1
|
Bahjat HH, Ismail RA, Sulaiman GM, Mohammed HA, Al-Omar M, Mohammed SAA, Khan RA. Preparation of Iron Oxide and Titania-Based Composite, Core-Shell Populated, Nanoparticulates Material by Two-Step LASER Ablation in Aqueous Media as Antimicrobial and Anticancer Agents. Bioinorg Chem Appl 2022; 2022:1854473. [PMID: 35116061 PMCID: PMC8807045 DOI: 10.1155/2022/1854473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Iron oxide and titania-based composite nanoparticles (NPs) populated with core-shell structures, as part of the mixture of the monometallic NPs, were prepared in water medium by the two-fluence LASER ablation technique by applying 30 and 60 mJ/cm2 LASER energy irradiations. The prepared monometallics, composite, and core-shell NPs structures were confirmed from the XRD, TEM, and EDX analyses, followed by the FE-SEM and UV absorptions. Optically, the NPs exhibited an increase in the energy gap from 3.27 eV to 3.75 eV as LASER fluence increased from 30 mJ/cm2 to 60 mJ/cm2. The average NPs core size distributions for the core-shell material ranged at ∼70 nm with the shell thickness around 20 nm. The biggest NPs were of ∼170 nm size which were sparsely distributed. The magnetization behaviors of the NPs were also investigated using the vibrating sample magnetometer (VSM). The NPs showed antimicrobial activities against the pathogenic species: Escherichia coli and Staphylococcus aureus. The antimicrobial activities of the synthesized NPs, synthesized under the influence of magnetic fields, were found to be more potent than the NPs synthesized without the presence of any magnetic field. The NPs prepared under the influence of the magnetic fields also comparatively exhibited higher levels of cytotoxicity against lung cancer cell lines (A549) than the NPs prepared under no magnetic field's influence by the similar energy level effects of the LASER fluence. The flow cytometry analyses confirmed the NPs' cytotoxic impacts against the human lung cancer A549 cell lines through the initiation of apoptosis and promotion of the cell cycle arrest at the G1 phase of cell division. To further confirm the cytotoxic effects and the mechanism of the anticancer activity of the synthesized NPs against the A549 cell lines, several related parameters (cell viability, membrane permeability, nuclear intensity, and cytochrome-C release) were analyzed using the high-content screening (HCS) assay. The study suggested that the prepared NPs have potential as antimicrobial and also as anti-lung-cancer agents as tested in vitro. These NPs can also be part of combined chemotherapy in different oncological interventions, as well as a sonosensitizer in sonomagnetic heating-based therapy, especially for cancers.
Collapse
Affiliation(s)
- Hasan H. Bahjat
- Division of LASER Science and Technology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Raid A. Ismail
- Division of LASER Science and Technology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Mohsen Al-Omar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, JUST, Irbid, Jordan
| | - Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
2
|
Temereva E, Rimskaya-Korsakova N, Dyachuk V. Detailed morphology of tentacular apparatus and central nervous system in Owenia borealis (Annelida, Oweniidae). ZOOLOGICAL LETTERS 2021; 7:15. [PMID: 34865650 PMCID: PMC8647411 DOI: 10.1186/s40851-021-00182-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The Oweniidae are marine annelids with many unusual features of organ system, development, morphology, and ultrastructure. Together with magelonids, oweniids have been placed within the Palaeoannelida, a sister group to all remaining annelids. The study of this group may increase our understanding of the early evolution of annelids (including their radiation and diversification). In the current research, the morphology and ulta-anatomy of the head region of Owenia borealis is studied by scanning electron microscopy (SEM), 3D reconstructions, transmission electron microscopy (TEM), and whole-mount immunostaining with confocal laser scanning microscopy. According to SEM, the tentacle apparatus consists of 8-14 branched arms, which are covered by monociliary cells that form a ciliary groove extending along the oral side of the arm base. Each tentacle contains a coelomic cavity with a network of blood capillaries. Monociliary myoepithelial cells of the tentacle coelomic cavity form both the longitudinal and the transverse muscles. The structure of this myoepithelium is intermediate between a simple and pseudo-stratified myoepithelium. Overall, tentacles lack prominent zonality, i.e., co-localization of ciliary zones, neurite bundles, and muscles. This organization, which indicates a non-specialized tentacle crown in O. borealis and other oweniids with tentacles, may be ancestral for annelids. TEM, light, and confocal laser scanning microscopy revealed that the head region contains the anterior nerve center comprising of outer and inner (=circumoral) nerve rings. Both nerve rings are organized as concentrated nerve plexus, which contains perikarya and neurites extending between basal projections of epithelial cells (radial glia). The outer nerve ring gives rise to several thick neurite bundles, which branch and extend along aboral side of each tentacle. Accordingly to their immunoreactivity, both rings of the anterior nerve center could be homologized with the dorsal roots of circumesophageal connectives of the typical annelids. Accordingly to its ultrastructure, the outer nerve ring of O. borealis and so-called brain of other oweniids can not be regarded as a typical brain, i.e. the most anterior ganglion, because it lacks ganglionic structure.
