Spear
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom
| | - Rachel Whiting
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom
| | - Sara Macildowie
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom
| | - Jonathan C Clasper
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Birmingham B15 2SQ, United Kingdom
| | - Sarah A Watts
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom.
| |
Collapse
|
11
|
Yin C, Liang Y, Guo S, Zhou X, Pan X. CCN1 enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia. Mol Biol Rep 2014; 41:5813-8. [DOI: 10.1007/s11033-014-3455-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
12
|
Dotterweich J, Ebert R, Kraus S, Tower RJ, Jakob F, Schütze N. Mesenchymal stem cell contact promotes CCN1 splicing and transcription in myeloma cells. Cell Commun Signal 2014; 12:36. [PMID: 24965524 PMCID: PMC4081546 DOI: 10.1186/1478-811x-12-36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/06/2014] [Indexed: 12/31/2022] Open
Abstract
CCN family member 1 (CCN1), also known as cysteine-rich angiogenic inducer 61 (CYR61), belongs to the extracellular matrix-associated CCN protein family. The diverse functions of these proteins include regulation of cell migration, adhesion, proliferation, differentiation and survival/apoptosis, induction of angiogenesis and cellular senescence. Their functions are partly overlapping, largely non-redundant, cell-type specific, and depend on the local microenvironment. To elucidate the role of CCN1 in the crosstalk between stromal cells and myeloma cells, we performed co-culture experiments with primary mesenchymal stem cells (MSC) and the interleukin-6 (IL-6)-dependent myeloma cell line INA-6. Here we show that INA-6 cells display increased transcription and induction of splicing of intron-retaining CCN1 pre-mRNA when cultured in contact with MSC. Protein analyses confirmed that INA-6 cells co-cultured with MSC show increased levels of CCN1 protein consistent with the existence of a pre-mature stop codon in intron 1 that abolishes translation of unspliced mRNA. Addition of recombinant CCN1-Fc protein to INA-6 cells was also found to induce splicing of CCN1 pre-mRNA in a concentration-dependent manner. Only full length CCN1-Fc was able to induce mRNA splicing of all introns, whereas truncated recombinant isoforms lacking domain 4 failed to induce intron splicing. Blocking RGD-dependent integrins on INA-6 cells resulted in an inhibition of these splicing events. These findings expand knowledge on splicing of the proangiogenic, matricellular factor CCN1 in the tumor microenvironment. We propose that contact with MSC-derived CCN1 leads to splicing and enhanced transcription of CCN1 which further contributes to the translation of angiogenic factor CCN1 in myeloma cells, supporting tumor viability and myeloma bone disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany.
| |
Collapse
|
13
|
Emre Y, Imhof BA. Matricellular protein CCN1/CYR61: a new player in inflammation and leukocyte trafficking. Semin Immunopathol 2014; 36:253-9. [PMID: 24638890 DOI: 10.1007/s00281-014-0420-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/19/2014] [Indexed: 01/08/2023]
Abstract
Cystein-rich protein 61 (CYR61/CCN1) is a component of the extracellular matrix, which is produced and secreted by several cell types including endothelial cells, fibroblasts and smooth muscle cells. CCN1 has been implicated in leukocyte migration and the inflammatory process, but it is also involved in cardiovascular development and carcinogenesis. It exerts its functions through binding to multiple integrins present in many different cell types. This multiplicity in function is now known to contribute to the diverse array of cellular processes it can regulate. The expression of CCN1 is tightly regulated by cytokines and growth factors. However, CCN1 can directly modulate cell adhesion and migratory processes whilst simultaneously regulating the production of other cytokines and chemokines through paracrine and autocrine feedback loops. This complex functionality of CCN1 has highlighted the pivotal role this molecule can play in regulating the immunosurveillance process. Furthermore, CCN1 has now emerged as an important partner when targeting components of the infectious or chronic inflammatory disease processes such as atherosclerosis or rheumatoid arthritis. This review will focus on CYR61/CCN1 and its ability to control the migration of leukocytes, the production of cytokines and cell proliferation or senescence at the site of inflammation.
