1
|
Swearer AA, Perkowski S, Wills A. Shh signaling directs dorsal ventral patterning in the regenerating X. tropicalis spinal cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619160. [PMID: 39463962 PMCID: PMC11507847 DOI: 10.1101/2024.10.18.619160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Tissue development and regeneration rely on the deployment of embryonic signals to drive progenitor activity and thus generate complex cell diversity and organization. One such signal is Sonic Hedgehog (Shh), which establishes the dorsal-ventral (D/V) axis of the spinal cord during embryogenesis. However, the existence of this D/V axis and its dependence on Shh signaling during regeneration varies by species. Here we investigate the function of Shh signaling in patterning the D/V axis during spinal cord regeneration in Xenopus tropicalis tadpoles. We find that neural progenitor markers Msx1/2, Nkx6.1, and Nkx2.2 are confined to dorsal, intermediate and ventral spatial domains, respectively, in both the uninjured and regenerating spinal cord. These domains are altered by perturbation of Shh signaling. Additionally, we find that these D/V domains are more sensitive to Shh perturbation during regeneration than uninjured tissue. The renewed sensitivity of these neural progenitor cells to Shh signals represents a regeneration specific response and raises questions about how responsiveness to developmental patterning cues is regulated in mature and regenerating tissues.
Collapse
Affiliation(s)
- Avery Angell Swearer
- Department of Biochemistry, University of Washington School of Medicine
- Program in Molecular and Cellular Biology, University of Washington
| | - Samuel Perkowski
- Department of Biochemistry, University of Washington School of Medicine
| | - Andrea Wills
- Department of Biochemistry, University of Washington School of Medicine
| |
Collapse
|
2
|
Ren C, Wen Y, Zheng S, Zhao Z, Li EY, Zhao C, Liao M, Li L, Zhang X, Liu S, Yuan D, Luo K, Wang W, Fei J, Li S. Two transcriptional cascades orchestrate cockroach leg regeneration. Cell Rep 2024; 43:113889. [PMID: 38416646 DOI: 10.1016/j.celrep.2024.113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
The mystery of appendage regeneration has fascinated humans for centuries, while the underlying regulatory mechanisms remain unclear. In this study, we establish a transcriptional landscape of regenerating leg in the American cockroach, Periplaneta americana, an ideal model in appendage regeneration studies showing remarkable regeneration capacity. Through a large-scale in vivo screening, we identify multiple signaling pathways and transcription factors controlling leg regeneration. Specifically, zfh-2 and bowl contribute to blastema cell proliferation and morphogenesis in two transcriptional cascades: bone morphogenetic protein (BMP)/JAK-STAT-zfh-2-B-H2 and Notch-drm/bowl-bab1. Notably, we find zfh-2 is working as a direct target of BMP signaling to promote cell proliferation in the blastema. These mechanisms might be conserved in the appendage regeneration of vertebrates from an evolutionary perspective. Overall, our findings reveal that two crucial transcriptional cascades orchestrate distinct cockroach leg regeneration processes, significantly advancing the comprehension of molecular mechanism in appendage regeneration.
Collapse
Affiliation(s)
- Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| | - Yejie Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shaojuan Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zheng Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ethan Yihao Li
- International Department, the Affiliated High School of South China Normal University, Guangzhou 510631, China
| | - Chenjing Zhao
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, China
| | - Mingtao Liao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kai Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Jifeng Fei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|
3
|
Masak G, Davidson LA. Constructing the pharyngula: Connecting the primary axial tissues of the head with the posterior axial tissues of the tail. Cells Dev 2023; 176:203866. [PMID: 37394035 PMCID: PMC10756936 DOI: 10.1016/j.cdev.2023.203866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The pharyngula stage of vertebrate development is characterized by stereotypical arrangement of ectoderm, mesoderm, and neural tissues from the anterior spinal cord to the posterior, yet unformed tail. While early embryologists over-emphasized the similarity between vertebrate embryos at the pharyngula stage, there is clearly a common architecture upon which subsequent developmental programs generate diverse cranial structures and epithelial appendages such as fins, limbs, gills, and tails. The pharyngula stage is preceded by two morphogenetic events: gastrulation and neurulation, which establish common shared structures despite the occurrence of cellular processes that are distinct to each of the species. Even along the body axis of a singular organism, structures with seemingly uniform phenotypic characteristics at the pharyngula stage have been established by different processes. We focus our review on the processes underlying integration of posterior axial tissue formation with the primary axial tissues that creates the structures laid out in the pharyngula. Single cell sequencing and novel gene targeting technologies have provided us with new insights into the differences between the processes that form the anterior and posterior axis, but it is still unclear how these processes are integrated to create a seamless body. We suggest that the primary and posterior axial tissues in vertebrates form through distinct mechanisms and that the transition between these mechanisms occur at different locations along the anterior-posterior axis. Filling gaps that remain in our understanding of this transition could resolve ongoing problems in organoid culture and regeneration.