Collapse
Affiliation(s)
- Elena Temereva
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Lomonosov State University, Leninskie Gory 1, bld. 12, Moscow, 119992 Russia
| | - Nadezhda Rimskaya-Korsakova
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Lomonosov State University, Leninskie Gory 1, bld. 12, Moscow, 119992 Russia
| | - Vyacheslav Dyachuk
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
| |
Collapse
|
3
|
Bonatto Paese CL, Leite DJ, Schönauer A, McGregor AP, Russell S. Duplication and expression of Sox genes in spiders. BMC Evol Biol 2018; 18:205. [PMID: 30587109 PMCID: PMC6307133 DOI: 10.1186/s12862-018-1337-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/17/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The Sox family of transcription factors is an important part of the genetic 'toolbox' of all metazoans examined to date and is known to play important developmental roles in vertebrates and insects. However, outside the commonly studied Drosophila model little is known about the repertoire of Sox family transcription factors in other arthropod species. Here we characterise the Sox family in two chelicerate species, the spiders Parasteatoda tepidariorum and Stegodyphus mimosarum, which have experienced a whole genome duplication (WGD) in their evolutionary history. RESULTS We find that virtually all of the duplicate Sox genes have been retained in these spiders after the WGD. Analysis of the expression of Sox genes in P. tepidariorum embryos suggests that it is likely that some of these genes have neofunctionalised after duplication. Our expression analysis also strengthens the view that an orthologue of vertebrate Group B1 genes, SoxNeuro, is implicated in the earliest events of CNS specification in both vertebrates and invertebrates. In addition, a gene in the Dichaete/Sox21b class is dynamically expressed in the spider segment addition zone, suggestive of an ancient regulatory mechanism controlling arthropod segmentation as recently suggested for flies and beetles. Together with the recent analysis of Sox gene expression in the embryos of other arthropods, our findings support the idea of conserved functions for some of these genes, including a potential role for SoxC and SoxD genes in CNS development and SoxF in limb development. CONCLUSIONS Our study provides a new chelicerate perspective to understanding the evolution and function of Sox genes and how the retention of duplicates of such important tool-box genes after WGD has contributed to different aspects of spider embryogenesis. Future characterisation of the function of these genes in spiders will help us to better understand the evolution of the regulation of important developmental processes in arthropods and other metazoans including neurogenesis and segmentation.
