1
|
Shabtai R, Tzur YB. Male-specific roles of lincRNA in C. elegans fertility. Front Cell Dev Biol 2023; 11:1115605. [PMID: 37035238 PMCID: PMC10076526 DOI: 10.3389/fcell.2023.1115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
The testis is the mammalian tissue with the highest expression levels of long intergenic non-coding RNAs (lincRNAs). However, most in vivo models have not found significant reductions in male fertility when highly expressed lincRNA genes were removed. This suggests that certain lincRNAs may act redundantly or lack functional roles. In the genome of the nematode Caenorhabditis elegans, there is an order of magnitude fewer lincRNA genes than in mammals. This characteristic lowers the potential for redundancy, making it an ideal model to test these possibilities. We identified five highly and dynamically expressed lincRNAs in male C. elegans gonads and quantified the fertility of worm strains in which these genes were removed. In contrast to the hermaphrodites of deletion strains, which exhibited no significant reductions in broods, smaller brood sizes were observed in the progeny of males of three of the lincRNA deleted strains. This demonstrates reduced male fertility in worms with those genes removed. Interestingly, reduced brood size was statistically significant only in the last days of egg laying in two of these strains. This suggests the effect is due to early deterioration and aging of the transferred sperm. We detected a mild increase in embryonic lethality in only one of the strains, supporting the possibility that these lincRNAs do not affect fertility through critical roles in essential meiotic processes. Together our results indicate a sexually dimorphic outcome on fertility when lincRNA are removed and show that, unlike mammals, individual lincRNAs in C. elegans do play significant roles in male fertility.
Collapse
|
2
|
Reproductive Span of Caenorhabditis elegans Is Extended by Microbacterium sp. J Nematol 2022; 54:20220010. [PMID: 35860519 PMCID: PMC9260829 DOI: 10.2478/jofnem-2022-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/20/2022] Open
Abstract
Abstract
The reproductive span (RS) of organisms could be affected by different factors during their lifetime. In the model nematode, Caenorhabditis elegans, RS is affected by both genetic and environmental factors. However, none of the factors identified so far were related to environmental bacteria, which may incidentally appear anywhere in the habitats of C. elegans. We aimed to find environmental bacteria that could affect the RS of C. elegans and related species. We tested 109 bacterial isolates and found that Microbacterium sp. CFBb37 increased the RS and lifespan of C. elegans but reduced its brood size. We studied the effect of M. sp. CFBb37 on the RS of Caenorhabditis briggsae, Caenorhabditis tropicalis, and another Rhabditidae family species, Protorhabditis sp., and found similar trends of RS extension in all three cases, suggesting that this bacterial species may induce the extension of RS broadly among Caenorhabditis species and possibly for many other Rhabditidae. This work will facilitate future research on the mechanism underlying the bacterial extension of RS of nematodes and possibly other animals.
Collapse
|
3
|
Lim J, Kim J, Lee J. Natural variation in reproductive timing and X-chromosome non-disjunction in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2021; 11:6373895. [PMID: 34550364 PMCID: PMC8664432 DOI: 10.1093/g3journal/jkab327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022]
Abstract
Caenorhabditis elegans hermaphrodites first produce a limited number of sperm cells, before their germline switches to oogenesis. Production of progeny then ensues until sperm is depleted. Male production in the self-progeny of hermaphrodites occurs following X-chromosome non-disjunction during gametogenesis, and in the reference strain increases with age of the hermaphrodite parent. To enhance our understanding of the reproductive timecourse in Caenorhabditis elegans, we measured and compared progeny production and male proportion during the early and late reproductive periods of hermaphrodites for 96 wild Caenorhabditis elegans strains. We found that the two traits exhibited natural phenotypic variation with few outliers and a similar reproductive timing pattern as previous reports. Progeny number and male proportion were not correlated in the wild isolates, implying that isolates with a large brood size did not produce males at a higher rate. We also identified loci and candidate genetic variants significantly associated with male-production rate in the late and total reproductive periods. Our results provide an insight into life history traits in wild Caenorhabditis elegans strains.