Collapse
Affiliation(s)
- Geneva Masak
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lance A Davidson
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
4
|
Che X, Huang Y, Zhong K, Jia K, Wei Y, Meng Y, Yuan W, Lu H. Thiophanate-methyl induces notochord toxicity by activating the PI3K-mTOR pathway in zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120861. [PMID: 36563988 DOI: 10.1016/j.envpol.2022.120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Thiophanate-methyl (TM), a typical pesticide widely used worldwide, was detected in rivers, soil, fruits, and vegetables. Thus, it is urgent to identify the potential harm of TM residual to non-target organisms and its molecular mechanisms. We used zebrafish (Danio rerio) in this study to evaluate TM toxicity. TM exposure induced developmental toxicity, including inhibited hatchability, reduced heart rates, restrained spontaneous locomotion, and decreased body length. Furthermore, we observed obvious toxicity in the notochord and detected increased expression levels of notochord-related genes (shha, col2a, and tbxta) by in situ hybridization in zebrafish larvae. In addition, calcein staining, alkaline phosphatase (ALP) activity analysis, and anatomic analysis indicated that TM induced notochord toxicity. We used rescue experiments to verify whether the PI3K-mTOR pathway involved in the notochord development was the cause of notochord abnormalities. Rapamycin and LY294002 (an inhibitor of PI3K) relieve notochord toxicity caused by TM, including morphological abnormalities. In summary, TM might induce notochord toxicity by activating the PI3K-mTOR pathway in zebrafish.
Collapse
Affiliation(s)
- Xiaofang Che
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, China.
| |
Collapse
|
5
|
Thauvin M, de Sousa RM, Alves M, Volovitch M, Vriz S, Rampon C. An early Shh-H2O2 reciprocal regulatory interaction controls the regenerative program during zebrafish fin regeneration. J Cell Sci 2022; 135:274206. [PMID: 35107164 DOI: 10.1242/jcs.259664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS), originally classified as toxic molecules, have attracted increasing interest given their actions in cell signaling. Hydrogen peroxide (H2O2), the major ROS produced by cells, acts as a second messenger to modify redox-sensitive proteins or lipids. After caudal fin amputation, tight spatiotemporal regulation of ROS is required first for wound healing and later to initiate the regenerative program. However, the mechanisms carrying out this sustained ROS production and their integration with signaling pathways are still poorly understood. We focused on the early dialog between H2O2 and Sonic Hedgehog (Shh) during fin regeneration. We demonstrate that H2O2 controls Shh expression and that Shh in turn regulates the H2O2 level via a canonical pathway. Moreover, the means of this tight reciprocal control change during the successive phases of the regenerative program. Dysregulation of the Hedgehog pathway has been implicated in several developmental syndromes, diabetes and cancer. These data support the existence of an early positive crosstalk between Shh and H2O2 that might be more generally involved in various processes paving the way to improve regenerative processes, particularly in vertebrates.
Collapse
Affiliation(s)
- Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Rodolphe Matias de Sousa
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Marine Alves
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,École Normale Supérieure, PSL Research University, Department of Biology, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| |
Collapse
|
6
|
Murugan NJ, Vigran HJ, Miller KA, Golding A, Pham QL, Sperry MM, Rasmussen-Ivey C, Kane AW, Kaplan DL, Levin M. Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult Xenopus laevis. SCIENCE ADVANCES 2022; 8:eabj2164. [PMID: 35080969 PMCID: PMC8791464 DOI: 10.1126/sciadv.abj2164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Limb regeneration is a frontier in biomedical science. Identifying triggers of innate morphogenetic responses in vivo to induce the growth of healthy patterned tissue would address the needs of millions of patients, from diabetics to victims of trauma. Organisms such as Xenopus laevis-whose limited regenerative capacities in adulthood mirror those of humans-are important models with which to test interventions that can restore form and function. Here, we demonstrate long-term (18 months) regrowth, marked tissue repatterning, and functional restoration of an amputated X. laevis hindlimb following a 24-hour exposure to a multidrug, pro-regenerative treatment delivered by a wearable bioreactor. Regenerated tissues composed of skin, bone, vasculature, and nerves significantly exceeded the complexity and sensorimotor capacities of untreated and control animals' hypomorphic spikes. RNA sequencing of early tissue buds revealed activation of developmental pathways such as Wnt/β-catenin, TGF-β, hedgehog, and Notch. These data demonstrate the successful "kickstarting" of endogenous regenerative pathways in a vertebrate model.
Collapse
Affiliation(s)
- Nirosha J. Murugan
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Hannah J. Vigran
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Kelsie A. Miller
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Annie Golding
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Quang L. Pham
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Megan M. Sperry
- Department of Biology, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Cody Rasmussen-Ivey
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Anna W. Kane
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David L. Kaplan
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Corresponding author.
| |
Collapse
|
7
|
Bishop TF, Beck CW. Bacterial lipopolysaccharides can initiate regeneration of the Xenopus tadpole tail. iScience 2021; 24:103281. [PMID: 34765912 PMCID: PMC8571501 DOI: 10.1016/j.isci.2021.103281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/12/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Tadpoles of the frog Xenopus laevis can regenerate tails except for a short "refractory" period in which they heal rather than regenerate. Rapid and sustained production of ROS by NADPH oxidase (Nox) is critical for regeneration. Here, we show that tail amputation results in rapid, transient activation of the ROS-activated transcription factor NF-κB and expression of its direct target cox2 in the wound epithelium. Activation of NF-κB is also sufficient to rescue refractory tail regeneration. We propose that bacteria on the tadpole's skin could influence tail regenerative outcomes, possibly via LPS-TLR4-NF-κB signaling. When raised in antibiotics, fewer tadpoles in the refractory stage attempted regeneration, whereas addition of LPS rescued regeneration. Short-term activation of NF-κB using small molecules enhanced regeneration of tadpole hindlimbs, but not froglet forelimbs. We propose a model in which host microbiome contributes to creating optimal conditions for regeneration, via regulation of NF-κB by the innate immune system.
