1
|
Palazzo A, Caizzi R, Moschetti R, Marsano RM. What Have We Learned in 30 Years of Investigations on Bari Transposons? Cells 2022; 11:583. [PMID: 35159391 PMCID: PMC8834629 DOI: 10.3390/cells11030583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) have been historically depicted as detrimental genetic entities that selfishly aim at perpetuating themselves, invading genomes, and destroying genes. Scientists often co-opt "special" TEs to develop new and powerful genetic tools, that will hopefully aid in changing the future of the human being. However, many TEs are gentle, rarely unleash themselves to harm the genome, and bashfully contribute to generating diversity and novelty in the genomes they have colonized, yet they offer the opportunity to develop new molecular tools. In this review we summarize 30 years of research focused on the Bari transposons. Bari is a "normal" transposon family that has colonized the genomes of several Drosophila species and introduced genomic novelties in the melanogaster species. We discuss how these results have contributed to advance the field of TE research and what future studies can still add to the current knowledge.
Collapse
|
2
|
Complex Evolutionary History of Mboumar, a Mariner Element Widely Represented in Ant Genomes. Sci Rep 2020; 10:2610. [PMID: 32054918 PMCID: PMC7018970 DOI: 10.1038/s41598-020-59422-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Mboumar-9 is an active mariner-transposable element previously isolated in the ant Messor bouvieri. In this work, a mariner-like element, Mboumar, isolated from 22 species of ants, is analyzed. These species belong to nine different subfamilies, including Leptanillinae, the most primitive ant subfamily, and Myrmicinae and Formicidae, the most derived ones. Consequently, Mboumar-like elements seem to be well-represented in ant genomes. The phylogenetic tree drawn for mariner elements is highly inconsistent with the phylogeny of host ants, with almost identical elements found in clearly distant species and, on the contrary, more variable elements in closely related species. The inconsistency between the two phylogenetic trees indicates that these transposable elements have evolved independently from the speciation events of the ants that host them. Besides, we found closer genetic relationships among elements than among their host ants. We also found potential coding copies with an uninterrupted open reading frame of 345 aa in 11 species. The putative transposase codified by them showed a high sequence identity with the active Mboumar-9 transposase. The results of selection tests suggest the intervention of purifying selection in the evolution of these elements. Overall, our study suggests a complex evolutionary history of the Mboumar-like mariner in ants, with important participation of horizontal transfer events. We also suggest that the evolutionary dynamics of Mboumar-like elements can be influenced by the genetic system of their host ants, which are eusocial insects with a haplodiploid genetic system.
Collapse
|
3
|
Simão MC, Haudry A, Granzotto A, de Setta N, Carareto CMA. Helena and BS: Two Travellers between the Genera Drosophila and Zaprionus. Genome Biol Evol 2018; 10:2671-2685. [PMID: 30165545 PMCID: PMC6179348 DOI: 10.1093/gbe/evy184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
The frequency of horizontal transfers of transposable elements (HTTs) varies among the types of elements according to the transposition mode and the geographical and temporal overlap of the species involved in the transfer. The drosophilid species of the genus Zaprionus and those of the melanogaster, obscura, repleta, and virilis groups of the genus Drosophila investigated in this study shared space and time at some point in their evolutionary history. This is particularly true of the subgenus Zaprionus and the melanogaster subgroup, which overlapped both geographically and temporally in Tropical Africa during their period of origin and diversification. Here, we tested the hypothesis that this overlap may have facilitated the transfer of retrotransposons without long terminal repeats (non-LTRs) between these species. We estimated the HTT frequency of the non-LTRs BS and Helena at the genome-wide scale by using a phylogenetic framework and a vertical and horizontal inheritance consistence analysis (VHICA). An excessively low synonymous divergence among distantly related species and incongruities between the transposable element and species phylogenies allowed us to propose at least four relatively recent HTT events of Helena and BS involving ancestors of the subgroup melanogaster and ancestors of the subgenus Zaprionus during their concomitant diversification in Tropical Africa, along with older possible events between species of the subgenera Drosophila and Sophophora. This study provides the first evidence for HTT of non-LTRs retrotransposons between Drosophila and Zaprionus, including an in-depth reconstruction of the time frame and geography of these events.