Collapse
Affiliation(s)
- Jiseon Lim
- Department of Biological Sciences, Seoul National University, Seoul, Korea 08826.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea 08826
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Seoul, Korea 08826.,Research Institute of Basic Sciences, Seoul National University, Seoul, Korea 08826
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea 08826.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea 08826.,Research Institute of Basic Sciences, Seoul National University, Seoul, Korea 08826
| |
Collapse
|
4
|
Yen CA, Curran SP. Methods for Assessing Fertility in C. elegans from a Single Population. Methods Mol Biol 2021; 2144:91-102. [PMID: 32410027 DOI: 10.1007/978-1-0716-0592-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reproductive senescence occurs in a wide range of species with mechanistic aspects that are conserved from Caenorhabditis elegans to humans. Genetic and environmental factors can influence fertility and reproductive output can impact rates of aging. The C. elegans Bristol N2 strain commonly used in laboratories is hermaphroditic, producing a defined number of sperm during larval development before switching exclusively to oogenesis. Here we show a method of assaying both oocyte and sperm quality from a single population of animals.
Collapse
Affiliation(s)
- Chia-An Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.,Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA. .,Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA. .,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Yen CA, Ruter DL, Turner CD, Pang S, Curran SP. Loss of flavin adenine dinucleotide (FAD) impairs sperm function and male reproductive advantage in C. elegans. eLife 2020; 9:e52899. [PMID: 32022684 PMCID: PMC7032928 DOI: 10.7554/elife.52899] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Exposure to environmental stress is clinically established to influence male reproductive health, but the impact of normal cellular metabolism on sperm quality is less well-defined. Here we show that impaired mitochondrial proline catabolism, reduces energy-storing flavin adenine dinucleotide (FAD) levels, alters mitochondrial dynamics toward fusion, and leads to age-related loss of sperm quality (size and activity), which diminishes competitive fitness of the animal. Loss of the 1-pyrroline-5-carboxylate dehydrogenase enzyme alh-6 that catalyzes the second step in mitochondrial proline catabolism leads to premature male reproductive senescence. Reducing the expression of the proline catabolism enzyme alh-6 or FAD biosynthesis pathway genes in the germline is sufficient to recapitulate the sperm-related phenotypes observed in alh-6 loss-of-function mutants. These sperm-specific defects are suppressed by feeding diets that restore FAD levels. Our results define a cell autonomous role for mitochondrial proline catabolism and FAD homeostasis on sperm function and specify strategies to pharmacologically reverse these defects.
Collapse
Affiliation(s)
- Chia-An Yen
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesUnited States
| | - Dana L Ruter
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesUnited States
| | - Christian D Turner
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesUnited States
| | - Shanshan Pang
- School of Life Sciences, Chongqing UniversityChongqingChina
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesUnited States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
6
|
García-Rodríguez FJ, Martínez-Fernández C, Brena D, Kukhtar D, Serrat X, Nadal E, Boxem M, Honnen S, Miranda-Vizuete A, Villanueva A, Cerón J. Genetic and cellular sensitivity of Caenorhabditis elegans to the chemotherapeutic agent cisplatin. Dis Model Mech 2018; 11:dmm.033506. [PMID: 29752286 PMCID: PMC6031354 DOI: 10.1242/dmm.033506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/10/2018] [Indexed: 12/13/2022] Open
Abstract
Cisplatin and derivatives are commonly used as chemotherapeutic agents. Although the cytotoxic action of cisplatin on cancer cells is very efficient, clinical oncologists need to deal with two major difficulties, namely the onset of resistance to the drug and the cytotoxic effect in patients. Here, we used Caenorhabditis elegans to investigate factors influencing the response to cisplatin in multicellular organisms. In this hermaphroditic model organism, we observed that sperm failure is a major cause of cisplatin-induced infertility. RNA sequencing data indicate that cisplatin triggers a systemic stress response, in which DAF-16/FOXO and SKN-1/NRF2, two conserved transcription factors, are key regulators. We determined that inhibition of the DNA damage-induced apoptotic pathway does not confer cisplatin protection to the animal. However, mutants for the pro-apoptotic BH3-only gene ced-13 are sensitive to cisplatin, suggesting a protective role of the intrinsic apoptotic pathway. Finally, we demonstrated that our system can also be used to identify mutations providing resistance to cisplatin and therefore potential biomarkers of innate cisplatin-refractory patients. We show that mutants for the redox regulator trxr-1, ortholog of the mammalian thioredoxin reductase 1 TRXR1, display cisplatin resistance. By CRISPR/Cas9, we determined that such resistance relies on the presence of the single selenocysteine residue in TRXR-1. This article has an associated First Person interview with the first author of the paper. Summary:Caenorhabditiselegans is a valuable model to identify genetic factors influencing the animal response to the widely used chemotherapeutic agent cisplatin.