Collapse
Affiliation(s)
- Thomas F. Bishop
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, Otago 9016, New Zealand
| | - Caroline W. Beck
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, Otago 9016, New Zealand
| |
Collapse
|
8
|
Abstract
Species that can regrow their lost appendages have been studied with the ultimate aim of developing methods to enable human limb regeneration. These examinations highlight that appendage regeneration progresses through shared tissue stages and gene activities, leading to the assumption that appendage regeneration paradigms (e.g. tails and limbs) are the same or similar. However, recent research suggests these paradigms operate differently at the cellular level, despite sharing tissue descriptions and gene expressions. Here, collecting the findings from disparate studies, I argue appendage regeneration is context dependent at the cellular level; nonetheless, it requires (i) signalling centres, (ii) stem/progenitor cell types and (iii) a regeneration-permissive environment, and these three common cellular principles could be more suitable for cross-species/paradigm/age comparisons.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Nakamura M, Yoshida H, Moriyama Y, Kawakita I, Wlizla M, Takebayashi-Suzuki K, Horb ME, Suzuki A. TGF-β1 signaling is essential for tissue regeneration in the Xenopus tadpole tail. Biochem Biophys Res Commun 2021; 565:91-96. [PMID: 34102475 DOI: 10.1016/j.bbrc.2021.05.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 12/25/2022]
Abstract
Amphibians such as Xenopus tropicalis exhibit a remarkable capacity for tissue regeneration after traumatic injury. Although transforming growth factor-β (TGF-β) receptor signaling is known to be essential for tissue regeneration in fish and amphibians, the role of TGF-β ligands in this process is not well understood. Here, we show that inhibition of TGF-β1 function prevents tail regeneration in Xenopus tropicalis tadpoles. We found that expression of tgfb1 is present before tail amputation and is sustained throughout the regeneration process. CRISPR-mediated knock-out (KO) of tgfb1 retards tail regeneration; the phenotype of tgfb1 KO tadpoles can be rescued by injection of tgfb1 mRNA. Cell proliferation, a critical event for the success of tissue regeneration, is downregulated in tgfb1 KO tadpoles. In addition, tgfb1 KO reduces the expression of phosphorylated Smad2/3 (pSmad2/3) which is important for TGF-β signal-mediated cell proliferation. Collectively, our results show that TGF-β1 regulates cell proliferation through the activation of Smad2/3. We therefore propose that TGF-β1 plays a critical role in TGF-β receptor-dependent tadpole tail regeneration in Xenopus.
Collapse
Affiliation(s)
- Makoto Nakamura
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Hitoshi Yoshida
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Yuka Moriyama
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Itsuki Kawakita
- Amphibian Research Center, School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Marcin Wlizla
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Kimiko Takebayashi-Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Atsushi Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
10
|
Hamilton AM, Balashova OA, Borodinsky LN. Non-canonical Hedgehog signaling regulates spinal cord and muscle regeneration in Xenopus laevis larvae. eLife 2021; 10:61804. [PMID: 33955353 PMCID: PMC8137141 DOI: 10.7554/elife.61804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Inducing regeneration in injured spinal cord represents one of modern medicine’s greatest challenges. Research from a variety of model organisms indicates that Hedgehog (Hh) signaling may be a useful target to drive regeneration. However, the mechanisms of Hh signaling-mediated tissue regeneration remain unclear. Here, we examined Hh signaling during post-amputation tail regeneration in Xenopus laevis larvae. We found that while Smoothened (Smo) activity is essential for proper spinal cord and skeletal muscle regeneration, transcriptional activity of the canonical Hh effector Gli is repressed immediately following amputation, and inhibition of Gli1/2 expression or transcriptional activity has minimal effects on regeneration. In contrast, we demonstrate that protein kinase A is necessary for regeneration of both muscle and spinal cord, in concert with and independent of Smo, respectively, and that its downstream effector CREB is activated in spinal cord following amputation in a Smo-dependent manner. Our findings indicate that non-canonical mechanisms of Hh signaling are necessary for spinal cord and muscle regeneration.