Collapse
Affiliation(s)
- Christian L Bonatto Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
4
|
Bahrampour S, Gunnar E, Jonsson C, Ekman H, Thor S. Neural Lineage Progression Controlled by a Temporal Proliferation Program. Dev Cell 2017; 43:332-348.e4. [PMID: 29112852 DOI: 10.1016/j.devcel.2017.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/09/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
Great progress has been made in identifying transcriptional programs that establish stem cell identity. In contrast, we have limited insight into how these programs are down-graded in a timely manner to halt proliferation and allow for cellular differentiation. Drosophila embryonic neuroblasts undergo such a temporal progression, initially dividing to bud off daughters that divide once (type I), then switching to generating non-dividing daughters (type 0), and finally exiting the cell cycle. We identify six early transcription factors that drive neuroblast and type I daughter proliferation. Early factors are gradually replaced by three late factors, acting to trigger the type I→0 daughter proliferation switch and eventually to stop neuroblasts. Early and late factors regulate each other and four key cell-cycle genes, providing a logical genetic pathway for these transitions. The identification of this extensive driver-stopper temporal program controlling neuroblast lineage progression may have implications for studies in many other systems.
Collapse
Affiliation(s)
- Shahrzad Bahrampour
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Erika Gunnar
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Carolin Jonsson
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Helen Ekman
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden.
| |
Collapse
|
5
|
Sur A, Magie CR, Seaver EC, Meyer NP. Spatiotemporal regulation of nervous system development in the annelid Capitella teleta. EvoDevo 2017; 8:13. [PMID: 28775832 PMCID: PMC5539756 DOI: 10.1186/s13227-017-0076-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/20/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND How nervous systems evolved remains an unresolved question. Previous studies in vertebrates and arthropods revealed that homologous genes regulate important neurogenic processes such as cell proliferation and differentiation. However, the mechanisms through which such homologs regulate neurogenesis across different bilaterian clades are variable, making inferences about nervous system evolution difficult. A better understanding of neurogenesis in the third major bilaterian clade, Spiralia, would greatly contribute to our ability to deduce the ancestral mechanism of neurogenesis. RESULTS Using whole-mount in situ hybridization, we examined spatiotemporal gene expression for homologs of soxB, musashi, prospero, achaete-scute, neurogenin, and neuroD in embryos and larvae of the spiralian annelid Capitella teleta, which has a central nervous system (CNS) comprising a brain and ventral nerve cord. For all homologs examined, we found expression in the neuroectoderm and/or CNS during neurogenesis. Furthermore, the onset of expression and localization within the developing neural tissue for each of these genes indicates putative roles in separate phases of neurogenesis, e.g., in neural precursor cells (NPCs) versus in cells that have exited the cell cycle. Ct-soxB1, Ct-soxB, and Ct-ngn are the earliest genes expressed in surface cells in the anterior and ventral neuroectoderm, while Ct-ash1 expression initiates slightly later in surface neuroectoderm. Ct-pros is expressed in single cells in neural and non-neural ectoderm, while Ct-msi and Ct-neuroD are localized to differentiating neural cells in the brain and ventral nerve cord. CONCLUSIONS These results suggest that the genes investigated in this article are involved in a neurogenic gene regulatory network in C. teleta. We propose that Ct-SoxB1, Ct-SoxB, and Ct-Ngn are involved in maintaining NPCs in a proliferative state. Ct-Pros may function in division of NPCs, Ct-Ash1 may promote cell cycle exit and ingression of NPC daughter cells, and Ct-NeuroD and Ct-Msi may control neuronal differentiation. Our results support the idea of a common genetic toolkit driving neural development whose molecular architecture has been rearranged within and across clades during evolution. Future functional studies should help elucidate the role of these homologs during C. teleta neurogenesis and identify which aspects of bilaterian neurogenesis may have been ancestral or were derived within Spiralia.
