1
|
Purbantoro SD, Taephatthanasagon T, Purwaningrum M, Hirankanokchot T, Peralta S, Fiani N, Sawangmake C, Rattanapuchpong S. Trends of regenerative tissue engineering for oral and maxillofacial reconstruction in veterinary medicine. Front Vet Sci 2024; 11:1325559. [PMID: 38450027 PMCID: PMC10915013 DOI: 10.3389/fvets.2024.1325559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Oral and maxillofacial (OMF) defects are not limited to humans and are often encountered in other species. Reconstructing significant tissue defects requires an excellent strategy for efficient and cost-effective treatment. In this regard, tissue engineering comprising stem cells, scaffolds, and signaling molecules is emerging as an innovative approach to treating OMF defects in veterinary patients. This review presents a comprehensive overview of OMF defects and tissue engineering principles to establish proper treatment and achieve both hard and soft tissue regeneration in veterinary practice. Moreover, bench-to-bedside future opportunities and challenges of tissue engineering usage are also addressed in this literature review.
Collapse
Affiliation(s)
- Steven Dwi Purbantoro
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Teeanutree Taephatthanasagon
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Medania Purwaningrum
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Thanyathorn Hirankanokchot
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Nadine Fiani
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Algorta A, Artigas R, Rial A, Brandl S, Rodellar C, Benavides U, Maisonnave J, Yaneselli K. Isolation and characterization of feline dental pulp stem cells. J Feline Med Surg 2023; 25:1098612X221150625. [PMID: 36745130 PMCID: PMC10812064 DOI: 10.1177/1098612x221150625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to isolate feline dental pulp stem cells (fDPSCs) and characterize their clonogenic and proliferative abilities, as well as their multipotency, immunophenotype and cytogenetic stability. METHODS Dental pulp was isolated by explant culture from two cats <1 year old at post mortem. Their clonogenicity was characterized using a colony-forming unit fibroblast assay, and their proliferative ability was quantified with a doubling time assay in passages 2, 4 and 6 (P2, P4 and P6, respectively). Multipotency was characterized with an in vitro trilineage differentiation assay in P2, and cells were immunophenotyped in P4 by flow cytometry. Chromosomic stability was evaluated by cytogenetic analysis in P2, P4 and P6. RESULTS The fDPSCs displayed spindle and epithelial-like morphologies. Isolated cells showed a marked clonogenic capacity and doubling time was maintained from P2 to P6. Trilineage differentiation was obtained in one sample, while the other showed osteogenic and chondrogenic differentiation. Immunophenotypic analysis showed fDPSCs were CD45-, CD90+ and CD44+. Structural and numerical cytogenetic aberrations were observed in P2-P4. CONCLUSIONS AND RELEVANCE In this study, fDPSCs from two cats were isolated by explant culture and immunophenotyped. Cells displayed clonogenic and proliferative ability, and multipotency in vitro, and signs of chromosomic instability were observed. Although a larger study is needed to confirm these results, this is the first report of fDPSC isolation and in vitro characterization.
Collapse
Affiliation(s)
- Agustina Algorta
- Immunology and Immunotherapy Unit, Department of Patobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
- Odontostomatology Service, Veterinary Hospital Clinical Department, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Rody Artigas
- Animal Genetics and Improvement Unit, Department of Animal Production and Health Production Systems, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Analía Rial
- Department of Biotechnology Development, Hygiene Institute, Medical Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Scott Brandl
- Microbiology Unit, Department of Pathobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Clementina Rodellar
- LAGENBIO, Veterinary Faculty, Food and Agriculture Institute of Aragón-IA2, University of Zaragoza-CITA, Zaragoza, Spain
| | - Uruguaysito Benavides
- Immunology and Immunotherapy Unit, Department of Patobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Jacqueline Maisonnave
- Immunology and Immunotherapy Unit, Department of Patobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Kevin Yaneselli
- Immunology and Immunotherapy Unit, Department of Patobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| |
Collapse
|
3
|
Fu J, Li X, Jin F, Dong Y, Zhou H, Alhaskawi A, Wang Z, Lai J, Yao C, Ezzi SHA, Kota VG, Hasan Abdulla Hasan Abdulla M, Chen B, Lu H. The potential roles of dental pulp stem cells in peripheral nerve regeneration. Front Neurol 2023; 13:1098857. [PMID: 36712432 PMCID: PMC9874689 DOI: 10.3389/fneur.2022.1098857] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Peripheral nerve diseases are significantly correlated with severe fractures or trauma and surgeries, leading to poor life quality and impairment of physical and mental health. Human dental pulp stem cells (DPSCs) are neural crest stem cells with a strong multi-directional differentiation potential and proliferation capacity that provide a novel cell source for nerve regeneration. DPSCs are easily extracted from dental pulp tissue of human permanent or deciduous teeth. DPSCs can express neurotrophic and immunomodulatory factors and, subsequently, induce blood vessel formation and nerve regeneration. Therefore, DPSCs yield valuable therapeutic potential in the management of peripheral neuropathies. With the purpose of summarizing the advances in DPSCs and their potential applications in peripheral neuropathies, this article reviews the biological characteristics of DPSCs in association with the mechanisms of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jing Fu
- 1Department of Stomatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xigong Li
- 2Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feilu Jin
- 3Oral and Maxillofacial Surgery Department, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanzhao Dong
- 2Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiying Zhou
- 2Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ahmad Alhaskawi
- 2Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zewei Wang
- 4Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingtian Lai
- 4Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chengjun Yao
- 4Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | - Vishnu Goutham Kota
- 2Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Bin Chen
- 2Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Lu
- 2Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,6Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Hui Lu ✉
| |
Collapse
|
4
|
Labedz-Maslowska A, Bryniarska N, Kubiak A, Kaczmarzyk T, Sekula-Stryjewska M, Noga S, Boruczkowski D, Madeja Z, Zuba-Surma E. Multilineage Differentiation Potential of Human Dental Pulp Stem Cells-Impact of 3D and Hypoxic Environment on Osteogenesis In Vitro. Int J Mol Sci 2020; 21:ijms21176172. [PMID: 32859105 PMCID: PMC7504399 DOI: 10.3390/ijms21176172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Human dental pulp harbours unique stem cell population exhibiting mesenchymal stem/stromal cell (MSC) characteristics. This study aimed to analyse the differentiation potential and other essential functional and morphological features of dental pulp stem cells (DPSCs) in comparison with Wharton’s jelly-derived MSCs from the umbilical cord (UC-MSCs), and to evaluate the osteogenic differentiation of DPSCs in 3D culture with a hypoxic microenvironment resembling the stem cell niche. Human DPSCs as well as UC-MSCs were isolated from primary human tissues and were subjected to a series of experiments. We established a multiantigenic profile of DPSCs with CD45−/CD14−/CD34−/CD29+/CD44+/CD73+/CD90+/CD105+/Stro-1+/HLA-DR− (using flow cytometry) and confirmed their tri-lineage osteogenic, chondrogenic, and adipogenic differentiation potential (using qRT-PCR and histochemical staining) in comparison with the UC-MSCs. The results also demonstrated the potency of DPSCs to differentiate into osteoblasts in vitro. Moreover, we showed that the DPSCs exhibit limited cardiomyogenic and endothelial differentiation potential. Decreased proliferation and metabolic activity as well as increased osteogenic differentiation of DPSCs in vitro, attributed to 3D cell encapsulation and low oxygen concentration, were also observed. DPSCs exhibiting elevated osteogenic potential may serve as potential candidates for a cell-based product for advanced therapy, particularly for bone repair. Novel tissue engineering approaches combining DPSCs, 3D biomaterial scaffolds, and other stimulating chemical factors may represent innovative strategies for pro-regenerative therapies.