Collapse
Affiliation(s)
- Andrew M Hamilton
- Department of Physiology & Membrane Biology Shriners Hospitals for Children Northern California, University of California, Sacramento, School of Medicine, Sacramento, United States
| | - Olga A Balashova
- Department of Physiology & Membrane Biology Shriners Hospitals for Children Northern California, University of California, Sacramento, School of Medicine, Sacramento, United States
| | - Laura N Borodinsky
- Department of Physiology & Membrane Biology Shriners Hospitals for Children Northern California, University of California, Sacramento, School of Medicine, Sacramento, United States
| |
Collapse
|
11
|
Guerin DJ, Kha CX, Tseng KAS. From Cell Death to Regeneration: Rebuilding After Injury. Front Cell Dev Biol 2021; 9:655048. [PMID: 33816506 PMCID: PMC8012889 DOI: 10.3389/fcell.2021.655048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
The ability to regrow lost or damaged tissues is widespread, but highly variable among animals. Understanding this variation remains a challenge in regeneration biology. Numerous studies from Hydra to mouse have shown that apoptosis acts as a potent and necessary mechanism in regeneration. Much is known about the involvement of apoptosis during normal development in regulating the number and type of cells in the body. In the context of regeneration, apoptosis also regulates cell number and proliferation in tissue remodeling. Apoptosis acts both early in the process to stimulate regeneration and later to regulate regenerative patterning. Multiple studies indicate that apoptosis acts as a signal to stimulate proliferation within the regenerative tissues, producing the cells needed for full regeneration. The conservation of apoptosis as a regenerative mechanism demonstrated across species highlights its importance and motivates the continued investigation of this important facet of programmed cell death. This review summarizes what is known about the roles of apoptosis during regeneration, and compares regenerative apoptosis with the mechanisms and function of apoptosis in development. Defining the complexity of regenerative apoptosis will contribute to new knowledge and perspectives for understanding mechanisms of apoptosis induction and regulation.
Collapse
Affiliation(s)
- Dylan J Guerin
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Cindy X Kha
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Kelly Ai-Sun Tseng
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
12
|
Verissimo KM, Perez LN, Dragalzew AC, Senevirathne G, Darnet S, Barroso Mendes WR, Ariel Dos Santos Neves C, Monteiro Dos Santos E, Nazare de Sousa Moraes C, Elewa A, Shubin N, Fröbisch NB, de Freitas Sousa J, Schneider I. Salamander-like tail regeneration in the West African lungfish. Proc Biol Sci 2020; 287:20192939. [PMID: 32933441 DOI: 10.1098/rspb.2019.2939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Salamanders, frog tadpoles and diverse lizards have the remarkable ability to regenerate tails. Palaeontological data suggest that this capacity is plesiomorphic, yet when the developmental and genetic architecture of tail regeneration arose is poorly understood. Here, we show morphological and molecular hallmarks of tetrapod tail regeneration in the West African lungfish Protopterus annectens, a living representative of the sister group of tetrapods. As in salamanders, lungfish tail regeneration occurs via the formation of a proliferative blastema and restores original structures, including muscle, skeleton and spinal cord. In contrast with lizards and similar to salamanders and frogs, lungfish regenerate spinal cord neurons and reconstitute dorsoventral patterning of the tail. Similar to salamander and frog tadpoles, Shh is required for lungfish tail regeneration. Through RNA-seq analysis of uninjured and regenerating tail blastema, we show that the genetic programme deployed during lungfish tail regeneration maintains extensive overlap with that of tetrapods, with the upregulation of genes and signalling pathways previously implicated in amphibian and lizard tail regeneration. Furthermore, the lungfish tail blastema showed marked upregulation of genes encoding post-transcriptional RNA processing components and transposon-derived genes. Our results show that the developmental processes and genetic programme of tetrapod tail regeneration were present at least near the base of the sarcopterygian clade and establish the lungfish as a valuable research system for regenerative biology.
Collapse
Affiliation(s)
- Kellen Matos Verissimo
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil
| | - Louise Neiva Perez
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil.,Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Aline Cutrim Dragalzew
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil
| | - Gayani Senevirathne
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil
| | | | | | | | | | - Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institute, S-171 77, Stockholm, Sweden
| | - Neil Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Nadia Belinda Fröbisch
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | | | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Kakebeen AD, Chitsazan AD, Williams MC, Saunders LM, Wills AE. Chromatin accessibility dynamics and single cell RNA-Seq reveal new regulators of regeneration in neural progenitors. eLife 2020; 9:e52648. [PMID: 32338593 PMCID: PMC7250574 DOI: 10.7554/elife.52648] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/25/2020] [Indexed: 12/24/2022] Open
Abstract
Vertebrate appendage regeneration requires precisely coordinated remodeling of the transcriptional landscape to enable the growth and differentiation of new tissue, a process executed over multiple days and across dozens of cell types. The heterogeneity of tissues and temporally-sensitive fate decisions involved has made it difficult to articulate the gene regulatory programs enabling regeneration of individual cell types. To better understand how a regenerative program is fulfilled by neural progenitor cells (NPCs) of the spinal cord, we analyzed pax6-expressing NPCs isolated from regenerating Xenopus tropicalis tails. By intersecting chromatin accessibility data with single-cell transcriptomics, we find that NPCs place an early priority on neuronal differentiation. Late in regeneration, the priority returns to proliferation. Our analyses identify Pbx3 and Meis1 as critical regulators of tail regeneration and axon organization. Overall, we use transcriptional regulatory dynamics to present a new model for cell fate decisions and their regulators in NPCs during regeneration.