Collapse
Affiliation(s)
- Yalin Emre
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, 1211, Genève 4, Switzerland,
| | | |
Collapse
|
14
|
The CCN family proteins: modulators of bone development and novel targets in bone-associated tumors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:437096. [PMID: 24551846 PMCID: PMC3914550 DOI: 10.1155/2014/437096] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/19/2013] [Indexed: 12/18/2022]
Abstract
The CCN family of proteins is composed of six extracellular matrix-associated proteins that play crucial roles in skeletal development, wound healing, fibrosis, and cancer. Members of the CCN family share four conserved cysteine-rich modular domains that trigger signal transduction in cell adhesion, migration, proliferation, differentiation, and survival through direct binding to specific integrin receptors and heparan sulfate proteoglycans. In the present review, we discuss the roles of the CCN family proteins in regulating resident cells of the bone microenvironment. In vertebrate development, the CCN family plays a critical role in osteo/chondrogenesis and vasculo/angiogenesis. These effects are regulated through signaling via integrins, bone morphogenetic protein, vascular endothelial growth factor, Wnt, and Notch via direct binding to CCN family proteins. Due to the important roles of CCN family proteins in skeletal development, abnormal expression of CCN proteins is related to the tumorigenesis of primary bone tumors such as osteosarcoma, Ewing sarcoma, and chondrosarcoma. Additionally, emerging studies have suggested that CCN proteins may affect progression of secondary metastatic bone tumors by moderating the bone microenvironment. CCN proteins could therefore serve as potential therapeutic targets for drug development against primary and metastatic bone tumors.
Collapse
|
15
|
Choi J, Lin A, Shrier E, Lau LF, Grant MB, Chaqour B. Degradome products of the matricellular protein CCN1 as modulators of pathological angiogenesis in the retina. J Biol Chem 2013; 288:23075-89. [PMID: 23798676 DOI: 10.1074/jbc.m113.475418] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CCN1 is a matricellular protein involved in normal vascular development and tissue repair. CCN1 exhibits cell- and context-dependent activities that are reflective of its tetramodular structure phylogenetically linked to four domains found in various matrix proteins. Here, we show that vitreal fluids from patients with proliferative diabetic retinopathy (PDR) were enriched with a two-module form of CCN1 comprising completely or partially the insulin-like growth factor-binding protein (IGFBP) and von Willebrand factor type C (vWC) domains. The two- and three-module forms comprising, in addition to IGFBP and vWC, the thrombospondin type 1 (TSP1) repeats are CCN1 degradome products by matrix metalloproteinase-2 and -14. The functional significance of CCN1 and its truncated variants was determined in the mouse model of oxygen-induced retinopathy, which simulates neovascular growth associated with PDR and assesses treatment outcomes. In this model, lentivirus-mediated expression of either CCN1 or the IGFBP-vWC-TSP1 form reduced ischemia-induced neovascularization, whereas ectopic expression of the IGFBP-vWC variant exacerbated pathological angiogenesis. The IGFBP-vWC form has potent proangiogenic properties promoting retinal endothelial cell growth, migration, and three-dimensional tubular structure formation, whereas the IGFBP-vWC-TSP1 variant suppressed cell growth and angiogenic gene expression. Both IGFBP-vWC and IGFBP-vWC-TSP1 forms exhibited predictable variations of their domain folding that enhanced their functional potential. These data provide new insights into the formation and activities of CCN1-truncated variants and raise the predictive value of the form containing completely or partially the IGFBP and vWC domains as a surrogate marker of CCN1 activity in PDR distinguishing pathological from physiological angiogenesis.