Collapse
Affiliation(s)
- Abhinav Sur
- Biology Department, Clark University, 950 Main St., Worcester, MA 01610-1400 USA
| | - Craig R. Magie
- Department of Biological Sciences, Quinnipiac University, 275 Mount Carmel Ave., Hamden, CT 06518-1905 USA
| | - Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Blvd., St. Augustine, FL 32080-8610 USA
| | - Néva P. Meyer
- Biology Department, Clark University, 950 Main St., Worcester, MA 01610-1400 USA
| |
Collapse
|
6
|
Androschuk A, Al-Jabri B, Bolduc FV. From Learning to Memory: What Flies Can Tell Us about Intellectual Disability Treatment. Front Psychiatry 2015; 6:85. [PMID: 26089803 PMCID: PMC4453272 DOI: 10.3389/fpsyt.2015.00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/19/2015] [Indexed: 01/13/2023] Open
Abstract
Intellectual disability (ID), previously known as mental retardation, affects 3% of the population and remains without pharmacological treatment. ID is characterized by impaired general mental abilities associated with defects in adaptive function in which onset occurs before 18 years of age. Genetic factors are increasing and being recognized as the causes of severe ID due to increased use of genome-wide screening tools. Unfortunately drug discovery for treatment of ID has not followed the same pace as gene discovery, leaving clinicians, patients, and families without the ability to ameliorate symptoms. Despite this, several model organisms have proven valuable in developing and screening candidate drugs. One such model organism is the fruit fly Drosophila. First, we review the current understanding of memory in human and its model in Drosophila. Second, we describe key signaling pathways involved in ID and memory such as the cyclic adenosine 3',5'-monophosphate (cAMP)-cAMP response element binding protein (CREB) pathway, the regulation of protein synthesis, the role of receptors and anchoring proteins, the role of neuronal proliferation, and finally the role of neurotransmitters. Third, we characterize the types of memory defects found in patients with ID. Finally, we discuss how important insights gained from Drosophila learning and memory could be translated in clinical research to lead to better treatment development.
Collapse
Affiliation(s)
- Alaura Androschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Basma Al-Jabri
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Francois V. Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Karikari TK, Aleksic J. Neurogenomics: An opportunity to integrate neuroscience, genomics and bioinformatics research in Africa. Appl Transl Genom 2015; 5:3-10. [PMID: 26937352 PMCID: PMC4745356 DOI: 10.1016/j.atg.2015.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 02/02/2023]
Abstract
Modern genomic approaches have made enormous contributions to improving our understanding of the function, development and evolution of the nervous system, and the diversity within and between species. However, most of these research advances have been recorded in countries with advanced scientific resources and funding support systems. On the contrary, little is known about, for example, the possible interplay between different genes, non-coding elements and environmental factors in modulating neurological diseases among populations in low-income countries, including many African countries. The unique ancestry of African populations suggests that improved inclusion of these populations in neuroscience-related genomic studies would significantly help to identify novel factors that might shape the future of neuroscience research and neurological healthcare. This perspective is strongly supported by the recent identification that diseased individuals and their kindred from specific sub-Saharan African populations lack common neurological disease-associated genetic mutations. This indicates that there may be population-specific causes of neurological diseases, necessitating further investigations into the contribution of additional, presently-unknown genomic factors. Here, we discuss how the development of neurogenomics research in Africa would help to elucidate disease-related genomic variants, and also provide a good basis to develop more effective therapies. Furthermore, neurogenomics would harness African scientists' expertise in neuroscience, genomics and bioinformatics to extend our understanding of the neural basis of behaviour, development and evolution.