Collapse
Affiliation(s)
| | | | | | - Lauren M Saunders
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | | |
Collapse
|
14
|
Abstract
Understanding how to promote organ and appendage regeneration is a key goal of regenerative medicine. The frog, Xenopus, can achieve both scar-free healing and tissue regeneration during its larval stages, although it predominantly loses these abilities during metamorphosis and adulthood. This transient regenerative capacity, alongside their close evolutionary relationship with humans, makes Xenopus an attractive model to uncover the mechanisms underlying functional regeneration. Here, we present an overview of Xenopus as a key model organism for regeneration research and highlight how studies of Xenopus have led to new insights into the mechanisms governing regeneration.
Collapse
Affiliation(s)
- Lauren S Phipps
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Lindsey Marshall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Karel Dorey
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
15
|
The AP-1 transcription factor JunB functions in Xenopus tail regeneration by positively regulating cell proliferation. Biochem Biophys Res Commun 2019; 522:990-995. [PMID: 31812242 DOI: 10.1016/j.bbrc.2019.11.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Abstract
Xenopus tropicalis tadpoles can regenerate an amputated tail, including spinal cord, muscle and notochord, through cell proliferation and differentiation. However, the molecular mechanisms that regulate cell proliferation during tail regeneration are largely unknown. Here we show that JunB plays an important role in tail regeneration by regulating cell proliferation. The expression of junb is rapidly activated and sustained during tail regeneration. Knockout (KO) of junb causes a delay in tail regeneration and tissue differentiation. In junb KO tadpoles, cell proliferation is prevented before tissue differentiation. Furthermore, TGF-β signaling, which is activated just after tail amputation, regulates the induction and maintenance of junb expression. These findings demonstrate that JunB, a downstream component of TGF-β signaling, works as a positive regulator of cell proliferation during Xenopus tail regeneration.
Collapse
|
16
|
Okumura A, Hayashi T, Ebisawa M, Yoshimura M, Sasagawa Y, Nikaido I, Umesono Y, Mochii M. Cell type-specific transcriptome analysis unveils secreted signaling molecule genes expressed in apical epithelial cap during appendage regeneration. Dev Growth Differ 2019; 61:447-456. [PMID: 31713234 DOI: 10.1111/dgd.12635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
Abstract
Wound epidermis (WE) and the apical epithelial cap (AEC) are believed to trigger regeneration of amputated appendages such as limb and tail in amphibians by producing certain secreted signaling molecules. To date, however, only limited information about the molecular signatures of these epidermal structures is available. Here we used a transgenic Xenopus laevis line harboring the enhanced green fluorescent protein (egfp) gene under control of an es1 gene regulatory sequence to isolate WE/AEC cells by performing fluorescence-activated cell sorting during the time course of tail regeneration (day 1, day 2, day 3 and day 4 after amputation). Time-course transcriptome analysis of these isolated WE/AEC cells revealed that more than 8,000 genes, including genes involved in signaling pathways such as those of reactive oxygen species, fibroblast growth factor (FGF), canonical and non-canonical Wnt, transforming growth factor β (TGF β) and Notch, displayed dynamic changes of their expression during tail regeneration. Notably, this approach enabled us to newly identify seven secreted signaling molecule genes (mdk, fstl, slit1, tgfβ1, bmp7.1, angptl2 and egfl6) that are highly expressed in tail AEC cells. Among these genes, five (mdk, fstl, slit1, tgfβ1 and bmp7.1) were also highly expressed in limb AEC cells but the other two (angptl2 and egfl6) are specifically expressed in tail AEC cells. Interestingly, there was no expression of fgf8 in tail WE/AEC cells, whose expression and pivotal role in limb AEC cells have been reported previously. Thus, we identified common and different properties between tail and limb AEC cells.
Collapse
Affiliation(s)
- Akinori Okumura
- Graduate School of Life Science, University of Hyogo, Akou-gun, Hyogo, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan
| | - Masashi Ebisawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Ibaraki, Japan
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, Akou-gun, Hyogo, Japan
| | - Makoto Mochii
- Graduate School of Life Science, University of Hyogo, Akou-gun, Hyogo, Japan
| |
Collapse
|
17
|
Freitas PD, Yandulskaya AS, Monaghan JR. Spinal Cord Regeneration in Amphibians: A Historical Perspective. Dev Neurobiol 2019; 79:437-452. [PMID: 30725532 DOI: 10.1002/dneu.22669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
In some vertebrates, a grave injury to the central nervous system (CNS) results in functional restoration, rather than in permanent incapacitation. Understanding how these animals mount a regenerative response by activating resident CNS stem cell populations is of critical importance in regenerative biology. Amphibians are of a particular interest in the field because the regenerative ability is present throughout life in urodele species, but in anuran species it is lost during development. Studying amphibians, who transition from a regenerative to a nonregenerative state, could give insight into the loss of ability to recover from CNS damage in mammals. Here, we highlight the current knowledge of spinal cord regeneration across vertebrates and identify commonalities and differences in spinal cord regeneration between amphibians.