Collapse
Affiliation(s)
- Jinok Choi
- Department of Cell Biology, State University of New York Eye Institute, Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Chaqour B. Molecular control of vascular development by the matricellular proteins CCN1 ( Cyr61) and CCN2 ( CTGF). TRENDS IN DEVELOPMENTAL BIOLOGY 2013; 7:59-72. [PMID: 24748747 PMCID: PMC3989895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The circulatory system is the first hierarchically ordered network to form during the development of vertebrates as it is an indispensable means of adequate oxygen and nutrient delivery to developing organs. During the initial phase of vascular development, endothelial lineage-committed cells differentiate, migrate, and coalesce to form the central large axial vessels and their branches. The subsequent phase of vessel expansion (i.e., angiogenesis) involves a cascade of events including endothelial cell migration, proliferation, formation of an immature capillary structure, recruitment of mural cells and deposition of a basement membrane to yield a functional vasculature. These series of events are tightly regulated by the coordinated expression of several angiogenic, morphogenic and guidance factors. The extracellular matrix (ECM) is synthesized and secreted by embryonic cells at the earliest stages of development and forms a pericellular network of bioactive stimulatory and inhibitory angiogenesis regulatory factors. Here we describe the role of a subset of inducible immediate-early gene-encoded, ECM-associated integrin- and heparin-binding proteins referred to as CCN1 (or Cyr61) and CCN2 (or CTGF) and their function in the development of the vascular system. Gene-targeting experiments in mice have identified CCN1 and CCN2 as critical rate-limiting determinants of endothelial cell differentiation and quiescence, mural cell recruitment and basement membrane formation during embryonic vascular development. Emphasis will be placed on the regulation and function of these molecules and their contextual mode of action during vascular development. Further understanding of the mechanisms of CCN1- and CCN2-mediated blood vessel expansion and remodeling would enhance the prospects that these molecules provide for the development of new treatments for vascular diseases.
Collapse
|
18
|
Baker N, Sharpe P, Culley K, Otero M, Bevan D, Newham P, Barker W, Clements KM, Langham CJ, Goldring MB, Gavrilović J. Dual regulation of metalloproteinase expression in chondrocytes by Wnt-1-inducible signaling pathway protein 3/CCN6. ACTA ACUST UNITED AC 2012; 64:2289-99. [PMID: 22294415 DOI: 10.1002/art.34411] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Wnt-1-inducible signaling pathway protein 3 (WISP-3)/CCN6 is mutated in progressive pseudorheumatoid dysplasia and may have effects on cartilage homeostasis. The aim of this study was to ascertain additional roles for WISP-3/CCN6 by determining its expression in osteoarthritic (OA) cartilage and by investigating its effects on cartilage-relevant metalloproteinase expression in immortalized (C-28/I2) and primary chondrocytes. METHODS Cartilage steady-state levels of WISP-3/CCN6 messenger RNA and protein production were determined by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry, respectively. WISP-3/CCN6 was overexpressed in C-28/I2 cells, and the resultant clones were analyzed by quantitative RT-PCR. The stable clones were analyzed by RT-PCR for metalloproteinase expression, and the signaling pathways involved were investigated using pharmacologic inhibition. The effects of WISP-3/CCN6 on metalloproteinase expression in primary chondrocytes were investigated using a small interfering RNA approach. RESULTS WISP-3/CCN6 was highly expressed in OA cartilage compared with undamaged cartilage, at both the RNA and protein levels. WISP-3/CCN6 overexpression in C-28/I2 cells resulted in unexpected dual regulation of metalloproteinases; expression of the potent aggrecanase ADAMTS-5 was down-regulated 9-fold, while expression of MMP-10 was up-regulated 14-fold, and these responses were accentuated in the WISP-3/CCN6 clones grown in suspension. MMP-10 up-regulation was dependent on several MAPKs, but WISP-3/CCN6-mediated ADAMTS-5 repression was independent of these pathways and was partially relieved by activation of β-catenin signaling. WISP-3/CCN6 also suppressed ADAMTS-5 expression in C-28/I2 cells treated with cytokines. In cytokine-treated primary chondrocytes, gene silencing of WISP-3/CCN6 resulted in enhanced ADAMTS-5 expression, while MMP-10 expression was suppressed. CONCLUSION WISP-3/CCN6 was highly expressed in end-stage OA cartilage, suggesting a role for this growth factor in cartilage homeostasis. WISP-3/CCN6-induced repression of ADAMTS-5 expression and regulation of MMP-10 expression suggest complex and context-dependent roles for WISP-3/CCN6 in cartilage biology.