Collapse
Affiliation(s)
- Maryanna C Simão
- Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas (Ibilce), Câmpus São José do Rio Preto, SP, Brazil
| | - Annabelle Haudry
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Adriana Granzotto
- Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas (Ibilce), Câmpus São José do Rio Preto, SP, Brazil
| | - Nathalia de Setta
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP, Brazil
| | - Claudia M A Carareto
- Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas (Ibilce), Câmpus São José do Rio Preto, SP, Brazil
| |
Collapse
|
4
|
Palazzo A, Lovero D, D’Addabbo P, Caizzi R, Marsano RM. Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer. PLoS One 2016; 11:e0156014. [PMID: 27213270 PMCID: PMC4877112 DOI: 10.1371/journal.pone.0156014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/09/2016] [Indexed: 11/18/2022] Open
Abstract
Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon’s co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon’s evolutionary dynamics and increases our understanding on the Tc1-mariner elements’ biology.
Collapse
Affiliation(s)
- Antonio Palazzo
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro” via Orabona 4 70125, Bari, Italy
| | - Domenica Lovero
- Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Via Amendola 165/A, 70126, Bari, Italy
| | - Pietro D’Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro” via Orabona 4 70125, Bari, Italy
| | - Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro” via Orabona 4 70125, Bari, Italy
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro” via Orabona 4 70125, Bari, Italy
- * E-mail:
| |
Collapse
|
5
|
Szydło W, Hein G, Denizhan E, Skoracka A. Exceptionally High Levels of Genetic Diversity in Wheat Curl Mite (Acari: Eriophyidae) Populations from Turkey. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:2030-9. [PMID: 26470350 DOI: 10.1093/jee/tov180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/01/2015] [Indexed: 05/10/2023]
Abstract
Recent research on the wheat curl mite species complex has revealed extensive genetic diversity that has distinguished several genetic lineages infesting bread wheat (Triticum aestivum L.) and other cereals worldwide. Turkey is the historical region of wheat and barley (Hordeum vulgare L.) domestication and diversification. The close relationship between these grasses and the wheat curl mite provoked the question of the genetic diversity of the wheat curl mite in this region. The scope of the study was to investigate genetic differentiation within the wheat curl mite species complex on grasses in Turkey. Twenty-one wheat curl mite populations from 16 grass species from nine genera (Agropyron sp., Aegilops sp., Bromus sp., Elymus sp., Eremopyrum sp., Hordeum sp., Poa sp., Secale sp., and Triticum sp.) were sampled in eastern and southeastern Turkey for genetic analyses. Two molecular markers were amplified: the cytochrome oxidase subunit I coding region of mtDNA (COI) and the D2 region of 28S rDNA. Phylogenetic analyses revealed high genetic variation of the wheat curl mite in Turkey, primarily on Bromus and Hordeum spp., and exceptionally high diversity of populations associated with bread wheat. Three wheat-infesting wheat curl mite lineages known to occur on other continents of the world, including North and South America, Australia and Europe, were found in Turkey, and at least two new genetic lineages were discovered. These regions of Turkey exhibit rich wheat curl mite diversity on native grass species. The possible implications for further studies on the wheat curl mite are discussed.
Collapse
Affiliation(s)
- W Szydło
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | - G Hein
- Department of Entomology, University of Nebraska-Lincoln, P.O. Box 830933, Lincoln, NE 68583-0933
| | - E Denizhan
- Department of Plant Protection, Agricultural Faculty, Yüzüncü Yıl University, 65080 Van, Turkey
| | - A Skoracka
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Modolo L, Picard F, Lerat E. A new genome-wide method to track horizontally transferred sequences: application to Drosophila. Genome Biol Evol 2015; 6:416-32. [PMID: 24497602 PMCID: PMC3942030 DOI: 10.1093/gbe/evu026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Because of methodological breakthroughs and the availability of an increasing amount of whole-genome sequence data, horizontal transfers (HTs) in eukaryotes have received much attention recently. Contrary to similar analyses in prokaryotes, most studies in eukaryotes usually investigate particular sequences corresponding to transposable elements (TEs), neglecting the other components of the genome. We present a new methodological framework for the genome-wide detection of all putative horizontally transferred sequences between two species that requires no prior knowledge of the transferred sequences. This method provides a broader picture of HTs in eukaryotes by fully exploiting complete-genome sequence data. In contrast to previous genome-wide approaches, we used a well-defined statistical framework to control for the number of false positives in the results, and we propose two new validation procedures to control for confounding factors. The first validation procedure relies on a comparative analysis with other species of the phylogeny to validate HTs for the nonrepeated sequences detected, whereas the second one built upon the study of the dynamics of the detected TEs. We applied our method to two closely related Drosophila species, Drosophila melanogaster and D. simulans, in which we discovered 10 new HTs in addition to all the HTs previously detected in different studies, which underscores our method’s high sensitivity and specificity. Our results favor the hypothesis of multiple independent HTs of TEs while unraveling a small portion of the network of HTs in the Drosophila phylogeny.