Collapse
Affiliation(s)
- Polina D Freitas
- Department of Biology, Northeastern University, 360 Huntington Ave., 134 Mugar Hall, Boston, Massachusetts, 02115
| | - Anastasia S Yandulskaya
- Department of Biology, Northeastern University, 360 Huntington Ave., 134 Mugar Hall, Boston, Massachusetts, 02115
| | - James R Monaghan
- Department of Biology, Northeastern University, 360 Huntington Ave., 134 Mugar Hall, Boston, Massachusetts, 02115
| |
Collapse
|
18
|
Kakebeen AD, Wills AE. More Than Just a Bandage: Closing the Gap Between Injury and Appendage Regeneration. Front Physiol 2019; 10:81. [PMID: 30800076 PMCID: PMC6376490 DOI: 10.3389/fphys.2019.00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 01/19/2023] Open
Abstract
The remarkable regenerative capabilities of amphibians have captured the attention of biologists for centuries. The frogs Xenopus laevis and Xenopus tropicalis undergo temporally restricted regenerative healing of appendage amputations and spinal cord truncations, injuries that are both devastating and relatively common in human patients. Rapidly expanding technological innovations have led to a resurgence of interest in defining the factors that enable regenerative healing, and in coupling these factors to human therapeutic interventions. It is well-established that early embryonic signaling pathways are critical for growth and patterning of new tissue during regeneration. A growing body of research now indicates that early physiological injury responses are also required to initiate a regenerative program, and that these differ in regenerative and non-regenerative contexts. Here we review recent insights into the biophysical, biochemical, and epigenetic processes that underlie regenerative healing in amphibians, focusing particularly on tail and limb regeneration in Xenopus. We also discuss the more elusive potential mechanisms that link wounding to tissue growth and patterning.
Collapse
Affiliation(s)
- Anneke D Kakebeen
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, United States
| | - Andrea E Wills
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
19
|
Role of Sonic Hedgehog Signaling Pathway in Intervertebral Disc Formation and Maintenance. ACTA ACUST UNITED AC 2018; 4:173-179. [PMID: 30687592 DOI: 10.1007/s40610-018-0107-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
a Purpose of Review The intervertebral discs (IVD) are an essential component of the spine. Degeneration of the discs, commonly due to age or injury, is a leading cause of chronic lower back pain. Despite its high prevalence, there is no effective treatment for disc disease due to limited understanding of disc at the cellular and molecular level. b Recent Findings Recent research has demonstrated the importance of the intracellular developmental pathway sonic hedgehog (Shh) during the formation and postnatal maintenance of the IVD. Recent studies corroborate that the down-regulation of SHH expression is associated with pathological changes in the IVDs and demonstrate the reactivation of the hedgehog pathway as a promising avenue for rescuing health disc structure and function. c Summary Understanding the role of developmental signaling pathways that regulate disc formation and maintenance may help develop strategies to recapitulate the same mechanism for disc treatment and hence improve the quality and longevity of patient lives.
Collapse
|
20
|
Romero MMG, McCathie G, Jankun P, Roehl HH. Damage-induced reactive oxygen species enable zebrafish tail regeneration by repositioning of Hedgehog expressing cells. Nat Commun 2018; 9:4010. [PMID: 30275454 PMCID: PMC6167316 DOI: 10.1038/s41467-018-06460-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
Many aquatic vertebrates have a remarkable ability to regenerate limbs and tails after amputation. Previous studies indicate that reactive oxygen species (ROS) signalling initiates regeneration, but the mechanism by which this takes place is poorly understood. Developmental signalling pathways have been shown to have proregenerative roles in many systems. However, whether these are playing roles that are specific to regeneration, or are simply recapitulating their developmental functions is unclear. Here, we analyse zebrafish larval tail regeneration and find evidence that ROS released upon wounding cause repositioning of notochord cells to the damage site. These cells secrete Hedgehog ligands that are required for regeneration. Hedgehog signalling is not required for normal tail development suggesting that it has a regeneration-specific role. Our results provide a model for how ROS initiate tail regeneration, and indicate that developmental signalling pathways can play regenerative functions that are not directly related to their developmental roles. Reactive oxygen species (ROS) are required to initiate regeneration but the mechanisms regulating its production are unclear. Here, the authors show in zebrafish larval tail regeneration that ROS is released by mobilised notochord cells enables their repositioning in the damage site, assisted by secreted Hh.