Collapse
Affiliation(s)
- Natasha Baker
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Löbel M, Bauer S, Meisel C, Eisenreich A, Kudernatsch R, Tank J, Rauch U, Kühl U, Schultheiss HP, Volk HD, Poller W, Scheibenbogen C. CCN1: a novel inflammation-regulated biphasic immune cell migration modulator. Cell Mol Life Sci 2012; 69:3101-13. [PMID: 22527715 PMCID: PMC11114836 DOI: 10.1007/s00018-012-0981-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 01/07/2023]
Abstract
In this study, we performed a comprehensive analysis of the effect of CCN1 on the migration of human immune cells. The molecule CCN1, produced by fibroblasts and endothelial cells, is considered as an important matrix protein promoting tissue repair and immune cell adhesion by binding various integrins. We recently reported that CCN1 therapy is able to suppress acute inflammation in vivo. Here, we show that CCN1 binds to various immune cells including T cells, B cells, NK cells, and monocytes. The addition of CCN1 in vitro enhances both actin polymerization and transwell migration. Prolonged incubation with CCN1, however, results in the inhibition of migration of immune cells by a mechanism that involves downregulation of PI3Kγ, p38, and Akt activation. Furthermore, we observed that immune cells themselves produce constitutively CCN1 and secretion is induced by pro-inflammatory stimuli. In line with this finding, patients suffering from acute inflammation had enhanced serum levels of CCN1. These findings extend the classical concept of CCN1 as a locally produced cell matrix adhesion molecule and suggest that CCN1 plays an important role in regulating immune cell trafficking by attracting and locally immobilizing immune cells.
Collapse
Affiliation(s)
- Madlen Löbel
- Institute of Medical Immunology, Charité University Medicine Berlin, 13353, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Batmunkh R, Nishioka Y, Aono Y, Azuma M, Kinoshita K, Kishi J, Makino H, Kishi M, Takezaki A, Sone S. CCN6 as a profibrotic mediator that stimulates the proliferation of lung fibroblasts via the integrin β1/focal adhesion kinase pathway. THE JOURNAL OF MEDICAL INVESTIGATION 2012; 58:188-96. [PMID: 21921419 DOI: 10.2152/jmi.58.188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Idiopathic pulmonary fibrosis is a progressive and lethal disease of the lung that is characterized by the proliferation of fibroblasts and increased deposition of the extracellular matrix. The CCN6/WISP-3 is a member of the CCN family of matricellular proteins, which consists of six members that are involved in many vital biological functions. However, the regulation of lung fibroblasts mediated by CCN6 protein has not been fully elucidated. Here, we demonstrated that CCN6 induced the proliferation of lung fibroblasts by binding to integrin β1, leading to the phosphorylation of FAK(Y397). Furthermore, CCN6 showed a weak, but significant, ability to stimulate the expression of fibronectin. CCN6 was highly expressed in the lung tissues of mice treated with bleomycin. Our results suggest that CCN6 plays a role in the fibrogenesis of the lungs mainly by stimulating the growth of lung fibroblasts and is a potential target for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Rentsenkhand Batmunkh
- Department of Respiratory Medicine and Rheumatology, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kawaki H, Kubota S, Suzuki A, Suzuki M, Kohsaka K, Hoshi K, Fujii T, Lazar N, Ohgawara T, Maeda T, Perbal B, Takano-Yamamoto T, Takigawa M. Differential roles of CCN family proteins during osteoblast differentiation: Involvement of Smad and MAPK signaling pathways. Bone 2011; 49:975-89. [PMID: 21763478 DOI: 10.1016/j.bone.2011.06.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 05/20/2011] [Accepted: 06/28/2011] [Indexed: 12/22/2022]
Abstract
