1
|
Liu Y, Bu Y, Wang J, Wei C. Geological events and climate change drive diversification and speciation of mute cicadas in eastern continental Asia. Mol Phylogenet Evol 2023; 184:107809. [PMID: 37172861 DOI: 10.1016/j.ympev.2023.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The poor mobility of nymphs living underground, usually for many years and the weak flying ability of adults make cicadas unique for evolutionary biology and bio-geographical study. Cicadas of the genus Karenia are unusual in Cicadidae in lacking the timbals that produce sound. Population differentiation, genetic structure, dispersal and evolutionary history of the eastern Asian mute cicada Karenia caelatata were investigated based on morphological, acoustic and molecular data. The results reveal a high level of genetic differentiation in this species. Six independent clades with nearly unique sets of haplotypes corresponding to geographically isolated populations are recognized. Genetic and geographic distances are significantly correlated among lineages. The phenotypic differentiation is generally consistent with the high levels of genetic divergence across populations. Results of ecological niche modeling suggest that the potential distribution range of this mountain-habitat specialist during the Last Glacial Maximum was broader than its current range, indicating this species had benefited from the climate change during the early Pleistocene in southern China. Geological events such as orogeny in Southwest China and Pleistocene climate oscillations have driven the differentiation and divergence of this species, and basins, plains and rivers function as natural "barriers" to block the gene flow. Besides significant genetic divergence being found among clades, the populations occurring in the Wuyi Mountains and the Hengduan Mountains are significantly different in the calling song structure from other populations. This may have resulted from significant population differentiation and subsequent adaptation of related populations. We conclude that ecological differences in habitats, coupled with geographical isolation, have driven population divergence and allopatric speciation. This study provides a plausible example of incipient speciation in Cicadidae and improves understanding of population differentiation, acoustic signal diversification and phylogeographic relationships of this unusual cicada species. It informs future studies on population differentiation, speciation and phylogeography of other mountain-habitat insects in the East Asian continent.
Collapse
Affiliation(s)
- Yunxiang Liu
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai 810016, China
| | - Yifan Bu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiali Wang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Marske KA, Boyer SL. Phylogeography reveals the complex impact of the Last Glacial Maximum on New Zealand's terrestrial biota. J R Soc N Z 2022; 54:8-29. [PMID: 39439472 PMCID: PMC11459792 DOI: 10.1080/03036758.2022.2079682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
We review the major phylogeographic patterns in Aotearoa New Zealand's terrestrial flora and fauna that have been associated with the Ōtira Glaciation of the Pleistocene, the end of which coincides with the global Last Glacial Maximum (LGM). We focus on (1) the complexity of biogeographic histories of New Zealand species, with LGM-driven phenomena overlaying the impacts of mountain-building and other drivers of phylogeographic structure; (2) the locations of glacial refugia and sets of taxa which may have shared refugia; and (3) the role of glaciation in driving diversification. We end with a brief focus on the next directions, including what can we learn about New Zealand's glacial history by expanding our phylogeographic toolbox to include genomic methods and hypothesis-driven inference methods. We provide follow-up questions which take advantage of the wealth of phylogeographic data for New Zealand.
Collapse
Affiliation(s)
| | - Sarah L. Boyer
- Biology Department, Macalester College, St. Paul, MN, USA
| |
Collapse
|
3
|
Heath JE, Heath MS, Sanborn AF. Cold cicadas and hot rocks: Thermal responses and thermoregulation in some New Zealand cicadas (Insecta: Hemiptera: Cicadidae: Cicadettinae: Cicadettini). J Therm Biol 2022; 107:103273. [DOI: 10.1016/j.jtherbio.2022.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
|
4
|
Bator J, Marshall DC, Hill KBR, Cooley JR, Leston A, Simon C. Phylogeography of the endemic red-tailed cicadas of New Zealand (Hemiptera: Cicadidae: Rhodopsalta), and molecular, morphological and bioacoustical confirmation of the existence of Hudson’s Rhodopsalta microdora. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Why do some genera radiate, whereas others do not? The genetic structure of present-day populations can provide clues for developing hypotheses. In New Zealand, three Cicadidae genera are depauperate [Amphipsalta (three species), Notopsalta (one species) and Rhodopsalta (three species)], whereas two have speciated extensively [Kikihia (~30 species/subspecies) and Maoricicada (~20 species/subspecies). Here, we examine the evolution of Rhodopsalta, the last New Zealand genus to be studied phylogenetically and phylogeographically. We use Bayesian and maximum-likelihood analyses of mitochondrial cox1 and nuclear EF1α gene sequences. Concatenated and single-gene phylogenies for 70 specimens (58 localities) support its monophyly and three described species: Rhodopsalta cruentata, Rhodopsalta leptomera and Rhodopsalta microdora, the last taxon previously regarded as uncertain. We provide distribution maps, biological notes and the first descriptions of diagnostic songs. We show that both R. cruentata and R. microdora exhibit northern and southern genetic subclades. Subclades of the dry-adapted R. microdora clade show geographical structure, whereas those of the mesic R. cruentata and sand-dune specialist R. leptomera have few discernible patterns. Genetic, bioacoustical and detailed distributional evidence for R. microdora add to the known biodiversity of New Zealand. We designate a lectotype for Tettigonia cruentata Fabricius, 1775, the type species of Rhodopsalta.