Collapse
Affiliation(s)
- Maria Montserrat Garcia Romero
- Bateson Centre, Department of Biomedical Sciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Gareth McCathie
- Bateson Centre, Department of Biomedical Sciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Philip Jankun
- Bateson Centre, Department of Biomedical Sciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Henry Hamilton Roehl
- Bateson Centre, Department of Biomedical Sciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
21
|
Sato K, Umesono Y, Mochii M. A transgenic reporter under control of an es1 promoter/enhancer marks wound epidermis and apical epithelial cap during tail regeneration in Xenopus laevis tadpole. Dev Biol 2017; 433:404-415. [PMID: 29291984 DOI: 10.1016/j.ydbio.2017.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/22/2017] [Accepted: 08/09/2017] [Indexed: 11/17/2022]
Abstract
Rapid wound healing and subsequent formation of the apical epithelial cap (AEC) are believed to be required for successful appendage regeneration in amphibians. Despite the significant role of AEC in limb regeneration, its role in tail regeneration and the mechanisms that regulate the wound healing and AEC formation are not well understood. We previously identified Xenopus laevis es1, which is preferentially expressed in wounded regions, including the AEC after tail regeneration. In this study we established and characterized transgenic Xenopus laevis lines harboring the enhanced green fluorescent protein (EGFP) gene under control of an es1 gene regulatory sequence (es1:egfp). The EGFP reporter expression was clearly seen in several regions of the embryo and then declined to an undetectable level in larvae, recapitulating the endogenous es1 expression. After amputation of the tadpole tail, EGFP expression was re-activated at the edge of the stump epidermis and then increased in the wound epidermis (WE) covering the amputation surface. As the stump started to regenerate, the EGFP expression became restricted to the most distal epidermal region, including the AEC. EGFP was preferentially expressed in the basal or deep cells but not in the superficial cells of the WE and AEC. We performed a small-scale pharmacological screening for chemicals that affected the expression of EGFP in the stump epidermis after tail amputation. The EGFP expression was attenuated by treatment with an inhibitor for ERK, TGF-β or reactive oxygen species (ROS) signaling. These treatments also impaired wound closure of the amputation surface, suggesting that the three signaling activities are required for es1 expression in the WE and successful wound healing after tail amputation. These findings showed that es1:egfp Xenopus laevis should be a useful tool to analyze molecular mechanisms regulating wound healing and appendage regeneration.
Collapse
Affiliation(s)
- Kentaro Sato
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou, Hyogo 678-1297, Japan
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou, Hyogo 678-1297, Japan
| | - Makoto Mochii
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou, Hyogo 678-1297, Japan.
| |
Collapse
|
22
|
Hota J, Pati SS, Mahapatra PK. Spinal cord self-repair during tail regeneration in Polypedates maculatus and putative role of FGF1 as a neurotrophic factor. J Chem Neuroanat 2017; 88:70-75. [PMID: 29133075 DOI: 10.1016/j.jchemneu.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
Spinal cord injury could be fatal in man and often results in irreversible medical conditions affecting mobility. However, anuran amphibians win over such pathological condition by the virtue of regeneration abilities. The tail of anuran tadpoles therefore allures researchers to study spinal cord injury and self- repair process. In the present study, we inflicted injury to the spinal cord by means of surgical transection of the tail and investigated the self-repair activity in the tadpoles of the Indian tree frog Polypedates maculatus. We also demonstrate for the first time by immunofluorescence localization the expression pattern of Fibroblast Growth Factor1 (FGF1) during spinal cord regeneration which has not been documented earlier in anurans. FGF1, bearer of the mitogenic and neurotrophic properties seems to be expressed by progenitor cells that facilitate regeneration. Spinal cord during tail regeneration in P. maculatus attains functional recovery within a span of 2 weeks thus enabling the organism to survive in an aquatic medium till metamorphosis. Moreover, during the course of spinal cord regeneration in the regenerating tail, melanocytes showed an interesting behaviour as these neural crest derivatives were missing near the early regenerates until their reappearance where they were positioned in close proximity with the regenerated spinal cord as in the normal tail.
Collapse
Affiliation(s)
- Jutshina Hota
- Cell and Developmental Biology Laboratory, P.G. Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| | - Sushri Sangita Pati
- Cell and Developmental Biology Laboratory, P.G. Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| | - Pravati Kumari Mahapatra
- Cell and Developmental Biology Laboratory, P.G. Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
23
|
Chang J, Baker J, Wills A. Transcriptional dynamics of tail regeneration in Xenopus tropicalis. Genesis 2017; 55. [PMID: 28095651 DOI: 10.1002/dvg.23015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
In contrast to humans, many amphibians are able to rapidly and completely regenerate complex tissues, including entire appendages. Following tail amputation, Xenopus tropicalis tadpoles quickly regenerate muscle, spinal cord, cartilage, vasculature and skin, all properly patterned in three dimensions. To better understand the molecular basis of this regenerative competence, we performed a transcriptional analysis of the first 72 h of tail regeneration using RNA-Seq. Our analysis refines the windows during which many key biological signaling processes act in regeneration, including embryonic patterning signals, immune responses, bioelectrical signaling and apoptosis. Our work provides a deep database for researchers interested in appendage regeneration, and points to new avenues for further study.