Collapse
Affiliation(s)
- Thomas K. Karikari
- Neuroscience, School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jelena Aleksic
- Wellcome Trust — Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
8
|
Carl SH, Russell S. Common binding by redundant group B Sox proteins is evolutionarily conserved in Drosophila. BMC Genomics 2015; 16:292. [PMID: 25887553 PMCID: PMC4419465 DOI: 10.1186/s12864-015-1495-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/27/2015] [Indexed: 01/08/2023] Open
Abstract
Background Group B Sox proteins are a highly conserved group of transcription factors that act extensively to coordinate nervous system development in higher metazoans while showing both co-expression and functional redundancy across a broad group of taxa. In Drosophila melanogaster, the two group B Sox proteins Dichaete and SoxNeuro show widespread common binding across the genome. While some instances of functional compensation have been observed in Drosophila, the function of common binding and the extent of its evolutionary conservation is not known. Results We used DamID-seq to examine the genome-wide binding patterns of Dichaete and SoxNeuro in four species of Drosophila. Through a quantitative comparison of Dichaete binding, we evaluated the rate of binding site turnover across the genome as well as at specific functional sites. We also examined the presence of Sox motifs within binding intervals and the correlation between sequence conservation and binding conservation. To determine whether common binding between Dichaete and SoxNeuro is conserved, we performed a detailed analysis of the binding patterns of both factors in two species. Conclusion We find that, while the regulatory networks driven by Dichaete and SoxNeuro are largely conserved across the drosophilids studied, binding site turnover is widespread and correlated with phylogenetic distance. Nonetheless, binding is preferentially conserved at known cis-regulatory modules and core, independently verified binding sites. We observed the strongest binding conservation at sites that are commonly bound by Dichaete and SoxNeuro, suggesting that these sites are functionally important. Our analysis provides insights into the evolution of group B Sox function, highlighting the specific conservation of shared binding sites and suggesting alternative sources of neofunctionalisation between paralogous family members. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1495-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah H Carl
- Department of Genetics and Cambridge Systems Biology Centre, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| | - Steven Russell
- Department of Genetics and Cambridge Systems Biology Centre, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
9
|
Apitz H, Salecker I. A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system. Nat Neurosci 2015; 18:46-55. [PMID: 25501037 PMCID: PMC4338547 DOI: 10.1038/nn.3896] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/13/2014] [Indexed: 12/14/2022]
Abstract
Brain areas each generate specific neuron subtypes during development. However, underlying regional variations in neurogenesis strategies and regulatory mechanisms remain poorly understood. In Drosophila, neurons in four optic lobe ganglia originate from two neuroepithelia, the outer (OPC) and inner (IPC) proliferation centers. Using genetic manipulations, we found that one IPC neuroepithelial domain progressively transformed into migratory progenitors that matured into neural stem cells (neuroblasts) in a second domain. Progenitors emerged by an epithelial-mesenchymal transition-like mechanism that required the Snail-family member Escargot and, in subdomains, Decapentaplegic signaling. The proneural factors Lethal of scute and Asense differentially controlled progenitor supply and maturation into neuroblasts. These switched expression from Asense to a third proneural protein, Atonal. Dichaete and Tailless mediated this transition, which was essential for generating two neuron populations at defined positions. We propose that this neurogenesis mode is central for setting up a new proliferative zone to facilitate spatio-temporal matching of neurogenesis and connectivity across ganglia.
Collapse
Affiliation(s)
- Holger Apitz
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, UK
| | - Iris Salecker
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, UK
| |
Collapse
|
10
|
Can the ‘neuron theory’ be complemented by a universal mechanism for generic neuronal differentiation. Cell Tissue Res 2014; 359:343-84. [DOI: 10.1007/s00441-014-2049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
|
11
|
Huang Z, Hu X, Lin C, Chen S, Huang F, Zhang Y. Genome-wide analysis of gene expression in human embryonic tooth germ. J Mol Histol 2014; 45:609-17. [DOI: 10.1007/s10735-014-9580-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/11/2014] [Indexed: 10/24/2022]
|
12
|
iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol 2014; 10:e1003731. [PMID: 25058159 PMCID: PMC4109854 DOI: 10.1371/journal.pcbi.1003731] [Citation(s) in RCA: 618] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/27/2014] [Indexed: 01/17/2023] Open
Abstract
Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory network underlying a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a genome-wide ranking-and-recovery approach to detect enriched transcription factor motifs and their optimal sets of direct targets. We increase the accuracy of network inference by using very large motif collections of up to ten thousand position weight matrices collected from various species, and linking these to candidate human TFs via a motif2TF procedure. We validate iRegulon on gene sets derived from ENCODE ChIP-seq data with increasing levels of noise, and we compare iRegulon with existing motif discovery methods. Next, we use iRegulon on more challenging types of gene lists, including microRNA target sets, protein-protein interaction networks, and genetic perturbation data. In particular, we over-activate p53 in breast cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by p53. Similarly we map a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F and NFY. Finally, we generalize our computational framework to include regulatory tracks such as ChIP-seq data and show how motif and track discovery can be combined to map functional regulatory interactions among co-expressed genes. iRegulon is available as a Cytoscape plugin from http://iregulon.aertslab.org. Gene regulatory networks control developmental, homeostatic, and disease processes by governing precise levels and spatio-temporal patterns of gene expression. Determining their topology can provide mechanistic insight into these processes. Gene regulatory networks consist of interactions between transcription factors and their direct target genes. Each regulatory interaction represents the binding of the transcription factor to a specific DNA binding site near its target gene. Here we present a computational method, called iRegulon, to identify master regulators and direct target genes in a human gene signature, i.e. a set of co-expressed genes. iRegulon relies on the analysis of the regulatory sequences around each gene in the gene set to detect enriched TF motifs or ChIP-seq peaks, using databases of nearly 10.000 TF motifs and 1000 ChIP-seq data sets or “tracks”. Next, it associates enriched motifs and tracks with candidate transcription factors and determines the optimal subset of direct target genes. We validate iRegulon on ENCODE data, and use it in combination with RNA-seq and ChIP-seq data to map a p53 downstream network with new predicted co-factors and targets. iRegulon is available as a Cytoscape plugin, supporting human, mouse, and Drosophila genes, and provides access to hundreds of cancer-related TF-target subnetworks or “regulons”.
Collapse
|
13
|
Konantz J, Antos CL. Reverse genetic morpholino approach using cardiac ventricular injection to transfect multiple difficult-to-target tissues in the zebrafish larva. J Vis Exp 2014. [PMID: 24961304 DOI: 10.3791/51595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The zebrafish is an important model to understand the cell and molecular biology of organ and appendage regeneration. However, molecular strategies to employ reverse genetics have not yet been adequately developed to assess gene function in regeneration or tissue homeostasis during larval stages after zebrafish embryogenesis, and several tissues within the zebrafish larva are difficult to target. Intraventricular injections of gene-specific morpholinos offer an alternative method for the current inability to genomically target zebrafish genes in a temporally controlled manner at these stages. This method allows for complete dispersion and subsequent incorporation of the morpholino into various tissues throughout the body, including structures that were formerly impossible to reach such as those in the larval caudal fin, a structure often used to noninvasively research tissue regeneration. Several genes activated during larval finfold regeneration are also present in regenerating adult vertebrate tissues, so the larva is a useful model to understand regeneration in adults. This morpholino dispersion method allows for the quick and easy identification of genes required for the regeneration of larval tissues as well as other physiological phenomena regulating tissue homeostasis after embryogenesis. Therefore, this delivery method provides a currently needed strategy for temporal control to the evaluation of gene function after embryogenesis.
Collapse
Affiliation(s)
- Judith Konantz
- DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden
| | - Christopher L Antos
- DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden;
| |
Collapse
|
14
|
Ferrero E, Fischer B, Russell S. SoxNeuro orchestrates central nervous system specification and differentiation in Drosophila and is only partially redundant with Dichaete. Genome Biol 2014; 15:R74. [PMID: 24886562 PMCID: PMC4072944 DOI: 10.1186/gb-2014-15-5-r74] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/30/2014] [Indexed: 12/31/2022] Open
Abstract
Background Sox proteins encompass an evolutionarily conserved family of transcription factors with critical roles in animal development and stem cell biology. In common with vertebrates, the Drosophila group B proteins SoxNeuro and Dichaete are involved in central nervous system development, where they play both similar and unique roles in gene regulation. Sox genes show extensive functional redundancy across metazoans, but the molecular basis underpinning functional compensation mechanisms at the genomic level are currently unknown. Results Using a combination of genome-wide binding analysis and gene expression profiling, we show that SoxNeuro directs embryonic neural development from the early specification of neuroblasts through to the terminal differentiation of neurons and glia. To address the issue of functional redundancy and compensation at a genomic level, we compare SoxNeuro and Dichaete binding, identifying common and independent binding events in wild-type conditions, as well as instances of compensation and loss of binding in mutant backgrounds. Conclusions We find that early aspects of group B Sox functions in the central nervous system, such as stem cell maintenance and dorsoventral patterning, are highly conserved. However, in contrast to vertebrates, we find that Drosophila group B1 proteins also play prominent roles during later aspects of neural morphogenesis. Our analysis of the functional relationship between SoxNeuro and Dichaete uncovers evidence for redundant and independent functions for each protein, along with unexpected examples of compensation and interdependency, thus providing new insights into the general issue of transcription factor functional redundancy.
