1
|
Functional analysis of Samd11, a retinal photoreceptor PRC1 component, in establishing rod photoreceptor identity. Sci Rep 2021; 11:4180. [PMID: 33603070 PMCID: PMC7892874 DOI: 10.1038/s41598-021-83781-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/04/2021] [Indexed: 11/08/2022] Open
Abstract
Establishing correct neuronal cell identity is essential to build intricate neural tissue architecture and acquire precise neural function during vertebrate development. While it is known that transcription factors play important roles in retinal cell differentiation, the contribution of epigenetic factors to establishing cell identity during retinal development remains unclear. We previously reported that Samd7, a rod photoreceptor cell-specific sterile alpha motif (SAM) domain protein, functions as a Polycomb repressive complex 1 component (PRC1) that is essential for establishing rod identity. In the current study, we analyzed a functional role of Samd11, another photoreceptor-enriched SAM-domain protein, in photoreceptor differentiation and maturation. We observed that Samd11 interacts with Phc2 and Samd7, suggesting that Samd11 is a component of PRC1 in photoreceptor cells. We generated Samd11-null allele and established Samd7/11 double knock-out (DKO) mouse. The Samd7/11 DKO retina exhibits shortened photoreceptor outer segments by electron microscopy analysis. Microarray analysis revealed that Samd7/11 DKO up-regulated more retinal genes than Samd7-/- alone, partial functional redundancy of Samd7 and Samd11. Taken together, the current results suggest that Samd7 and Samd11 are PRC1 components and that Samd7 is the major regulator while Samd11 is an accessory factor used for the establishment of precise rod photoreceptor identity.
Collapse
|
3
|
Corton M, Avila-Fernández A, Campello L, Sánchez M, Benavides B, López-Molina MI, Fernández-Sánchez L, Sánchez-Alcudia R, da Silva LRJ, Reyes N, Martín-Garrido E, Zurita O, Fernández-San José P, Pérez-Carro R, García-García F, Dopazo J, García-Sandoval B, Cuenca N, Ayuso C. Identification of the Photoreceptor Transcriptional Co-Repressor SAMD11 as Novel Cause of Autosomal Recessive Retinitis Pigmentosa. Sci Rep 2016; 6:35370. [PMID: 27734943 PMCID: PMC5062157 DOI: 10.1038/srep35370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/28/2016] [Indexed: 01/09/2023] Open
Abstract
Retinitis pigmentosa (RP), the most frequent form of inherited retinal dystrophy is characterized by progressive photoreceptor degeneration. Many genes have been implicated in RP development, but several others remain to be identified. Using a combination of homozygosity mapping, whole-exome and targeted next-generation sequencing, we found a novel homozygous nonsense mutation in SAMD11 in five individuals diagnosed with adult-onset RP from two unrelated consanguineous Spanish families. SAMD11 is ortholog to the mouse major retinal SAM domain (mr-s) protein that is implicated in CRX-mediated transcriptional regulation in the retina. Accordingly, protein-protein network analysis revealed a significant interaction of SAMD11 with CRX. Immunoblotting analysis confirmed strong expression of SAMD11 in human retina. Immunolocalization studies revealed SAMD11 was detected in the three nuclear layers of the human retina and interestingly differential expression between cone and rod photoreceptors was observed. Our study strongly implicates SAMD11 as novel cause of RP playing an important role in the pathogenesis of human degeneration of photoreceptors.