Collapse
Affiliation(s)
- Anna Labedz-Maslowska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
| | - Natalia Bryniarska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Andrzej Kubiak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Tomasz Kaczmarzyk
- Department of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Krakow, Poland;
| | - Malgorzata Sekula-Stryjewska
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Sylwia Noga
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Correspondence: ; Tel.: +48-12-664-61-80
| |
Collapse
|
5
|
Ko CS, Chen JH, Su WT. Stem Cells from Human Exfoliated Deciduous Teeth: A Concise Review. Curr Stem Cell Res Ther 2020; 15:61-76. [DOI: 10.2174/1574888x14666191018122109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023]
Abstract
Stem Cells from Human Exfoliated Deciduous Teeth (SHED) originate from the embryonic
neural crest as ectodermal mesenchymal stem cells and are isolated from human deciduous teeth.
SHED expresses the same cell markers as Embryonic Stem Cells (ESCs), such as OCT4 and NANOG,
which make SHED to have a significant impact on clinical applications. SHED possess higher rates of
proliferation, higher telomerase activity, increased cell population doubling, form sphere-like clusters,
and possess immature and multi-differentiation capacity; such high plasticity makes SHED one of the
most popular sources of stem cells for biomedical engineering. In this review, we describe the isolation
and banking method, the current development of SHED in regenerative medicine and tissue engineering
in vitro and in vivo.
Collapse
Affiliation(s)
| | - Jen-Hao Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
6
|
Lan X, Sun Z, Chu C, Boltze J, Li S. Dental Pulp Stem Cells: An Attractive Alternative for Cell Therapy in Ischemic Stroke. Front Neurol 2019; 10:824. [PMID: 31428038 PMCID: PMC6689980 DOI: 10.3389/fneur.2019.00824] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a major cause of disability and mortality worldwide, but effective restorative treatments are very limited at present. Regenerative medicine research revealed that stem cells are promising therapeutic options. Dental pulp stem cells (DPSCs) are autologously applicable cells that origin from the neural crest and exhibit neuro-ectodermal features next to multilineage differentiation potentials. DPSCs are of increasing interest since they are relatively easy to obtain, exhibit a strong proliferation ability, and can be cryopreserved for a long time without losing their multi-directional differentiation capacity. Besides, use of DPSCs can avoid fundamental problems such as immune rejection, ethical controversy, and teratogenicity. Therefore, DPSCs provide a tempting prospect for stroke treatment.
Collapse
Affiliation(s)
- Xiaoyan Lan
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Zhengwu Sun
- Department of Pharmacy, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Chengyan Chu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair. Stem Cells Int 2018; 2018:1731289. [PMID: 29853908 PMCID: PMC5964589 DOI: 10.1155/2018/1731289] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regeneration. Dental pulp stem cells (DPSCs) derive from a cranial neural crest lineage, retain a remarkable potential for neuronal differentiation, and additionally express multiple factors that are suitable for neuronal and axonal regeneration. DPSCs can also express immunomodulatory factors that stimulate formation of blood vessels and enhance regeneration and repair of injured nerve. These unique properties together with their ready accessibility make DPSCs an attractive cell source for tissue engineering in injured and diseased nervous systems. In this review, we interrogate the neuronal differentiation potential as well as the neuroprotective, neurotrophic, angiogenic, and immunomodulatory properties of DPSCs and its application in the injured nervous system. Taken together, DPSCs are an ideal stem cell resource for therapeutic approaches to neural repair and regeneration in nerve diseases.
Collapse
|
8
|
Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biol 2017; 18:12. [PMID: 28148303 PMCID: PMC5288874 DOI: 10.1186/s12860-017-0128-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) are increasingly being recognized as a viable cell source for regenerative medicine. Although significant variations in their ex vivo expansion are well-established, DPSC proliferative heterogeneity remains poorly understood, despite such characteristics influencing their regenerative and therapeutic potential. This study assessed clonal human DPSC regenerative potential and the impact of cellular senescence on these responses, to better understand DPSC functional behaviour. Results All DPSCs were negative for hTERT. Whilst one DPSC population reached >80 PDs before senescence, other populations only achieved <40 PDs, correlating with DPSCs with high proliferative capacities possessing longer telomeres (18.9 kb) than less proliferative populations (5–13 kb). High proliferative capacity DPSCs exhibited prolonged stem cell marker expression, but lacked CD271. Early-onset senescence, stem cell marker loss and positive CD271 expression in DPSCs with low proliferative capacities were associated with impaired osteogenic and chondrogenic differentiation, favouring adipogenesis. DPSCs with high proliferative capacities only demonstrated impaired differentiation following prolonged expansion (>60 PDs). Conclusions This study has identified that proliferative and regenerative heterogeneity is related to contrasting telomere lengths and CD271 expression between DPSC populations. These characteristics may ultimately be used to selectively screen and isolate high proliferative capacity/multi-potent DPSCs for regenerative medicine exploitation.