Collapse
|
15
|
Campbell AM, Zhang ZY. Phosphatase of regenerating liver: a novel target for cancer therapy. Expert Opin Ther Targets 2014; 18:555-69. [PMID: 24579927 DOI: 10.1517/14728222.2014.892926] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Phosphatases of regenerating livers (PRLs) are novel oncogenes that interact with many well-established cell signaling pathways that are misregulated in cancer, and are known to drive cancer metastasis when overexpressed. AREAS COVERED This review covers basic information of the discovery and characteristics of the PRL family. We also report findings on the role of PRL in cancer, cell functions and cell signaling. Furthermore, PRL's suitability as a novel drug target is discussed along with current methods being developed to facilitate PRL inhibition. EXPERT OPINION PRLs show great potential as novel drug targets for anticancer therapeutics. Studies indicate that PRL can perturb major cancer pathways such as Src/ERK1/2 and PTEN/PI3K/Akt. Upregulation of PRLs has also been shown to drive cancer metastasis. However, in order to fully realize its therapeutic potential, a deeper understanding of the function of PRL in normal tissue and in cancer must be obtained. Novel and integrated biochemical, chemical, biological, and genetic approaches will be needed to identify PRL substrate(s) and to provide proof-of-concept data on the druggability of the PRL phosphatases.
Collapse
Affiliation(s)
- Amanda M Campbell
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology , John D. Van Nuys Medical Science Building, Room 4053A, 635 Barnhill Drive, Indianapolis, IN 46202-5126 , USA
| | | |
Collapse
|
16
|
Kipanyula MJ, Kimaro WH, Yepnjio FN, Aldebasi YH, Farahna M, Nwabo Kamdje AH, Abdel-Magied EM, Seke Etet PF. Signaling pathways bridging fate determination of neural crest cells to glial lineages in the developing peripheral nervous system. Cell Signal 2013; 26:673-82. [PMID: 24378534 DOI: 10.1016/j.cellsig.2013.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/13/2013] [Accepted: 12/22/2013] [Indexed: 11/29/2022]
Abstract
Fate determination of neural crest cells is an essential step for the development of different crest cell derivatives. Peripheral glia development is marked by the choice of the neural crest cells to differentiate along glial lineages. The molecular mechanism underlying fate acquisition is poorly understood. However, recent advances have identified different transcription factors and genes required for the complex instructive signaling process that comprise both local environmental and cell intrinsic cues. Among others, at least the roles of Sox10, Notch, and neuregulin 1 have been documented in both in vivo and in vitro models. Cooperative interactions of such factors appear to be necessary for the switch from multipotent neural crest cells to glial lineage precursors in the peripheral nervous system. This review summarizes recent advances in the understanding of fate determination of neural crest cells into different glia subtypes, together with the potential implications in regenerative medicine.