CCN family proteins play diverse roles in many aspects of cellular processes such as proliferation, differentiation, adhesion, migration, angiogenesis and survival. In the bone tissue of vertebrate species, the expression of most CCN family members has been observed in osteoblasts. However, their spatial and temporal distributions, as well as their functions, are still only partially understood. In this study, we evaluated the localization of CCN family members in skeletal tissue in vivo and comparatively analyzed the gene expression patterns and functions of the members in murine osteoblasts in primary culture. Immunofluorescent analyses revealed that the CCN family members were differentially produced in osteoblasts and osteocytes. The presence of all Ccn transcripts was confirmed in those osteoblasts. Among the members, CCN1, CCN2, CCN4 and CCN5 were found in osteocytes. CCN4 and CCN5 were distributed in osteocytes located inside of bone matrix as well. Next, we investigated the expression pattern of Ccn family members during osteoblast differentiation. Along with differentiation, most of the members followed proper gene expression patterns; whereas, Ccn4 and Ccn5 showed quite similar patterns. Furthermore, we evaluated the effects of CCN family members on the osteoblastic activities by using recombinant CCN proteins and RNA interference method. Five members of this family displayed positive effects on osteoblast proliferation or differentiation. Of note, CCN3 drastically inhibited the osteoblast activities. Each Ccn specific siRNA could modulate osteoblast activities in a manner expected by the observed effect of respective recombinant CCN protein. In addition, we found that extracellular signal-regulated kinase1/2 and p38 mitogen-activated protein kinase pathways were critically involved in the CCN family member-mediated modification of osteoblast activities. Collectively, all Ccn family members were found to be differentially expressed along with differentiation and therefore could participate in progression of the osteoblast lineage.
Collapse
Affiliation(s)
- Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fromigue O, Hamidouche Z, Vaudin P, Lecanda F, Patino A, Barbry P, Mari B, Marie PJ. CYR61 downregulation reduces osteosarcoma cell invasion, migration, and metastasis. J Bone Miner Res 2011; 26:1533-42. [PMID: 21312266 DOI: 10.1002/jbmr.343] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osteosarcoma is the most common primary tumor of bone. The rapid development of metastatic lesions and resistance to chemotherapy remain major mechanisms responsible for the failure of treatments and the poor survival rate for patients. We showed previously that the HMGCoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitor statin exhibits antitumoral effects on osteosarcoma cells. Here, using microarray analysis, we identify Cyr61 as a new target of statins. Transcriptome and molecular analyses revealed that statins downregulate Cyr61 expression in human and murine osteosarcoma cells. Cyr61 silencing in osteosarcoma cell lines enhanced cell death and reduced cell migration and cell invasion compared with parental cells, whereas Cyr61 overexpression had opposite effects. Cyr61 expression was evaluated in 231 tissue cores from osteosarcoma patients. Tissue microarray analysis revealed that Cyr61 protein expression was higher in human osteosarcoma than in normal bone tissue and was further increased in metastatic tissues. Finally, tumor behavior and metastasis occurrence were analyzed by intramuscular injection of modified osteosarcoma cells into BALB/c mice. Cyr61 overexpression enhanced lung metastasis development, whereas cyr61 silencing strongly reduced lung metastases in mice. The results reveal that cyr61 expression increases with tumor grade in human osteosarcoma and demonstrate that cyr61 silencing inhibits in vitro osteosarcoma cell invasion and migration as well as in vivo lung metastases in mice. These data provide a novel molecular target for therapeutic intervention in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Olivia Fromigue