Collapse
Affiliation(s)
- Francisco Javier García-Rodríguez
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Carmen Martínez-Fernández
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - David Brena
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Dmytro Kukhtar
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Xènia Serrat
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ernest Nadal
- Thoracic Oncology Unit, Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Sebastian Honnen
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, D-40225 Düsseldorf, Germany
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
| | - Alberto Villanueva
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Julián Cerón
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
7
|
Hansen JM, Chavez DR, Stanfield GM. COMP-1 promotes competitive advantage of nematode sperm. eLife 2015; 4:e05423. [PMID: 25789512 PMCID: PMC4400581 DOI: 10.7554/elife.05423] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/16/2015] [Indexed: 12/24/2022] Open
Abstract
Competition among sperm to fertilize oocytes is a ubiquitous feature of sexual reproduction as well as a profoundly important aspect of sexual selection. However, little is known about the cellular mechanisms sperm use to gain competitive advantage or how these mechanisms are regulated genetically. In this study, we utilize a forward genetic screen in Caenorhabditis elegans to identify a gene, comp-1, whose function is specifically required in competitive contexts. We show that comp-1 functions in sperm to modulate their migration through and localization within the reproductive tract, thereby promoting their access to oocytes. Contrary to previously described models, comp-1 mutant sperm show no defects in size or velocity, thereby defining a novel pathway for preferential usage. Our results indicate not only that sperm functional traits can influence the outcome of sperm competition, but also that these traits can be modulated in a context-dependent manner depending on the presence of competing sperm.
Collapse
Affiliation(s)
- Jody M Hansen
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Daniela R Chavez
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| |
Collapse
|
8
|
Abstract
Although the general events surrounding fertilization in many species are well described, the molecular underpinnings of fertilization are still poorly understood. Caenorhabditis elegans has emerged as a powerful model system for addressing the molecular and cell biological mechanism of fertilization. A primary advantage is the ability to isolate and propagate mutants that effect gametes and no other cells. This chapter provides conceptual guidelines for the identification, maintenance, and experimental approaches for the study fertility mutants.