Collapse
Affiliation(s)
- M Corton
- Department of Genetics &Genomics, Health Research Institute-Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - A Avila-Fernández
- Department of Genetics &Genomics, Health Research Institute-Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - L Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - M Sánchez
- Department of Genetics &Genomics, Health Research Institute-Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - B Benavides
- Department of Genetics &Genomics, Health Research Institute-Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - M I López-Molina
- Department of Ophthalmology, Health Research Institute- Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain
| | - L Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - R Sánchez-Alcudia
- Department of Genetics &Genomics, Health Research Institute-Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - L R J da Silva
- Department of Genetics &Genomics, Health Research Institute-Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.,Universidade de Mogi das Cruzes, São Paulo, Brazil
| | - N Reyes
- Department of Genetics &Genomics, Health Research Institute-Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - E Martín-Garrido
- Department of Genetics &Genomics, Health Research Institute-Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - O Zurita
- Department of Genetics &Genomics, Health Research Institute-Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - P Fernández-San José
- Department of Genetics &Genomics, Health Research Institute-Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - R Pérez-Carro
- Department of Genetics &Genomics, Health Research Institute-Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - F García-García
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Bioinformatics in Rare Diseases (BIER), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
| | - J Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Bioinformatics in Rare Diseases (BIER), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain.,Functional Genomics Node (INB), Valencia, Spain
| | - B García-Sandoval
- Department of Ophthalmology, Health Research Institute- Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain
| | - N Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - C Ayuso
- Department of Genetics &Genomics, Health Research Institute-Jiménez Díaz Foundation University Hospital (IIS-FJD), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
5
|
Jin G, Long C, Liu W, Tang Y, Zhu Y, Zhou X, Ai Y, Zhang Q, Shen H. Identification and characterization of novel alternative splice variants of human SAMD11. Gene 2013; 530:215-21. [PMID: 23978614 DOI: 10.1016/j.gene.2013.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/30/2013] [Accepted: 08/10/2013] [Indexed: 01/25/2023]
Abstract
Sterile alpha motif domain-containing 11 (SAMD11) is evolutionarily conserved from zebrafish to human. Mouse Samd11 is predominantly expressed in developing retinal photoreceptors and the adult pineal gland, and its transcription is directly regulated by the cone-rod homeodomain protein Crx. However, there has been little research on human SAMD11. To investigate the function of human SAMD11, we first cloned its coding sequence (CDS) and identified up to 45 novel alternative splice variants (ASVs). Mouse Samd11 ASVs were also identified by aligning the mouse Samd11 expressed sequence tags (ESTs) with the annotated sequence. However, the range of expression and transcriptional regulation of SAMD11 differs between human and mouse. Human SAMD11 was found to be widely expressed in many cell lines and ocular tissues and its transcription was not regulated by CRX, OTX2 or NR2E3 proteins. Furthermore, functional analysis indicated that human SAMD11 could promote cell proliferation slightly. In conclusion, this study elucidated the basic characteristics of human SAMD11 and revealed that, although the occurrence of alternative splicing of SAMD11 was conserved, the function of SAMD11 may vary in different species.
Collapse
Affiliation(s)
- Guorong Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hlawatsch J, Karlstetter M, Aslanidis A, Lückoff A, Walczak Y, Plank M, Böck J, Langmann T. Sterile alpha motif containing 7 (samd7) is a novel crx-regulated transcriptional repressor in the retina. PLoS One 2013; 8:e60633. [PMID: 23565263 PMCID: PMC3615016 DOI: 10.1371/journal.pone.0060633] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 03/01/2013] [Indexed: 11/18/2022] Open
Abstract
Inherited retinal diseases are mainly caused by mutations in genes that are highly expressed in photoreceptors of the retina. The majority of these genes is under the control of the transcription factor Cone rod homeobox (Crx), that acts as a master transcription factor in photoreceptors. Using a genome-wide chromatin immunoprecipitation dataset that highlights all potential in vivo targets of Crx, we have identified a novel sterile alpha motif (SAM) domain containing protein, Samd7. mRNA Expression of Samd7 was confined to the late postnatal and adult mouse retina as well as the pineal gland. Using immunohistochemistry and Western blot, we could detect Samd7 protein in the outer nuclear layer of adult mouse retina. Ectopic over-expression in HEK293 cells demonstrated that Samd7 resides in the cytoplasm as well as the nucleus. In vitro electroporation of fluorescent reporters into living mouse retinal cultures revealed that transcription of the Samd7 gene depends on evolutionary conserved Crx motifs located in the first intron enhancer. Moreover, Crx knock-down with shRNA strongly reduced Samd7 reporter activity and endogenous Samd7 protein, indicating that Crx is required for retinal expression of Samd7. Finally, using co-transfections in luciferase reporter assays we found that Samd7 interferes with Crx-dependent transcription. Samd7 suppressed luciferase activity from a reporter plasmid with five Crx consensus repeats in a dose dependent manner and reduced Crx-mediated transactivation of regulatory sequences in the retinoschisin gene and the Samd7 gene itself. Taken together, we have identified a novel retinal SAM domain protein, Samd7, which could act as a transcriptional repressor involved in fine-tuning of Crx-regulated gene expression.