- Laboratory of Osteoblast Biology and Pathology, INSERM, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hasan A, Pokeza N, Shaw L, Lee HS, Lazzaro D, Chintala H, Rosenbaum D, Grant MB, Chaqour B. The matricellular protein cysteine-rich protein 61 (CCN1/Cyr61) enhances physiological adaptation of retinal vessels and reduces pathological neovascularization associated with ischemic retinopathy. J Biol Chem 2011; 286:9542-54. [PMID: 21212276 DOI: 10.1074/jbc.m110.198689] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Retinal vascular damages are the cardinal hallmarks of retinopathy of prematurity (ROP), a leading cause of vision impairment and blindness in childhood. Both angiogenesis and vasculogenesis are disrupted in the hyperoxia-induced vaso-obliteration phase, and recapitulated, although aberrantly, in the subsequent ischemia-induced neovessel formation phase of ROP. Yet, whereas the histopathological features of ROP are well characterized, many key modulators with a therapeutic potential remain unknown. The CCN1 protein also known as cysteine-rich protein 61 (Cyr61) is a dynamically expressed, matricellular protein required for proper angiogenesis and vasculogenesis during development. The expression of CCN1 becomes abnormally reduced during the hyperoxic and ischemic phases of ROP modeled in the mouse eye with oxygen-induced retinopathy (OIR). Lentivirus-mediated re-expression of CCN1 enhanced physiological adaptation of the retinal vasculature to hyperoxia and reduced pathological angiogenesis following ischemia. Remarkably, injection into the vitreous of OIR mice of hematopoietic stem cells (HSCs) engineered to express CCN1 harnessed ischemia-induced neovessel outgrowth without adversely affecting the physiological adaptation of retinal vessels to hyperoxia. In vitro exposure of HSCs to recombinant CCN1 induced integrin-dependent cell adhesion, migration, and expression of specific endothelial cell markers as well as many components of the Wnt signaling pathway including Wnt ligands, their receptors, inhibitors, and downstream targets. CCN1-induced Wnt signaling mediated, at least in part, adhesion and endothelial differentiation of cultured HSCs, and inhibition of Wnt signaling interfered with normalization of the retinal vasculature induced by CCN1-primed HSCs in OIR mice. These newly identified functions of CCN1 suggest its possible therapeutic utility in ischemic retinopathy.
Collapse
Affiliation(s)
- Adeel Hasan
- Department of Cell Biology, Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yu Y, Gao Y, Qin J, Kuang CY, Song MB, Yu SY, Cui B, Chen JF, Huang L. CCN1 promotes the differentiation of endothelial progenitor cells and reendothelialization in the early phase after vascular injury. Basic Res Cardiol 2010; 105:713-24. [PMID: 20830586 DOI: 10.1007/s00395-010-0117-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 01/26/2023]
Abstract
Endothelial progenitor cells (EPCs) contribute to the process of reendothelialization and prevent neointimal formation after vascular injury. The present study was designed to investigate whether the cysteine-rich 61 (CYR61, CCN1), an important matricellular component of local vascular microenvironment, has effect on EPCs differentiation and reendothelialization in response to vascular injury in rat. Following balloon injury, CCN1 was rapidly induced and dynamically changed at vascular lesions. Overexpression of CCN1 by adenovirus (Ad-CCN1) accelerated reendothelialization and inhibited neointimal formation in the early phase (day 14) after vascular injury (p < 0.05), while no effect was shown on day 21. Ad-CCN1 treatment increased the adhering EPCs on the surface of injured vessels on day 7, and the ratio of GFP- and vWF-positive area to the total luminal length on day 14 was 2.3-fold higher in the Ad-CCN1-EPC-transplanted group than in controls. Consistent with these findings, CCN1-stimulated EPC differentiation in vitro and 20 genes were found differentially expressed during CCN1-induced EPC differentiation, including Id1, Vegf-b, Vegf-c, Kdr, Igf-1, Ereg, Tgf, Mdk, Ptn, Timp2, etc. Among them, negative transcriptional regulator Id1 was associated with CCN1 effect on EPC differentiation. Our data suggest that CCN1, from the microenvironment of injured vessels, enhances reendothelialization via a direct action on EPC differentiation, revealing a possible new mechanism underlying the process of vascular repair.