Collapse
Affiliation(s)
- Jessica Chang
- Department of Genetics, Stanford University, Stanford, California, 94305
| | - Julie Baker
- Department of Genetics, Stanford University, Stanford, California, 94305.,Department of Obstetrics and Gynecology, Stanford University, Stanford, California, 94305
| | - Andrea Wills
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
24
|
Li J, Zhang S, Amaya E. The cellular and molecular mechanisms of tissue repair and regeneration as revealed by studies in Xenopus. ACTA ACUST UNITED AC 2016; 3:198-208. [PMID: 27800170 PMCID: PMC5084359 DOI: 10.1002/reg2.69] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Survival of any living organism critically depends on its ability to repair and regenerate damaged tissues and/or organs during its lifetime following injury, disease, or aging. Various animal models from invertebrates to vertebrates have been used to investigate the molecular and cellular mechanisms of wound healing and tissue regeneration. It is hoped that such studies will form the framework for identifying novel clinical treatments that will improve the healing and regenerative capacity of humans. Amongst these models, Xenopus stands out as a particularly versatile and powerful system. This review summarizes recent findings using this model, which have provided fundamental knowledge of the mechanisms responsible for efficient and perfect tissue repair and regeneration.
Collapse
Affiliation(s)
- Jingjing Li
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| | - Siwei Zhang
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| |
Collapse
|
25
|
Suzuki M, Takagi C, Miura S, Sakane Y, Suzuki M, Sakuma T, Sakamoto N, Endo T, Kamei Y, Sato Y, Kimura H, Yamamoto T, Ueno N, Suzuki KIT. In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration. Genes Cells 2016; 21:358-69. [PMID: 26914410 DOI: 10.1111/gtc.12349] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/13/2016] [Indexed: 02/01/2023]
Abstract
Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification-specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac-Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac-Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species (ROS). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac-Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration.
Collapse
Affiliation(s)
- Miyuki Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, 739-8526, Hiroshima, Japan
| | - Chiyo Takagi
- Division of Morphogenesis, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Aichi, Japan
| | - Shinichirou Miura
- Division of Liberal Arts and Sciences, Aichi Gakuin University, 12 Araike, Iwasaki, Nissin, 470-0195, Aichi, Japan
| | - Yuto Sakane
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, 739-8526, Hiroshima, Japan
| | - Makoto Suzuki
- Division of Morphogenesis, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Aichi, Japan.,Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, 445-8585, Aichi, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, 739-8526, Hiroshima, Japan
| | - Naoaki Sakamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, 739-8526, Hiroshima, Japan
| | - Tetsuya Endo
- Division of Liberal Arts and Sciences, Aichi Gakuin University, 12 Araike, Iwasaki, Nissin, 470-0195, Aichi, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, 445-8585, Aichi, Japan.,Spectrography and Bioimaging Facility, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Aichi, Japan
| | - Yuko Sato
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, 739-8526, Hiroshima, Japan
| | - Naoto Ueno
- Division of Morphogenesis, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Aichi, Japan.,Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, 445-8585, Aichi, Japan
| | - Ken-ichi T Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, 739-8526, Hiroshima, Japan
| |
Collapse
|
26
|
Segev O, Polevikove A, Blank L, Goedbloed D, Küpfer E, Gershberg A, Koplovich A, Blaustein L. Effects of Tail Clipping on Larval Performance and Tail Regeneration Rates in the Near Eastern Fire Salamander, Salamandra infraimmaculata. PLoS One 2015; 10:e0128077. [PMID: 26065683 PMCID: PMC4466261 DOI: 10.1371/journal.pone.0128077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/23/2015] [Indexed: 11/18/2022] Open
Abstract
Tail-tip clipping is a common technique for collecting tissue samples from amphibian larvae and adults. Surprisingly, studies of this invasive sampling procedure or of natural tail clipping--i.e., bites inflicted by predators including conspecifics--on the performance and fitness of aquatic larval stages of urodeles are scarce. We conducted two studies in which we assessed the effects of posterior tail clipping (~30 percent of tail) on Near Eastern fire salamander (Salamandra infraimmaculata) larvae. In a laboratory study, we checked regeneration rates of posterior tail-tip clipping at different ages. Regeneration rates were hump-shaped, peaking at the age of ~30 days and then decreasing. This variation in tail regeneration rates suggests tradeoffs in resource allocation between regeneration and somatic growth during early and advanced development. In an outdoor artificial pond experiment, under constant larval densities, we assessed how tail clipping of newborn larvae affects survival to, time to, and size at metamorphosis. Repeated measures ANOVA on mean larval survival per pond revealed no effect of tail clipping. Tail clipping had correspondingly no effect on larval growth and development expressed in size (mass and snout-vent length) at, and time to, metamorphosis. We conclude that despite the given variation in tail regeneration rates throughout larval ontogeny, clipping of 30% percent of the posterior tail area seems to have no adverse effects on larval fitness and survival. We suggest that future use of this imperative tool for the study of amphibian should take into account larval developmental stage during the time of application and not just the relative size of the clipped tail sample.
Collapse
Affiliation(s)
- Ori Segev
- Institute of Evolution and Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Antonina Polevikove
- Institute of Evolution and Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Lior Blank
- Institute of Evolution and Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| | - Daniel Goedbloed
- Technical University of Braunschweig, Zoological Institute, Braunschweig, 38106, Germany
| | - Eliane Küpfer
- Technical University of Braunschweig, Zoological Institute, Braunschweig, 38106, Germany
| | - Anna Gershberg
- Institute of Evolution and Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Avi Koplovich
- Institute of Evolution and Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Leon Blaustein
- Institute of Evolution and Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| |
Collapse
|