Collapse
Affiliation(s)
- Julia Hlawatsch
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Marcus Karlstetter
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Alexander Aslanidis
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Anika Lückoff
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Yana Walczak
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Michael Plank
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Julia Böck
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Thomas Langmann
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
7
|
Koike C, Numata T, Ueda H, Mori Y, Furukawa T. TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. Cell Calcium 2010; 48:95-101. [PMID: 20846719 DOI: 10.1016/j.ceca.2010.08.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 12/22/2022]
Abstract
The transient receptor potential (TRP) channels affect essential functions widely in sensory systems of various species, both invertebrates and vertebrates. The channel protein encoded by the trp gene, the first identified TRP superfamily molecule, is known to mediate the Drosophila light response. A vertebrate TRP channel playing a crucial role in the visual system has not yet been discovered, although numerous studies have revealed primal functions of TRP superfamily molecules in various sensory systems other than vision. In the retina, which is the entry tissue in the vertebrate visual pathway, the transduction cation channel in ON bipolar cells has been elusive, despite intensive investigation by many researchers over a long period of time. Recent studies finally revealed that TRPM1, the first member of the melanoma-related transient receptor potential (TRPM) subfamily to be discovered, is a visual transduction channel in retinal ON bipolar cells. This review covers the significant discoveries on the physiological function and regulatory mechanism of the TRPM1 channel in retinal ON bipolar cells and the association of human TRPM1 mutations with congenital stationary night blindness.
Collapse
Affiliation(s)
- Chieko Koike
- Department of Developmental Biology, Osaka Bioscience Institute, Furuedai, Suita, Japan
| | | | | | | | | |
Collapse
|
8
|
Kanamoto T, Mizuhashi K, Terada K, Minami T, Yoshikawa H, Furukawa T. Isolation and characterization of a novel plasma membrane protein, osteoblast induction factor (obif), associated with osteoblast differentiation. BMC DEVELOPMENTAL BIOLOGY 2009; 9:70. [PMID: 20025746 PMCID: PMC2805627 DOI: 10.1186/1471-213x-9-70] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 12/21/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND While several cell types are known to contribute to bone formation, the major player is a common bone matrix-secreting cell type, the osteoblast. Chondrocytes, which plays critical roles at several stages of endochondral ossification, and osteoblasts are derived from common precursors, and both intrinsic cues and signals from extrinsic cues play critical roles in the lineage decision of these cell types. Several studies have shown that cell fate commitment within the osteoblast lineage requires sequential, stage-specific signaling to promote osteoblastic differentiation programs. In osteoblastic differentiation, the functional mechanisms of transcriptional regulators have been well elucidated, however the exact roles of extrinsic molecules in osteoblastic differentiation are less clear. RESULTS We identify a novel gene, obif (osteoblast induction factor), encoding a transmembrane protein that is predominantly expressed in osteoblasts. During mouse development, obif is initially observed in the limb bud in a complementary pattern to Sox9 expression. Later in development, obif is highly expressed in osteoblasts at the stage of endochondral ossification. In cell line models, obif is up-regulated during osteoblastic differentiation. Exogenous obif expression stimulates osteoblastic differentiation and obif knockdown inhibits osteoblastic differentiation in preosteblastic MC3T3-E1 cells. In addition, the extracellular domain of obif protein exhibits functions similar to the full-length obif protein in induction of MC3T3-E1 differentiation. CONCLUSIONS Our results suggest that obif plays a role in osteoblastic differentiation by acting as a ligand.
Collapse
Affiliation(s)
- Takashi Kanamoto
- Department of Developmental Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan.
| | | | | | | | | | | |
Collapse
|