Collapse
|
9
|
Sholehvar F, Mehrabani D, Yaghmaei P, Vahdati A. The effect ofAloe veragel on viability of dental pulp stem cells. Dent Traumatol 2016; 32:390-6. [DOI: 10.1111/edt.12272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Fatemeh Sholehvar
- Department of Biology, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Davood Mehrabani
- Stem Cell and Transgenic Technology Research Center; Shiraz University of Medical Science; Shiraz Iran
- Department of Regenerative Medicine; University of Manitoba; Winnipeg MB Canada
| | - Parichehr Yaghmaei
- Department of Biology, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Akbar Vahdati
- Department of Biology, Science and Research Branch; Islamic Azad University; Fars Iran
| |
Collapse
|
10
|
Comparative Immunophenotypic Characteristics, Proliferative Features, and Osteogenic Differentiation of Stem Cells Isolated from Human Permanent and Deciduous Teeth with Bone Marrow. Mol Biotechnol 2016; 58:415-27. [DOI: 10.1007/s12033-016-9941-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Jeon BG, Jang SJ, Park JS, Subbarao RB, Jeong GJ, Park BW, Rho GJ. Differentiation potential of mesenchymal stem cells isolated from human dental tissues into non-mesodermal lineage. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1087430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
12
|
Magnucki G, Schenk U, Ahrens S, Navarrete Santos A, Gernhardt CR, Schaller HG, Hoang-Vu C. Expression of the IGF-1, IGFBP-3 and IGF-1 receptors in dental pulp stem cells and impacted third molars. J Oral Sci 2015; 55:319-27. [PMID: 24351920 DOI: 10.2334/josnusd.55.319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
IGF-1 regulates the metabolism of hard dental tissue through binding to the IGF-1 receptor on target cells. Furthermore, IGF-binding-protein-3 promotes the accessibility of IGF-1. The aim of this study was to investigate the expression of IGF-1, IGFBP-3 and IGF-1R in STRO-1-positive dental pulp stem cells (DPSCs) and fully impacted wisdom teeth in relation to tooth development. Third molars were surgically removed from 60 patients and classified into two groups: teeth showing ongoing development (group 1) and teeth that had completed root shaping (group 2). The transcript and protein levels of IGF-1, IGFBP-3 and IGF-1R were investigated using RT-PCR and immunohistochemistry. The expression of the same proteins was also analyzed in DPSCs. The teeth from group 1 showed significantly stronger expression of IGF-1 and IGF-1R. The major sources of all of the proteins investigated immunohistochemically in sections of wisdom teeth were odontoblasts, cementoblasts and cell colonies in the pulpal mesenchyme. These colonies were identified as stem cells in view of their positivity for STRO-1, and the cells were subsequently sorted by flow cytometry. These DPSCs demonstrated high levels of pluripotency markers and IGF-1 and IGF-1R. We conclude that members of the IGF-1 family are involved in the late stage of tooth development and the process of pulpal differentiation.
Collapse
Affiliation(s)
- Gabriel Magnucki
- Department of Operative Dentistry and Periodontology, University School of Dental Medicine, Faculty of Medicine, Martin-Luther-University of Halle-Wittenberg
| | | | | | | | | | | | | |
Collapse
|
13
|
Osteogenic Potential of Dental Mesenchymal Stem Cells in Preclinical Studies: A Systematic Review Using Modified ARRIVE and CONSORT Guidelines. Stem Cells Int 2015; 2015:378368. [PMID: 26106427 PMCID: PMC4464683 DOI: 10.1155/2015/378368] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/01/2015] [Indexed: 12/22/2022] Open
Abstract
Background and Objective. Dental stem cell-based tissue engineered constructs are emerging as a promising alternative to autologous bone transfer for treating bone defects. The purpose of this review is to systematically assess the preclinical in vivo and in vitro studies which have evaluated the efficacy of dental stem cells on bone regeneration. Methods. A literature search was conducted in Ovid Medline, Embase, PubMed, and Web of Science up to October 2014. Implantation of dental stem cells in animal models for evaluating bone regeneration and/or in vitro studies demonstrating osteogenic potential of dental stem cells were included. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were used to ensure the quality of the search. Modified ARRIVE (Animal research: reporting in invivo experiments) and CONSORT (Consolidated reporting of trials) were used to critically analyze the selected studies. Results. From 1914 citations, 207 full-text articles were screened and 137 studies were included in this review. Because of the heterogeneity observed in the studies selected, meta-analysis was not possible. Conclusion. Both in vivo and in vitro studies indicate the potential use of dental stem cells in bone regeneration. However well-designed randomized animal trials are needed before moving into clinical trials.
Collapse
|
14
|
Kashyap R. SHED - Basic Structure for Stem Cell Research. J Clin Diagn Res 2015; 9:ZE07-9. [PMID: 25954717 DOI: 10.7860/jcdr/2015/9871.5636] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/18/2014] [Indexed: 01/09/2023]
Abstract
The discovery that stem cells from dental pulp are capable of differentiating into endothelial cells raised the exciting possibility that these cells can be a single source of odontoblasts and vascular networks in dental tissue engineering. These so-called mesenchymal stem cell populations have been identified from human exfoliated deciduous teeth because of their ability to generate clonogenic adherent colonies when grown and expanded. In addition to these stem cells, other population of stem cells can be from adult human dental pulp and periodontal ligament. The identification and isolation of these stem cells in adult dental pulp was first reported by Gronthos and co-workers in 2000.These dental pulp stem cells have clonogenic abilities, rapid proliferative rates and the capacity to form mineralized tissues both in vitro and in vivo. The stem cells from human exfoliated deciduous teeth are distinct from dental pulp stem cells by virtue of their proliferation rate, increased cell population doublings and osteoinductive capacity in vivo. It is further demonstrated that human exfoliated deciduous teeth stem cells may not be a single-cell type, may well be a heterogenous population of cells from the pulp.