Collapse
Affiliation(s)
- John Bator
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - David C Marshall
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - Kathy B R Hill
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - John R Cooley
- Department of Ecology and Evolutionary Biology, University of Connecticut, 10 South Prospect Street, Hartford, CT 06103, USA
| | - Adam Leston
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| |
Collapse
|
5
|
Seidel M, Sýkora V, Leschen RAB, Clarkson B, Fikáček M. Ancient relicts or recent immigrants? Different dating strategies alter diversification scenarios of New Zealand aquatic beetles (Coleoptera: Hydrophilidae: Berosus). Mol Phylogenet Evol 2021; 163:107241. [PMID: 34224848 DOI: 10.1016/j.ympev.2021.107241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Dated species-level phylogenies are crucial for understanding the origin and evolutionary history of modern faunas, yet difficult to obtain due to the frequent absence of suitable age calibrations at species level. Substitution rates of related or more inclusive clades are often used to overcome this limitation but the accuracy of this approach remains untested. We compared tree dating based on substitution rates with analyses implementing fossil data by direct node-dating and indirect root-age constraints for the New Zealand endemic Berosus water beetles (Coleoptera: Hydrophilidae). The analysis based solely on substitution rates indicated a Miocene colonization of New Zealand and Pleistocene origin of species. By contrast, all analyses that implemented fossil data resulted in significantly older age estimates, indicating an ancient early Cenozoic origin of the New Zealand clade, diversification of species during or after the Oligocene transgression and Miocene-Pliocene origin of within-species population structure. Rate-calibrated time trees were incongruent with recently published Coleoptera time trees, the fossil record of Berosus and the distribution of outgroup species. Strong variation of substitution rates among Coleoptera lineages, as well as among lineages within the family Hydrophilidae, was identified as the principal reason for low accuracy of rate-calibrated analyses, resulting in underestimated node ages in Berosus. We provide evidence that Oligocene to Pliocene events, rather than the Pleistocene Glacial cycles, played an essential role in the formation of the modern New Zealand insect fauna.
Collapse
Affiliation(s)
- Matthias Seidel
- Centrum für Naturkunde, Leibniz-Institut zur Analyse des Biodiversitätswandels, Martin-Luther-King Platz 3, Hamburg, Germany
| | - Vít Sýkora
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, Czech Republic
| | - Richard A B Leschen
- Manaaki Whenua - Landcare Research, New Zealand Arthropod Collection, Auckland, New Zealand
| | - Bruno Clarkson
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Martin Fikáček
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, Czech Republic; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Entomology, National Museum, Cirkusová 1740, Prague 9, Czech Republic.
| |
Collapse
|
6
|
Withers SJ, Parsons S, Hauber ME, Kendrick A, Lavery SD. Genetic divergence between isolated populations of the North Island New Zealand Rifleman ( Acanthisitta chloris granti) implicates ancient biogeographic impacts rather than recent habitat fragmentation. Ecol Evol 2021; 11:5998-6014. [PMID: 34141198 PMCID: PMC8207446 DOI: 10.1002/ece3.7358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
This research investigates the extent and causal mechanisms of genetic population divergence in a poorly flighted passerine, the North Island Rifleman or Titipounamu (Acanthisitta chloris granti). While this species has a historically widespread distribution, anthropogenic forest clearance has resulted in a highly fragmented current distribution. We conducted analyses of mitochondrial DNA (COI and Control Region) and 12 nuclear DNA microsatellites to test for population divergence and estimate times of divergence. diyabc and biogeobears were then used to assess likely past dispersal scenarios based on both mtDNA and nDNA. The results reveal several significantly divergent lineages across the North Island of New Zealand and indicate that some populations have been isolated for extensive periods of time (0.7-4.9 mya). Modeling indicated a dynamic history of population connectivity, with a drastic restriction in gene flow between three geographic regions, followed by a more recent re-establishment of connectivity. Our analyses indicate the dynamic influence of key geological and climatological events on the distribution of genetic diversity in this species, including support for the genetic impact of old biogeographic boundaries such as the Taupo Line and Cockayne's Line, rather than recent anthropogenic habitat fragmentation. These findings present a rare example of an avian species with a genetic history more like that of flightless taxa and so provide new general insights into vicariant processes affecting populations of passerines with limited dispersal.