Collapse
Affiliation(s)
- Laurent Modolo
- Université de Lyon, France, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, VIlleurbanne, France
| | | | | |
Collapse
|
7
|
Palazzo A, Moschetti R, Caizzi R, Marsano RM. The Drosophila mojavensis Bari3 transposon: distribution and functional characterization. Mob DNA 2014; 5:21. [PMID: 25093043 PMCID: PMC4120734 DOI: 10.1186/1759-8753-5-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/13/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bari-like transposons belong to the Tc1-mariner superfamily, and they have been identified in several genomes of the Drosophila genus. This transposon's family has been used as paradigm to investigate the complex dynamics underlying the persistence and structural evolution of transposable elements (TEs) within a genome. Three structural Bari variants have been identified so far and can be distinguished based on the organization of their terminal inverted repeats. Bari3 is the last discovered member of this family identified in Drosophila mojavensis, a recently emerged species of the Repleta group of the genus Drosophila. RESULTS We studied the insertion pattern of Bari3 in different D. mojavensis populations and found evidence of recent transposition activity. Analysis of the transposase domains unveiled the presence of a functional nuclear localization signal, as well as a functional binding domain. Using luciferase-based assays, we investigated the promoter activity of Bari3 as well as the interaction of its transposase with its left terminus. The results suggest that Bari3 is transposition-competent. Finally we demonstrated transposase transcript processing when the transposase gene is overexpressed in vivo and in vitro. CONCLUSIONS Bari3 displays very similar structural and functional features with its close relative, Bari1. Our results strongly suggest that Bari3 is an independent element that has generated genomic diversity in D. mojavensis. It can autonomously transcribe its transposase gene, which in turn can localize in the nucleus and bind the terminal inverted repeats of the transposon. Nevertheless, the identification of an unpredicted spliced form of the Bari3 transposase transcript allows us to hypothesize a control mechanism of its mobility based on mRNA processing. These results will aid the studies on the Bari family of transposons, which is intriguing for its widespread diffusion in Drosophilids coupled with a structural diversity generated during the evolution of Bari-like elements in their host genomes.
Collapse
Affiliation(s)
- Antonio Palazzo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
8
|
de Setta N, Monteiro-Vitorello CB, Metcalfe CJ, Cruz GMQ, Del Bem LE, Vicentini R, Nogueira FTS, Campos RA, Nunes SL, Turrini PCG, Vieira AP, Ochoa Cruz EA, Corrêa TCS, Hotta CT, de Mello Varani A, Vautrin S, da Trindade AS, de Mendonça Vilela M, Lembke CG, Sato PM, de Andrade RF, Nishiyama MY, Cardoso-Silva CB, Scortecci KC, Garcia AAF, Carneiro MS, Kim C, Paterson AH, Bergès H, D'Hont A, de Souza AP, Souza GM, Vincentz M, Kitajima JP, Van Sluys MA. Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genomics 2014; 15:540. [PMID: 24984568 PMCID: PMC4122759 DOI: 10.1186/1471-2164-15-540] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/19/2014] [Indexed: 01/24/2023] Open
Abstract
Background Sugarcane is the source of sugar in all tropical and subtropical countries and is becoming increasingly important for bio-based fuels. However, its large (10 Gb), polyploid, complex genome has hindered genome based breeding efforts. Here we release the largest and most diverse set of sugarcane genome sequences to date, as part of an on-going initiative to provide a sugarcane genomic information resource, with the ultimate goal of producing a gold standard genome. Results Three hundred and seventeen chiefly euchromatic BACs were sequenced. A reference set of one thousand four hundred manually-annotated protein-coding genes was generated. A small RNA collection and a RNA-seq library were used to explore expression patterns and the sRNA landscape. In the sucrose and starch metabolism pathway, 16 non-redundant enzyme-encoding genes were identified. One of the sucrose pathway genes, sucrose-6-phosphate phosphohydrolase, is duplicated in sugarcane and sorghum, but not in rice and maize. A diversity analysis of the s6pp duplication region revealed haplotype-structured sequence composition. Examination of hom(e)ologous loci indicate both sequence structural and sRNA landscape variation. A synteny analysis shows that the sugarcane genome has expanded relative to the sorghum genome, largely due to the presence of transposable elements and uncharacterized intergenic and intronic sequences. Conclusion This release of sugarcane genomic sequences will advance our understanding of sugarcane genetics and contribute to the development of molecular tools for breeding purposes and gene discovery. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-540) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marie-Anne Van Sluys
- Departamento de Botânica - Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo 05508-090, SP, Brazil.
| |
Collapse
|