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Su JL, Chiou J, Tang CH, Zhao M, Tsai CH, Chen PS, Chang YW, Chien MH, Peng CY, Hsiao M, Kuo ML, Yen ML. CYR61 regulates BMP-2-dependent osteoblast differentiation through the {alpha}v{beta}3 integrin/integrin-linked kinase/ERK pathway. J Biol Chem 2010; 285:31325-36. [PMID: 20675382 DOI: 10.1074/jbc.m109.087122] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is one of the most common bone pathologies. A number of novel molecules have been reported to increase bone formation including cysteine-rich protein 61 (CYR61), a ligand of integrin receptor, but mechanisms remain unclear. It is known that bone morphogenetic proteins (BMPs), especially BMP-2, are crucial regulators of osteogenesis. However, the interaction between CYR61 and BMP-2 is unclear. We found that CYR61 significantly increases proliferation and osteoblastic differentiation in MC3T3-E1 osteoblasts and primary cultured osteoblasts. CYR61 enhances mRNA and protein expression of BMP-2 in a time- and dose-dependent manner. Moreover, CYR61-mediated proliferation and osteoblastic differentiation are significantly decreased by knockdown of BMP-2 expression or inhibition of BMP-2 activity. In this study we found integrin α(v)β(3) is critical for CYR61-mediated BMP-2 expression and osteoblastic differentiation. We also found that integrin-linked kinase, which is downstream of the α(v)β(3) receptor, is involved in CYR61-induced BMP-2 expression and subsequent osteoblastic differentiation through an ERK-dependent pathway. Taken together, our results show that CYR61 up-regulates BMP-2 mRNA and protein expression, resulting in enhanced cell proliferation and osteoblastic differentiation through activation of the α(v)β(3) integrin/integrin-linked kinase/ERK signaling pathway.
Collapse
Affiliation(s)
- Jen-Liang Su
- Graduate Institute of Cancer Biology, College of Medicine, and the eGraduate Institute of Basic Medical Science, China Medical University, Taichung 404,Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zuo GW, Kohls CD, He BC, Chen L, Zhang W, Shi Q, Zhang BQ, Kang Q, Luo J, Luo X, Wagner ER, Kim SH, Restegar F, Haydon RC, Deng ZL, Luu HH, He TC, Luo Q. The CCN proteins: important signaling mediators in stem cell differentiation and tumorigenesis. Histol Histopathol 2010; 25:795-806. [PMID: 20376786 DOI: 10.14670/hh-25.795] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The CCN proteins contain six members, namely CCN1 to CCN6, which are small secreted cysteine-rich proteins. The CCN proteins are modular proteins, containing up to four functional domains. Many of the CCN members are induced by growth factors, cytokines, or cellular stress. The CCNs show a wide and highly variable expression pattern in adult and in embryonic tissues. The CCN proteins can integrate and modulate the signals of integrins, BMPs, VEGF, Wnts, and Notch. The involvement of integrins in mediating CCN signaling may provide diverse context-dependent responses in distinct cell types. CCN1 and CCN2 play an important role in development, angiogenesis and cell adhesion, whereas CCN3 is critical to skeletal and cardiac development. CCN4, CCN5 and CCN6 usually inhibit cell growth. Mutations of Ccn6 are associated with the progressive pseudorheumatoid dysplasia and spondyloepiphyseal dysplasia tarda. In stem cell differentiation, CCN1, CCN2, and CCN3 play a principal role in osteogenesis, chondrogenesis, and angiogenesis. Elevated expression of CCN1 is associated with more aggressive phenotypes of human cancer, while the roles of CCN2 and CCN3 in tumorigenesis are tumor type-dependent. CCN4, CCN5 and CCN6 function as tumor suppressors. Although CCN proteins may play important roles in fine-tuning other major signaling pathways, the precise function and mechanism of action of these proteins remain undefined. Understanding of the biological functions of the CCN proteins would not only provide insight into their roles in numerous cellular processes but also offer opportunities for developing therapeutics by targeting CCN functions.