Collapse
Affiliation(s)
- Sarah J. Withers
- School of Biological SciencesPrivate Bag 92019Auckland Mail CentreThe University of AucklandAucklandNew Zealand
| | - Stuart Parsons
- School of Biological SciencesPrivate Bag 92019Auckland Mail CentreThe University of AucklandAucklandNew Zealand
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLDAustralia
| | - Mark E. Hauber
- Department of Evolution, Ecology, and BehaviorSchool of Integrative BiologyUniversity of IllinoisUrbana‐ChampaignILUSA
| | - Alistair Kendrick
- School of Biological SciencesPrivate Bag 92019Auckland Mail CentreThe University of AucklandAucklandNew Zealand
| | - Shane D. Lavery
- Institute of Marine SciencePrivate Bag 92019Auckland Mail CentreThe University of AucklandAucklandNew Zealand
| |
Collapse
|
7
|
Marske KA, Thomaz AT, Knowles LL. Dispersal barriers and opportunities drive multiple levels of phylogeographic concordance in the Southern Alps of New Zealand. Mol Ecol 2020; 29:4665-4679. [PMID: 32991032 DOI: 10.1111/mec.15655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/23/2020] [Accepted: 09/07/2020] [Indexed: 01/23/2023]
Abstract
Phylogeographic concordance, or the sharing of phylogeographic patterns among codistributed species, suggests similar responses to topography or climatic history. While the orientation and timing of breaks between lineages are routinely compared, spatial dynamics within regions occupied by individual lineages provide a second opportunity for comparing responses to past events. In environments with complex topography and glacial history, such as New Zealand's South Island, geographically nested comparisons can identify the processes leading to phylogeographic concordance between and within regional genomic clusters. Here, we used single nucleotide polymorphisms (obtained via ddRADseq) for two codistributed forest beetle species, Agyrtodes labralis (Leiodidae) and Brachynopus scutellaris (Staphylinidae), to evaluate the role of climate change and topography in shaping phylogeographic concordance at two, nested spatial scales: do species diverge over the same geographic barriers, with similar divergence times? And within regions delimited by these breaks, do species share similar spatial dynamics of directional expansion or isolation-by-distance? We found greater congruence of phylogeographic breaks between regions divided by the strongest dispersal barriers (i.e., the Southern Alps). However, these shared breaks were not indicative of shared spatial dynamics within the regions they delimit, and the most similar spatial dynamics between species occurred within regions with the strongest gradients in historical climatic stability. Our results indicate that lack of concordance as traditionally detected by lineage turnover does not rule out the possibility of shared histories, and variation in the presence and type of concordance may provide insights into the different processes shaping phylogeographic patterns across geologically dynamic regions.
Collapse
Affiliation(s)
- Katharine A Marske
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, OK, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Andréa T Thomaz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá DC, Colombia
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Simon C, Gordon ERL, Moulds MS, Cole JA, Haji D, Lemmon AR, Lemmon EM, Kortyna M, Nazario K, Wade EJ, Meister RC, Goemans G, Chiswell SM, Pessacq P, Veloso C, McCutcheon JP, Łukasik P. Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ‘relict’ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America.