Collapse
Affiliation(s)
- Maulilio John Kipanyula
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania.
| | - Wahabu Hamisi Kimaro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania
| | - Faustin N Yepnjio
- Neurology Department, Yaoundé Central Hospital, Department of Internal Medicine and Specialties, University of Yaoundé I, P.O. Box 1937, Yaoundé, Cameroon
| | - Yousef H Aldebasi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Mohammed Farahna
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | | | - Eltuhami M Abdel-Magied
- Department of Anatomy and Histology, College of Medicine, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Paul Faustin Seke Etet
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia.
| |
Collapse
|
17
|
Aleksic J, Ferrero E, Fischer B, Shen SP, Russell S. The role of Dichaete in transcriptional regulation during Drosophila embryonic development. BMC Genomics 2013; 14:861. [PMID: 24314314 PMCID: PMC3866562 DOI: 10.1186/1471-2164-14-861] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/04/2013] [Indexed: 01/07/2023] Open
Abstract
Background Group B Sox domain transcription factors play conserved roles in the specification and development of the nervous system in higher metazoans. However, we know comparatively little about how these transcription factors regulate gene expression, and the analysis of Sox gene function in vertebrates is confounded by functional compensation between three closely related family members. In Drosophila, only two group B Sox genes, Dichaete and SoxN, have been shown to function during embryonic CNS development, providing a simpler system for understanding the functions of this important class of regulators. Results Using a combination of transcriptional profiling and genome-wide binding analysis we conservatively identify over 1000 high confidence direct Dichaete target genes in the Drosophila genome. We show that Dichaete plays key roles in CNS development, regulating aspects of the temporal transcription factor sequence that confer neuroblast identity. Dichaete also shows a complex interaction with Prospero in the pathway controlling the switch from stem cell self-renewal to neural differentiation. Dichaete potentially regulates many more genes in the Drosophila genome and was found to be associated with over 2000 mapped regulatory elements. Conclusions Our analysis suggests that Dichaete acts as a transcriptional hub, controlling multiple regulatory pathways during CNS development. These include a set of core CNS expressed genes that are also bound by the related Sox2 gene during mammalian CNS development. Furthermore, we identify Dichaete as one of the transcription factors involved in the neural stem cell transcriptional network, with evidence supporting the view that Dichaete is involved in controlling the temporal series of divisions regulating neuroblast identity.
Collapse
Affiliation(s)
| | | | | | | | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Vasilevsky NA, Brush MH, Paddock H, Ponting L, Tripathy SJ, Larocca GM, Haendel MA. On the reproducibility of science: unique identification of research resources in the biomedical literature. PeerJ 2013; 1:e148. [PMID: 24032093 PMCID: PMC3771067 DOI: 10.7717/peerj.148] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/12/2013] [Indexed: 12/24/2022] Open
Abstract
Scientific reproducibility has been at the forefront of many news stories and there exist numerous initiatives to help address this problem. We posit that a contributor is simply a lack of specificity that is required to enable adequate research reproducibility. In particular, the inability to uniquely identify research resources, such as antibodies and model organisms, makes it difficult or impossible to reproduce experiments even where the science is otherwise sound. In order to better understand the magnitude of this problem, we designed an experiment to ascertain the “identifiability” of research resources in the biomedical literature. We evaluated recent journal articles in the fields of Neuroscience, Developmental Biology, Immunology, Cell and Molecular Biology and General Biology, selected randomly based on a diversity of impact factors for the journals, publishers, and experimental method reporting guidelines. We attempted to uniquely identify model organisms (mouse, rat, zebrafish, worm, fly and yeast), antibodies, knockdown reagents (morpholinos or RNAi), constructs, and cell lines. Specific criteria were developed to determine if a resource was uniquely identifiable, and included examining relevant repositories (such as model organism databases, and the Antibody Registry), as well as vendor sites. The results of this experiment show that 54% of resources are not uniquely identifiable in publications, regardless of domain, journal impact factor, or reporting requirements. For example, in many cases the organism strain in which the experiment was performed or antibody that was used could not be identified. Our results show that identifiability is a serious problem for reproducibility. Based on these results, we provide recommendations to authors, reviewers, journal editors, vendors, and publishers. Scientific efficiency and reproducibility depend upon a research-wide improvement of this substantial problem in science today.
Collapse
Affiliation(s)
- Nicole A Vasilevsky
- Ontology Development Group, Library, Oregon Health & Science University , Portland, OR , USA
| | | | | | | | | | | | | |
Collapse
|