Collapse
Affiliation(s)
- Rucha Kashyap
- Senior Lecturer, Department of Prosthodontics, People's College of Dental Sciences and Research Centre , Bhopal, India
| |
Collapse
|
15
|
Pfefferle LW, Wray GA. Insights from a chimpanzee adipose stromal cell population: opportunities for adult stem cells to expand primate functional genomics. Genome Biol Evol 2014; 5:1995-2005. [PMID: 24092797 PMCID: PMC3814206 DOI: 10.1093/gbe/evt148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Comparisons between humans and chimpanzees are essential for understanding traits unique to each species. However, linking important phenotypic differences to underlying molecular changes is often challenging. The ability to generate, differentiate, and profile adult stem cells provides a powerful but underutilized opportunity to investigate the molecular basis for trait differences between species within specific cell types and in a controlled environment. Here, we characterize adipose stromal cells (ASCs) from Clint, the chimpanzee whose genome was first sequenced. Using imaging and RNA-Seq, we compare the chimpanzee ASCs with three comparable human cell lines. Consistent with previous studies on ASCs in humans, the chimpanzee cells have fibroblast-like morphology and express genes encoding components of the extracellular matrix at high levels. Differentially expressed genes are enriched for distinct functional classes between species: immunity and protein processing are higher in chimpanzees, whereas cell cycle and DNA processing are higher in humans. Although hesitant to draw definitive conclusions from these data given the limited sample size, we wish to stress the opportunities that adult stem cells offer for studying primate evolution. In particular, adult stem cells provide a powerful means to investigate the profound disease susceptibilities unique to humans and a promising tool for conservation efforts with nonhuman primates. By allowing for experimental perturbations in relevant cell types, adult stem cells promise to complement classic comparative primate genomics based on in vivo sampling.
Collapse
|
16
|
La Noce M, Paino F, Spina A, Naddeo P, Montella R, Desiderio V, De Rosa A, Papaccio G, Tirino V, Laino L. Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy. J Dent 2014; 42:761-8. [PMID: 24589847 DOI: 10.1016/j.jdent.2014.02.018] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Stem cells have the ability to rescue and/or repair injured tissue. In humans, it is possible to isolate different types of stem cells from the body. Among these, dental pulp stem cells (DPSCs) are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. In particular they represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. SOURCES An electronic search was conducted on PubMed databases and supplemented with a manual study of relevant references. RESULTS All research described in this review highlight that DPSCs are mesenchymal stem cells that could be used in clinical applications. Unfortunately, very few clinical trials have been reported. Major obstacles imposed on researchers are hindering the translation of potentially effective therapies to the clinic. Both researchers and regulatory institutions need to develop a new approach to this problem, drawing up a new policy for good manufacturing practice (GMP) procedures. We strongly suggest that only general rules be standardized rather than everything. Importantly, this would not have an effect on the safety of patients, but may very well affect the results, which cannot be identical for all patients, due to physiological diversity in the biology of each patient. Alternatively, it would be important to study the role of specific molecules that recruit endogenous stem cells for tissue regeneration. In this way, the clinical use of stem cells could be successfully developed. CONCLUSIONS DPSCs are mesenchymal stem cells that differentiate into different tissues, maintain their characteristics after cryopreservation, differentiate into bone-like tissues when loaded on scaffolds in animal models, and regenerate bone in human grafts. In summary, all data reported up to now should encourage the development of clinical procedures using DPSCs.
Collapse
Affiliation(s)
- Marcella La Noce
- Department of Experimental Medicine, Second University of Naples, Italy
| | - Francesca Paino
- Department of Experimental Medicine, Second University of Naples, Italy
| | - Anna Spina
- Department of Experimental Medicine, Second University of Naples, Italy
| | - Pasqualina Naddeo
- Department of Experimental Medicine, Second University of Naples, Italy
| | - Roberta Montella
- Department of Experimental Medicine, Second University of Naples, Italy
| | | | - Alfredo De Rosa
- Department of Odontology and Surgery, Second University of Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Second University of Naples, Italy.
| | - Virginia Tirino
- Department of Experimental Medicine, Second University of Naples, Italy.
| | - Luigi Laino
- Department of Clinical and Experimental Medicine, University of Foggia, Italy
| |
Collapse
|
17
|
Vishwanath VR, Nadig RR, Nadig R, Prasanna JS, Karthik J, Pai VS. Differentiation of isolated and characterized human dental pulp stem cells and stem cells from human exfoliated deciduous teeth: An in vitro study. J Conserv Dent 2013; 16:423-8. [PMID: 24082571 PMCID: PMC3778624 DOI: 10.4103/0972-0707.117509] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/07/2013] [Accepted: 07/17/2013] [Indexed: 01/09/2023] Open
Abstract
AIMS AND OBJECTIVES Isolation, characterization and differentiation of dental pulp stem cells (DPSCs) and stem cells from exfoliated human deciduous teeth (SHED). METHODS The pulp tissue was digested in collagenase and cultured in DMEM Dulbecco's Modified Eagle's Media). The stem cells were identified and isolated. Surface characterization of cells was done with flow cytometer using surface markers. An immuno cytochemistry analysis was done. Differentiation potential was analyzed using various differentiation markers. RESULTS Flow cytometry analyses for various CD markers showed similar results for both DPSCs and SHED. The cells showed positive expression for pluripotent, ectodermal and mesodermal markers. Cells differentiated into osteoblasts and adipocytes. CONCLUSION The study demonstrated that stem cells existed in deciduous and permanent pulp tissue. The stem cells present in pulp tissue can be isolated, cultivated and expanded in vitro. Both DPSCs and SHED show almost a similar expression pattern profile for variety of antigens tested.