Collapse
Affiliation(s)
- Guo-Wei Zuo
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, and The Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Craig TA, Bhattacharya R, Mukhopadhyay D, Kumar R. Sclerostin binds and regulates the activity of cysteine-rich protein 61. Biochem Biophys Res Commun 2009; 392:36-40. [PMID: 20043874 DOI: 10.1016/j.bbrc.2009.12.143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 12/23/2009] [Indexed: 01/18/2023]
Abstract
Sclerostin, a secreted glycoprotein, regulates osteoblast function. Using yeast two-hybrid and direct protein interaction analyses, we demonstrate that sclerostin binds the Wnt-modulating and Wnt-modulated, extracellular matrix protein, cysteine-rich protein 61 (Cyr61, CCN1), which regulates mesenchymal stem cell proliferation and differentiation, osteoblast and osteoclast function, and angiogenesis. Sclerostin was shown to inhibit Cyr61-mediated fibroblast attachment, and Cyr61 together with sclerostin increases vascular endothelial cell migration and increases osteoblast cell division. The data show that sclerostin binds to and influences the activity of Cyr61.
Collapse
Affiliation(s)
- Theodore A Craig
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
28
|
Bonuccelli G, Casimiro MC, Sotgia F, Wang C, Liu M, Katiyar S, Zhou J, Dew E, Capozza F, Daumer KM, Minetti C, Milliman JN, Alpy F, Rio MC, Tomasetto C, Mercier I, Flomenberg N, Frank PG, Pestell RG, Lisanti MP. Caveolin-1 (P132L), a common breast cancer mutation, confers mammary cell invasiveness and defines a novel stem cell/metastasis-associated gene signature. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1650-62. [PMID: 19395651 DOI: 10.2353/ajpath.2009.080648] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we used the Met-1 cell line in an orthotopic transplantation model in FVB/N mice to dissect the role of the Cav-1(P132L) mutation in human breast cancer. Identical experiments were performed in parallel with wild-type Cav-1. Cav-1(P132L) up-regulated the expression of estrogen receptor-alpha as predicted, because only estrogen receptor-alpha-positive patients have been shown to harbor Cav-1(P132L) mutations. In the context of primary tumor formation, Cav-1(P132L) behaved as a loss-of-function mutation, lacking any tumor suppressor activity. In contrast, Cav-1(P132L) caused significant increases in cell migration, invasion, and experimental metastasis, consistent with a gain-of-function mutation. To identify possible molecular mechanism(s) underlying this invasive gain-of-function activity, we performed unbiased gene expression profiling. From this analysis, we show that the Cav-1(P132L) expression signature contains numerous genes that have been previously associated with cell migration, invasion, and metastasis. These include i) secreted growth factors and extracellular matrix proteins (Cyr61, Plf, Pthlh, Serpinb5, Tnc, and Wnt10a), ii) proteases that generate EGF and HGF (Adamts1 and St14), and iii) tyrosine kinase substrates and integrin signaling/adapter proteins (Akap13, Cdcp1, Ddef1, Eps15, Foxf1a, Gab2, Hs2st1, and Itgb4). Several of the P132L-specific genes are also highly expressed in stem/progenitor cells or are associated with myoepithelial cells, suggestive of an epithelial-mesenchymal transition. These results directly support clinical data showing that patients harboring Cav-1 mutations are more likely to undergo recurrence and metastasis.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The CCN family of genes: a perspective on CCN biology and therapeutic potential. J Cell Commun Signal 2008; 1:159-64. [PMID: 18568428 DOI: 10.1007/s12079-008-0022-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 05/28/2008] [Indexed: 10/22/2022] Open
Abstract
The CCN family of genes currently comprises six secreted proteins (designated CCN1-6 after Cyr61/CCN1; ctgf/CCN2; Nov/CCN3; WISP1/CCN4; WISP2/CCN5, WISP3/CCN6) with a similar mosaic primary structure. It is now well accepted that CCN proteins are not growth factors but matricellular proteins that modify signaling of other molecules, in particular those associated with the extracellular matrix. CCN proteins are involved in mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Since their first identification as matricellular factors, the CCN proteins now figure prominently in a variety of major diseases and are now considered valid candidates for therapeutic targeting. Dissection of the molecular mechanisms governing the biological properties of these proteins is being actively pursued by an expanding network of scientists around the globe who will meet this year at the 5th International Workshop on the CCN family of Genes, organized by the International CCN Society ( http://ccnsociety.com ), home for an international cadre of collaborators working in the CCN field.
Collapse
|