Collapse
Affiliation(s)
- Brian D. Geldziler
- Waksman Institute, Rutgers University, Dept. of Microbiology and Molecular Genetics
| | - Matthew R. Marcello
- Waksman Institute, Rutgers University, Dept. of Microbiology and Molecular Genetics
| | | | - Andrew Singson
- Waksman Institute, Rutgers University, Dept. of Microbiology and Molecular Genetics
| |
Collapse
|
9
|
Abstract
Oxidatively damaged proteins accumulate with age in many species (Stadtman (1992) Science257, 1220-1224). This means that damage must be reset at the time of reproduction. To visualize this resetting in the roundworm Caenorhabditis elegans, a novel immunofluorescence technique that allows the detection of carbonylated proteins in situ was developed. The application of this technique revealed that carbonylated proteins are eliminated during C. elegans reproduction. This purging occurs abruptly within the germline at the time of oocyte maturation. Surprisingly, the germline was markedly more oxidized than the surrounding somatic tissues. Because distinct mechanisms have been proposed to explain damage elimination in yeast and mice (Aguilaniu et al. (2003) Science299, 1751-1753; Hernebring et al. (2006) Proc Natl Acad Sci USA103, 7700-7705), possible common mechanisms between worms and one of these systems were tested. The results show that, unlike in yeast (Aguilaniu et al. (2003) Science299, 1751-1753; Erjavec et al. (2008) Proc Natl Acad Sci USA105, 18764-18769), the elimination of carbonylated proteins in worms does not require the presence of the longevity-ensuring gene, SIR-2.1. However, similar to findings in mice (Hernebring et al. (2006) Proc Natl Acad Sci USA103, 7700-7705), proteasome activity in the germline is required for the resetting of carbonylated proteins during reproduction in C. elegans. Thus, oxidatively damaged proteins are eliminated during reproduction in worms through the proteasome. This finding suggests that the resetting of damaged proteins during reproduction is conserved, therefore validating the use of C. elegans as a model to study the molecular basis of damage elimination.
Collapse
Affiliation(s)
- Jérôme Goudeau
- Ecole Normale Supérieure de Lyon - CNRS - Université de Lyon Claude Bernard, Molecular Biology of the Cell Laboratory/UMR5239, 46, Allée d'Italie, 69364, Lyon Cedex 07, France
| | | |
Collapse
|
10
|
Han SM, Cottee PA, Miller MA. Sperm and oocyte communication mechanisms controlling C. elegans fertility. Dev Dyn 2010; 239:1265-81. [PMID: 20034089 DOI: 10.1002/dvdy.22202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During sexual reproduction in many species, sperm and oocyte secrete diffusible signaling molecules to help orchestrate the biological symphony of fertilization. In the Caenorhabditis elegans gonad, bidirectional signaling between sperm and oocyte is important for guiding sperm to the fertilization site and inducing oocyte maturation. The molecular mechanisms that regulate sperm guidance and oocyte maturation are being delineated. Unexpectedly, these mechanisms are providing insight into human diseases, such as amyotrophic lateral sclerosis, spinal muscular atrophy, and cancer. Here we review sperm and oocyte communication in C. elegans and discuss relationships to human disorders.
Collapse
Affiliation(s)
- Sung Min Han
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
11
|
Abstract
The invertebrate genetic systems of Caenorhabditis elegans and Drosophila melanogaster are emerging models to understand the underlying mechanisms of reproductive aging and the relationship between reproduction and lifespan. Both animals show progressive decline in egg production beginning at early middle age, caused in part by reduction in germline stem cell proliferation as well as in survival of developing eggs. Molecular genetic analysis reveals that insulin and TGF-beta signaling are regulators of germline stem cell maintenance and proliferation during aging. Furthermore, the lifespan of both C. elegans and D. melanogaster appears to be regulated by signaling that depends on the presence of germline stem cells in the adult gonad. These invertebrate models provide powerful tools to dissect conserved causes of reproductive aging.