Collapse
|
18
|
Morad G, Kheiri L, Khojasteh A. Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature. Arch Oral Biol 2013; 58:1818-27. [PMID: 24095289 DOI: 10.1016/j.archoralbio.2013.08.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This review of literature was aimed to assess in vivo experiments which have evaluated the efficacy of dental pulp stem cells (DPSCs) for bone regeneration. DESIGN An electronic search of English-language papers was conducted on PubMed database. Studies that assessed the use of DPSCs in bone regeneration in vivo were included and experiments evaluating regeneration of hard tissues other than bone were excluded. The retrieved articles were thoroughly reviewed according to the source of stem cell, cell carrier, the in vivo experimental model, defect type, method of evaluating bone regeneration, and the obtained results. Further assessment of the results was conducted by classifying the studies based on the defect type. RESULTS Seventeen papers formed the basis of this systematic review. Sixteen out of 17 experiments were performed on animal models with mouse and rat being the most frequently used animal models. Seven out of 17 animal studies, contained subcutaneous pockets on back of the animal for stem cell implantation. In only one study hard tissue formation was not observed. Other types of defects used in the retrieved studies, included cranial defects and mandibular bone defects, in all of which bone formation was reported. CONCLUSION When applied in actual bone defects, DPSCs were capable of regenerating bone. Nevertheless, a precise conclusion regarding the efficiency of DPSCs for bone regeneration is yet to be made, considering the limited number of the in vivo experiments and the heterogeneity within their methods.
Collapse
Affiliation(s)
- Golnaz Morad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
19
|
da Cunha JM, da Costa-Neves A, Kerkis I, da Silva MCP. Pluripotent stem cell transcription factors during human odontogenesis. Cell Tissue Res 2013; 353:435-41. [PMID: 23736381 DOI: 10.1007/s00441-013-1658-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/29/2013] [Indexed: 12/31/2022]
Abstract
Stem cells are capable of generating various cell lines and can be obtained from adult or embryonic tissues for clinical therapies. Stem cells from deciduous dental pulp are among those that are easily obtainable from adult tissues and have been widely studied because of their ability to differentiate into a variety of cell lines in the presence of various chemical mediators. We have analyze the expression of several proteins related to the differentiation and proliferative potential of cell populations that compose the tooth germ of human fetuses. We evaluate 20 human fetuses of both genders. After being paraffin-embedded, cap and bell stages of tooth germ development were subjected to immunohistochemistry for the following markers: Oct-4, Nanog, Stat-3 and Sox-2. The studied antibodies showed nuclear or cytoplasmic immunnostaining within various anatomical structures and with various degrees of expression, indicating the action of these proteins during tooth development. We conclude that the interrelationship between these transcription factors is complex and associated with self-renewal and cell differentiation. Our results suggest that the expression of Oct-4, Nanog, Sox-2 and Stat-3 are related to differentiation in ameloblasts and odontoblasts.
Collapse
Affiliation(s)
- Juliana Malta da Cunha
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brasil
| | | | | | | |
Collapse
|
20
|
Oral and Maxillo-facial. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Narang S, Sehgal N. Stem cells: A potential regenerative future in dentistry. INDIAN JOURNAL OF HUMAN GENETICS 2012; 18:150-4. [PMID: 23162287 PMCID: PMC3491285 DOI: 10.4103/0971-6866.100749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years, the field of dentistry has embossed its presence by taking major leaps in research and further bringing it into practice. The most valuable ongoing research in regenerative dentistry is the study on stem cells. It was instituted that stem cells grow rapidly and have the potential to form specialized dentin, bone, and neuronal cells. These neuronal cells can be used for dental therapies and can provide better treatment options for patients. The stem cells based therapies could help in new advances in treating damaged teeth, inducing bone regeneration and treating neural injury as well.
Collapse
Affiliation(s)
- Sumit Narang
- Department of Periodontics, Peoples College of Dental Science and Research Centre, Bhopal, Madhya Pradesh, India
| | | |
Collapse
|
22
|
Abstract
BACKGROUND As a result of numerous rapid and exciting developments in tissue engineering technology, scientists are able to regenerate a fully functional tooth in animal models, from a bioengineered tooth germ. Advances in technology, together with our understanding of the mechanisms of tooth development and studies dealing with dentally derived stem cells, have led to significant progress in the field of tooth regeneration. AIM AND DESIGN This review focuses on some of the recent advances in tooth bioengineering technology, the signalling pathways in tooth development, and in dental stem cell biology. These factors are highlighted in respect of our current knowledge of tooth regeneration. RESULTS AND CONCLUSION An understanding of these new approaches in tooth regeneration should help to prepare clinicians to use this new and somewhat revolutionary therapy while also enabling them to partake in future clinical trials. Tooth bioengineering promises to be at the forefront of the next generation of dental treatments.
Collapse
Affiliation(s)
- Ying Wang
- Department of Orthodontics, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
23
|
Characterisation of dental pulp stem cells: A new horizon for tissue regeneration? Arch Oral Biol 2012; 57:1439-58. [DOI: 10.1016/j.archoralbio.2012.08.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 08/09/2012] [Accepted: 08/16/2012] [Indexed: 01/03/2023]
|
24
|
Atari M, Caballé-Serrano J, Gil-Recio C, Giner-Delgado C, Martínez-Sarrà E, García-Fernández DA, Barajas M, Hernández-Alfaro F, Ferrés-Padró E, Giner-Tarrida L. The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D. Bone 2012; 50:930-41. [PMID: 22270057 DOI: 10.1016/j.bone.2012.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 01/09/2023]
Abstract
The potential for osteogenic differentiation of dental pulp mesenchymal stem cells (DPMSCs) in vitro and in vivo has been well documented in a variety of studies. Previously, we obtained a population of cells from human dental pulp called dental pulp pluripotent stem cells (DPPSCs) that could differentiate into mesodermal, ectodermal and endodermal progenies. We compared the osteogenic capacity of DPPSCs and DPMSCs that had been isolated from the same donors (N=5) and cultivated in the same osteogenic medium in 3D (three dimensions) Cell Carrier glass scaffolds. We also compared the architecture of bone-like tissue obtained from DPPSCs and human maxillary bone tissue. Differentiation was evaluated by scanning electron microscopy, whereas the expression of bone markers such as ALP, Osteocalcin, COLL1 and Osteonectin was investigated by quantitative real time polymerase chain reaction (qRT-PCR). We also used calcium quantification, Alizarin red staining and alkaline phosphatase (ALP) activity to compare the two cell types. New bone tissue formed by DPPSCs was in perfect continuity with the trabecular host bone structure, and the restored bone network demonstrated high interconnectivity. Significant differences between DPPSCs and DPMSCs were observed for the expression of bone markers, calcium deposition and ALP activity during osteogenic differentiation; these criteria were higher for DPPSCs than DPMSCs. Both DPPSCs and differentiated tissue showed normal chromosomal dosage after being cultured in vitro and analysed using short-chromosome genomic hybridisation (short-CGH). This study demonstrates the stability and potential for the use of DPPSCs in bone tissue engineering applications.