Collapse
Affiliation(s)
- Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
12
|
Sato K, Sato M, Audhya A, Oegema K, Schweinsberg P, Grant BD. Dynamic regulation of caveolin-1 trafficking in the germ line and embryo of Caenorhabditis elegans. Mol Biol Cell 2006; 17:3085-94. [PMID: 16672374 PMCID: PMC1483042 DOI: 10.1091/mbc.e06-03-0211] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Caveolin is the major protein component required for the formation of caveolae on the plasma membrane. Here we show that trafficking of Caenorhabditis elegans caveolin-1 (CAV-1) is dynamically regulated during development of the germ line and embryo. In oocytes a CAV-1-green fluorescent protein (GFP) fusion protein is found on the plasma membrane and in large vesicles (CAV-1 bodies). After ovulation and fertilization the CAV-1 bodies fuse with the plasma membrane in a manner reminiscent of cortical granule exocytosis as described in other species. Fusion of CAV-1 bodies with the plasma membrane appears to be regulated by the advancing cell cycle, and not fertilization per se, because fusion can proceed in spe-9 fertilization mutants but is blocked by RNA interference-mediated knockdown of an anaphase-promoting complex component (EMB-27). After exocytosis, most CAV-1-GFP is rapidly endocytosed and degraded within one cell cycle. CAV-1 bodies in oocytes appear to be produced by the Golgi apparatus in an ARF-1-dependent, clathrin-independent, mechanism. Conversely endocytosis and degradation of CAV-1-GFP in embryos requires clathrin, dynamin, and RAB-5. Our results demonstrate that the distribution of CAV-1 is highly dynamic during development and provides new insights into the sorting mechanisms that regulate CAV-1 localization.
Collapse
Affiliation(s)
- Ken Sato
- *Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan; and
| | - Miyuki Sato
- *Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan; and
| | - Anjon Audhya
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Peter Schweinsberg
- *Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Barth D. Grant
- *Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
13
|
Affiliation(s)
- Andrew Singson
- Waksman Institute and Department of Genetics, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
14
|
Kadandale P, Stewart-Michaelis A, Gordon S, Rubin J, Klancer R, Schweinsberg P, Grant BD, Singson A. The Egg Surface LDL Receptor Repeat-Containing Proteins EGG-1 and EGG-2 Are Required for Fertilization in Caenorhabditis elegans. Curr Biol 2005; 15:2222-9. [PMID: 16360684 DOI: 10.1016/j.cub.2005.10.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/05/2005] [Accepted: 10/19/2005] [Indexed: 01/20/2023]
Abstract
The molecular machinery that mediates sperm-egg interactions at fertilization is largely unknown. We identify two partially redundant egg surface LDL receptor repeat-containing proteins (EGG-1 and EGG-2) that are required for Caenorhabditis elegans fertility in hermaphrodites, but not males. Wild-type sperm cannot enter the morphologically normal oocytes produced by hermaphrodites that lack egg-1 and egg-2 function despite direct gamete contact. Furthermore, we find that levels of meiotic maturation/ovulation and sperm migratory behavior are altered in egg-1 mutants. These observations suggest an unexpected regulatory link between fertilization and other events necessary for reproductive success. egg-1 and egg-2 are the result of a gene duplication in the nematode lineage leading to C. elegans. The two closely related species C. briggsae and C. remanei encode only a single egg-1/egg-2 homolog that is required for hermaphrodite/female fertility. In addition to being the first identified egg components of the nematode fertilization machinery, the egg-1 and egg-2 gene duplication could be vital with regards to maximizing C. elegans fecundity and understanding the evolutionary differentiation of molecular function and speciation.
Collapse
Affiliation(s)
- Pavan Kadandale
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chatterjee I, Richmond A, Putiri E, Shakes DC, Singson A. TheCaenorhabditis elegans spe-38gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Development 2005; 132:2795-808. [PMID: 15930110 DOI: 10.1242/dev.01868] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mutation in the Caenorhabditis elegans spe-38 gene results in a sperm-specific fertility defect. spe-38 sperm are indistinguishable from wild-type sperm with regards to their morphology, motility and migratory behavior. spe-38 sperm make close contact with oocytes but fail to fertilize them. spe-38 sperm can also stimulate ovulation and engage in sperm competition. The spe-38 gene is predicted to encode a novel four-pass (tetraspan) integral membrane protein. Structurally similar tetraspan molecules have been implicated in processes such as gamete adhesion/fusion in mammals, membrane adhesion/fusion during yeast mating, and the formation/function of tight-junctions in metazoa. In antibody localization experiments, SPE-38 was found to concentrate on the pseudopod of mature sperm,consistent with it playing a direct role in gamete interactions.
Collapse
Affiliation(s)
- Indrani Chatterjee
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|