Collapse
Affiliation(s)
- M Atari
- Laboratory for Regenerative Medicine, Department of Oral and Maxillofacial Surgery, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Atari M, Gil-Recio C, Fabregat M, García-Fernández D, Barajas M, Carrasco MA, Jung HS, Alfaro FH, Casals N, Prosper F, Ferrés-Padró E, Giner L. Dental pulp of the third molar: a new source of pluripotent-like stem cells. J Cell Sci 2012; 125:3343-56. [PMID: 22467856 DOI: 10.1242/jcs.096537] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However, no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work, we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF, EGF and PDGF. These cells are SSEA4(+), OCT3/4(+), NANOG(+), SOX2(+), LIN28(+), CD13(+), CD105(+), CD34(-), CD45(-), CD90(+), CD29(+), CD73(+), STRO1(+) and CD146(-), and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly, DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of GATA4, GATA6, MIXL1, NANOG, OCT3/4, SOX1 and SOX2 to determine the degree of similarity between DPPSCs, EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs, hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages, they represent an easily accessible source of stem cells, which opens a range of new possibilities for regenerative medicine.
Collapse
Affiliation(s)
- Maher Atari
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, Barcelona 08009, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jeon BG, Kang EJ, Kumar BM, Maeng GH, Ock SA, Kwack DO, Park BW, Rho GJ. Comparative Analysis of Telomere Length, Telomerase and Reverse Transcriptase Activity in Human Dental Stem Cells. Cell Transplant 2011; 20:1693-705. [DOI: 10.3727/096368911x565001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stem cells from dental tissues have been isolated and established for tooth regenerative applications. However, basic characterization on their biological properties still needs to be investigated before employing them for effective clinical trials. In this study, we compared the telomere length, relative telomerase activity (RTA), and relative reverse transcriptase activity (RRA) as well as the surface antigen profile and mesenchymal differentiation ability in human dental papilla stem cells (DPaSCs), dental pulp stem cells (DPuSCs), and dental follicle stem cells (DFSCs) with mesenchymal stem cells (MSCs) derived from bone marrow. Dental stem cells (DSCs) were strongly positive for cell surface markers, such as CD44 and CD90. However, slightly lower expression of CD105 was observed in DPaSCs and DPuSCs compared to DFSCs and MSCs. Following specific induction, DPaSCs, DFSCs, and MSCs were successfully differentiated into adipocytes and osteocytes. However, DPuSCS, in particular, were able to differentiate into adipocytes but failed to induce into osteogenic differentiation. Further, all DSCs, MSCs, and MRC-5 fibroblasts as control were investigated for telomere length by nonradioactive chemiluminescent assay, RTA by relative-quantitative telomerase repeat amplification protocol (RQ-TRAP), and RRA by PCR-based assay. Mean telomere lengths in DPaSCs, DPuSCs, DFSCs, and MSCs was ~11 kb, and the values did not differ significantly ( p < 0.05) among the cells analyzed. RTA levels in DPaSCs were significantly ( p < 0.05) higher than in MSCs, DPuSCs, DFSCs, and MRC-5 fibroblasts and among DSCs, DFSCs showed a significantly ( p < 0.05) lower RTA. Moreover, RRA levels were significantly ( p < 0.05) higher in DPaSCs, DPuSCs, and MSCs than in DFSCs. Based on these observations, we conclude that among DSCs, DPaSCs possessed ideal characteristics on telomere length, telomerase activity and reverse transcriptase (RTase) activity, and may serve as suitable alternative candidates for regenerative medicine.
Collapse
Affiliation(s)
- Byeong-Gyun Jeon
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Ju Kang
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - B. Mohana Kumar
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Geun-Ho Maeng
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-A Ock
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae-Oh Kwack
- Department of Biology Education, College of Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral & Maxillofacial Surgery, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
27
|
Snyder BR, Cheng PH, Yang J, Yang SH, Huang AHC, Chan AWS. Characterization of dental pulp stem/stromal cells of Huntington monkey tooth germs. BMC Cell Biol 2011; 12:39. [PMID: 21910887 PMCID: PMC3189880 DOI: 10.1186/1471-2121-12-39] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/12/2011] [Indexed: 12/15/2022] Open
Abstract
Background Dental pulp stem/stromal cells (DPSCs) are categorized as adult stem cells (ASCs) that retain multipotent differentiation capabilities. DPSCs can be isolated from individuals at any age and are considered to be true personal stem cells, making DPSCs one of the potential options for stem cell therapy. However, the properties of DPSCs from individuals with an inherited genetic disorder, such as Huntington's disease (HD), have not been fully investigated. Results To examine if mutant huntingtin (htt) protein impacts DPSC properties, we have established DPSCs from tooth germ of transgenic monkeys that expressed both mutant htt and green fluorescent protein (GFP) genes (rHD/G-DPSCs), and from a monkey that expressed only the GFP gene (rG-DPSCs), which served as a control. Although mutant htt and oligomeric htt aggregates were overtly present in rHD/G-DPSCs, all rHD/G-DPSCs and rG-DPSCs shared similar characteristics, including self-renewal, multipotent differentiation capabilities, expression of stemness and differentiation markers, and cell surface antigen profile. Conclusions Our results suggest that DPSCs from Huntington monkeys retain ASC properties. Thus DPSCs derived from individuals with genetic disorders such as HD could be a potential source of personal stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Brooke R Snyder
- Yerkes National Primate Research Center, 954 Gatewood Rd., NE Atlanta, GA 30329, USA
| | | | | | | | | | | |
Collapse
|
28
|
Dissanayaka WL, Zhu X, Zhang C, Jin L. Characterization of Dental Pulp Stem Cells Isolated from Canine Premolars. J Endod 2011; 37:1074-80. [DOI: 10.1016/j.joen.2011.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 01/09/2023]
|
29
|
Characterization and comparison of telomere length, telomerase and reverse transcriptase activity and gene expression in human mesenchymal stem cells and cancer cells of various origins. Cell Tissue Res 2011; 345:149-61. [PMID: 21638208 DOI: 10.1007/s00441-011-1191-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/12/2011] [Indexed: 02/06/2023]
Abstract
We have characterized and compared the telomere length, telomerase, reverse transcriptase (RT) activity and expression of genes implicated in cancer and in pluripotency, in human mesenchymal stem cells (MSCs) derived from dental papilla tissue, umbilical cord matrix and adipose tissue and in cancer cells (MDA-MB-231, U-87 MG, and MCF-7). MRC-5 fetal fibroblasts and adult muscle cells were used as somatic cell controls. Telomere length was significantly (P<0.05) higher in MSCs and somatic cells (7.2-9.3 kb) than in cancer cell lines (3.9-6 kb). However, the relative telomerase activity (RTA) in the cancer cell lines was significantly (P<0.05) higher than that of MSCs and somatic cells. RTA tended to be slightly higher in MSCs but no significant differences were observed between some cancer cells and MSCs. However, RTA was not detected in somatic cells. Although differentially displayed, the expression of genes related to cancer (BCL-2, p53, NF-κB, TGF-β, VEGF) and transcription and pluripotency (OCT4, NANOG, STAT3, REX1) were commonly observed in MSCs and cancer cells. Thus, endogenous non-telomerase RTA might be a potential biological marker or regulator among MSCs and cancer cells. Further, by sharing the biological and molecular markers of self-renewal and proliferation with cancer cells, MSCs might play a contributory role as tissue resident stem cells in tumor development.
Collapse
|
30
|
Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 2011; 56:709-21. [PMID: 21227403 DOI: 10.1016/j.archoralbio.2010.12.008] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/07/2010] [Accepted: 12/14/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to compare the in vitro osteo/odontogenic differentiation potential of mesenchymal stem cells (MSCs) derived from the dental pulp (dental pulp stem cells - DPSCs) or the apical papilla (stem cells from the apical papilla - SCAP) of permanent developing teeth. DESIGN DPSCs and SCAP cultures were established from impacted third molars of young healthy donors at the stage of root development. Cultures were analysed for stem cell markers, including STRO-1, CD146, CD34 and CD45 using flow cytometry. Cells were then induced for osteo/odontogenic differentiation by media containing dexamethasone, KH(2)PO(4) and β-glycerophosphate. Cultures were analysed for morphology, growth characteristics, mineralization potential (Alizarin Red method) and differentiation markers (dentine sialophosphoprotein-DSPP, bone sialoprotein-BSP, osteocalcin-OCN, alkaline phosphatase-ALP), using immunocytochemistry and reverse transcriptase-polymerase chain reaction. RESULTS All DPSCs and SCAP cultures were positive for STRO-1, CD146 and CD34, in percentages varying according to cell type and donor, but negative for CD45. Both types of MSCs displayed an active potential for cellular migration, organization and mineralization, producing 3D mineralized structures. These structures progressively expressed differentiation markers, including DSPP, BSP, OCN, ALP, having the characteristics of osteodentin. SCAP, however, showed a significantly higher proliferation rate and mineralization potential, which might be of significance for their use in bone/dental tissue engineering. CONCLUSIONS This study provides evidence that different types of dental MSCs can be used in tissue engineering/regeneration protocols as an approachable stem cell source for osteo/odontogenic differentiation and biomineralization that could be further applied for stem cell-based clinical therapies.
Collapse
Affiliation(s)
- A Bakopoulou
- Department of Fixed Prosthesis & Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
31
|
Arvidson K, Hellem S, Mustafa K. Dental. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Kang EJ, Byun JH, Choi YJ, Maeng GH, Lee SL, Kang DH, Lee JS, Rho GJ, Park BW. In vitro and in vivo osteogenesis of porcine skin-derived mesenchymal stem cell-like cells with a demineralized bone and fibrin glue scaffold. Tissue Eng Part A 2010; 16:815-27. [PMID: 19778183 DOI: 10.1089/ten.tea.2009.0439] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In vitro and in vivo osteogenesis of skin-derived mesenchymal stem cell-like cells (SDMSCs) with a demineralized bone (DMB) and fibrin glue scaffold were compared. SDMSCs isolated from the ears of adult miniature pigs were evaluated for the expression of transcriptional factors (Oct-4, Sox-2, and Nanog) and MSC marker proteins (CD29, CD44, CD90, and vimentin). The isolated SDMSCs were cocultured in vitro with a mixed DMB and fibrin glue scaffold in a nonosteogenic medium for 1, 2, and 4 weeks. Osteonectin, osteocalcin, and Runx2 were expressed during the culture period and reached maximum at 2 weeks after in vitro coculture. von Kossa-positive bone minerals were also noted in the cocultured medium at 4 weeks. Autogenous porcine SDMSCs (1 x 10(7)) labeled with a tracking dye, PKH26, were grafted into the maxillary sinus with a DMB and fibrin glue scaffold. In the contralateral side, only a scaffold was grafted without SDMSCs (control). In vivo osteogenesis was evaluated from two animals euthanized at 2 and 4 weeks after grafting. In vivo PKH26 staining was detected in all the specimens at both time points. Trabecular bone formation and osteocalcin expression were more pronounced around the grafted materials in the SDMSC-grafted group compared with the control group. New bone generation was initiated from the periphery to the center of the grafted material. The number of proliferating cells increased over time and reached a peak at 4 weeks in both in vivo and in vitro specimens. These findings suggest that autogenous SDMSC grafting with a DMB and fibrin glue scaffold can serve as a predictable alternative to bone grafting in the maxillary sinus floor.
Collapse
Affiliation(s)
- Eun-Ju Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 2010; 46:1639-51. [PMID: 20193787 PMCID: PMC2881695 DOI: 10.1016/j.bone.2010.02.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 12/15/2022]
Abstract
In the past few years there have been significant advances in the identification of putative stem cells also referred to as "mesenchymal stem cells" (MSC) in dental tissues including the dental pulp. It is thought that MSC in dental pulp share certain similarities with MSC isolated from other tissues. However, cells in dental pulp are still poorly characterized. This study focused on the characterization of progenitor and stem cells in dental pulps of erupted and unerupted mice molars. Our study showed that dental pulps from unerupted molars contain a significant number of cells expressing CD90+/CD45-, CD117+/CD45-, Sca-1+/CD45- and little if any CD45+ cells. Our in vitro functional studies showed that dental pulp cells from unerupted molars displayed extensive osteo-dentinogenic potential but were unable to differentiate into chondrocytes and adipocytes. Dental pulps from erupted molars displayed a reduced number of cells, contained a higher percentage of CD45+ and a lower percentage of cells expressing CD90+/CD45-, CD117+/CD45- as compared to unerupted molars. In vitro functional assays demonstrated the ability of a small fraction of cells to differentiate into odontoblasts, osteoblasts, adipocytes and chondrocytes. There was a significant reduction in the osteo-dentinogenic potential of the pulp cells derived from erupted molars compared to unerupted molars. Furthermore, the adipogenic and chondrogenic differentiation of pulp cells from erupted molars was dependent on a long induction period and were infrequent. Based on these findings we propose that the dental pulp of the erupted molars contain a small population of multipotent cells, whereas the dental pulp of the unerupted molars does not contain multipotent cells but is enriched in osteo-dentinogenic progenitors engaged in the formation of coronal and radicular odontoblasts.
Collapse
Affiliation(s)
- Anamaria Balic
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| | - H. Leonardo Aguila
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Melissa J. Caimano
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Victor P. Francone
- Department of Neuroscience, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Mina Mina
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
34
|
Song JH, Park BW, Byun JH, Kang EJ, Rho GJ, Shin SH, Kim UK, Kim JR. Isolation and characterization of human dental tissue-derived stem cells in the impacted wisdom teeth: comparison of dental follicle, dental pulp, and root apical papilla-derived cells. J Korean Assoc Oral Maxillofac Surg 2010. [DOI: 10.5125/jkaoms.2010.36.3.186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Jung-Ho Song
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Bong-Wook Park
- Department Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - June-Ho Byun
- Department Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Eun-Ju Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Uk-Kyu Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Jong-Ryoul Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
35
|
Huang AHC, Chen YK, Chan AWS, Shieh TY, Lin LM. Isolation and characterization of normal hamster buccal pouch stem/stromal cells – A potential oral cancer stem/stem-like cell model. Oral Oncol 2009; 45:e189-95. [DOI: 10.1016/j.oraloncology.2009.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 11/28/2022]
|
36
|
Huang AHC, Chen YK, Chan AWS, Shieh TY, Lin LM. Isolation and characterization of human dental pulp stem/stromal cells from nonextracted crown-fractured teeth requiring root canal therapy. J Endod 2009; 35:673-81. [PMID: 19410081 DOI: 10.1016/j.joen.2009.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/23/2009] [Accepted: 01/28/2009] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Human dental pulp stem/stromal cells (hDPSCs) in adults are primarily derived from the pulp tissues of permanent third molar teeth in existing literatures, whereas no reports exist, to our knowledge, on deriving hDPSCs from a tooth without the need for surgical procedure. The aim of this study was to raise a novel idea to source hDPSCs from complicated crown-fractured teeth requiring root canal therapy. METHODS hDPSCs were harvested from the pulp tissues for two complicated crown-fractured teeth requiring root canal therapy, retaining the teeth for subsequent prosthodontic rehabilitation, in a 41-year-old woman who had suffered a motorcycle accident. Pulp tissue from the left lower deciduous canine of a healthy 10-year-old boy (the positive control) was also removed because of high mobility and cultured for hDPSCs. RESULTS The hDPSCs derived from the two complicated crown-fractured teeth and the deciduous tooth were able to differentiate into adipogenic, chondrogenic, and osteogenic lineages and also expressed stem cells markers and differentiation markers, which indicated their stem cell origin and differentiation capability. In addition, hDPSCs from both the complicated crown-fractured teeth and the deciduous tooth showed high expression for bone marrow stem cell markers including CD29, CD90, and CD105 and exhibited very low expression of markers specific for hematopoietic cells such as CD14, CD34, and CD45. CONCLUSIONS This report describes the successful isolation and characterization of hDPSCs from the pulp tissue of complicated crown-fractured teeth without tooth extraction. Therefore, pulp exposed in complicated crown-fractured teeth might represent a valuable source of personal hDPSCs.
Collapse
|
37
|
Chacko SM, Khan M, Kuppusamy ML, Pandian RP, Varadharaj S, Selvendiran K, Bratasz A, Rivera BK, Kuppusamy P. Myocardial oxygenation and functional recovery in infarct rat hearts transplanted with mesenchymal stem cells. Am J Physiol Heart Circ Physiol 2009; 296:H1263-73. [PMID: 19286938 DOI: 10.1152/ajpheart.01311.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Stem cell therapy for myocardial tissue repair is limited by the poor survival of transplanted cells, possibly because of inadequate supply of oxygen and nutrients. The purpose of this study was to assess the oxygenation level and functional recovery after allogenic transplantation of mesenchymal stem cells (MSC) in a rat model of myocardial infarction (MI). Myocardial oxygen tension (Po(2)) was measured by electron paramagnetic resonance oximetry using an implantable oxygen-sensing spin probe (OxySpin). MSCs incubated with OxySpins showed substantial uptake of the probe without affecting its oxygen sensitivity or calibration. The cells internalized with OxySpins were able to differentiate into osteogenic, adipogenic, cardiomyocyte, and endothelial cell lineages. The labeled cells tested positive for CD44 and CD29 markers and negative for the hematopoietic markers CD14 and CD45. For the in vivo studies, MI was induced in rats by permanently ligating the left anterior descending coronary artery. MSCs with OxySpins were transplanted in the infarct region of hearts. A significant increase in Po(2) was observed in the MSC group compared with the untreated MI group (18.1 +/- 2.6 vs. 13.0 +/- 1.8 mmHg, n = 4, P < 0.05) at 4 wk after transplantation. Echocardiography showed a significant improvement in ejection fraction and fraction shortening, which inversely correlated with the magnitude of fibrosis in the treated hearts. The cell-transplanted hearts also showed an increase in vascular endothelial growth factor level and capillary density in the infarct region. The study established our ability to measure and correlate changes in myocardial tissue oxygenation with cardiac function in infarcted rat hearts treated with MSCs.
Collapse
Affiliation(s)
- Simi M Chacko
- Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State Univ., 420 W. 12th Ave, Rm. 114, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|