Collapse
Affiliation(s)
- Chris Simon
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Eric R L Gordon
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - M S Moulds
- Australian Museum Research Institute, Sydney, NSW, Australia
| | - Jeffrey A Cole
- Natural Sciences Division, Pasadena City College, Pasadena, CA, USA
| | - Diler Haji
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | | - Michelle Kortyna
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Katherine Nazario
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Elizabeth J Wade
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Department of Natural Sciences and Mathematics, Curry College, Milton, MA, USA
| | - Russell C Meister
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Geert Goemans
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Pablo Pessacq
- Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas, Esquel, Chubut, Argentina
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
9
|
Ruschel TP, Campos LA. Phylogeny and biogeography of the leaf-winged cicadas (Hemiptera: Auchenorrhyncha: Cicadidae). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zly087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Tatiana Petersen Ruschel
- Programa de Pós–Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul (UFRGS), Prédio, Sala, Porto Alegre, RS, Brazil
| | - Luiz Alexandre Campos
- Programa de Pós–Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul (UFRGS), Prédio, Sala, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Liu Y, Dietrich CH, Wei C. Genetic divergence, population differentiation and phylogeography of the cicada Subpsaltria yangi based on molecular and acoustic data: an example of the early stage of speciation? BMC Evol Biol 2019; 19:5. [PMID: 30621591 PMCID: PMC6323834 DOI: 10.1186/s12862-018-1317-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022] Open
Abstract
Background Geographical isolation combined with historical climatic fluctuations have been identified as two major factors that contribute to the formation of new species. On the other hand, biotic factors such as competition and predation are also able to drive the evolution and diversification of organisms. To determine whether geographical barriers contributed to population divergence or speciation in the rare endemic cicada Subpsaltria yangi the population differentiation, genetic structure and phylogeography of the species were investigated in the Loess Plateau and adjacent areas of northwestern China by analysing mitochondrial and nuclear DNA and comparing the calling song structure of 161 male individuals. Results The results reveal a low level of genetic differentiation and relatively simple phylogeographic structure for this species, but two independent clades corresponding to geographically isolated populations were recognised. Genetic and geographical distances were significantly correlated among lineages. Results of divergence-time estimation are consistent with a scenario of isolation due to glacial refugia and interglacial climate oscillation in northwestern China. Significant genetic divergence was found between the population occurring in the Helan Mountains and other populations, and recent population expansion has occurred in the Helan Mountains and/or adjacent areas. This population is also significantly different in calling song structure from other populations. Conclusions Geographical barriers (i.e., the deserts and semi-deserts surrounding the Helan Mountains), possibly coupled with related ecological differences, may have driven population divergence and allopatric speciation. This provides a possible example of incipient speciation in Cicadidae, improves understanding of population differentiation, acoustic signal diversification and phylogeographic relationships of this rare cicada species of conservation concern, and informs future studies on population differentiation, speciation and phylogeography of other insects with a high degree of endemism in the Helan Mountains and adjacent areas. Electronic supplementary material The online version of this article (10.1186/s12862-018-1317-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, 61820, USA
| | - Cong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Liu Y, Yang Z, Zhang G, Yu Q, Wei C. Cicada parasitic moths from China (Lepidoptera: Epipyropidae): morphology, identity, biology, and biogeography. SYST BIODIVERS 2018. [DOI: 10.1080/14772000.2018.1431319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yunxiang Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaofu Yang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guoyun Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingqing Yu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Banker SE, Wade EJ, Simon C. The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia. Mol Phylogenet Evol 2017; 116:172-181. [DOI: 10.1016/j.ympev.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/04/2017] [Accepted: 08/17/2017] [Indexed: 01/28/2023]
|
13
|
Painting CJ, Myers S, Holwell GI, Buckley TR. Phylogeography of the New Zealand giraffe weevil Lasiorhynchus barbicornis (Coleoptera: Brentidae): A comparison of biogeographic boundaries. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Osozawa S, Shiyake S, Fukuda H, Wakabayashi J. Quaternary vicariance of Platypleura (Hemiptera: Cicadidae) in Japan, Ryukyu, and Taiwan islands. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Marshall DC, Hill KBR, Moulds M, Vanderpool D, Cooley JR, Mohagan AB, Simon C. Inflation of Molecular Clock Rates and Dates: Molecular Phylogenetics, Biogeography, and Diversification of a Global Cicada Radiation from Australasia (Hemiptera: Cicadidae: Cicadettini). Syst Biol 2015; 65:16-34. [PMID: 26493828 DOI: 10.1093/sysbio/syv069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/17/2015] [Indexed: 11/13/2022] Open
Abstract
Dated phylogenetic trees are important for studying mechanisms of diversification, and molecular clocks are important tools for studies of organisms lacking good fossil records. However, studies have begun to identify problems in molecular clock dates caused by uncertainty of the modeled molecular substitution process. Here we explore Bayesian relaxed-clock molecular dating while studying the biogeography of ca. 200 species from the global cicada tribe Cicadettini. Because the available fossils are few and uninformative, we calibrate our trees in part with a cytochrome oxidase I (COI) clock prior encompassing a range of literature estimates for arthropods. We show that tribe-level analyses calibrated solely with the COI clock recover extremely old dates that conflict with published estimates for two well-studied New Zealand subclades within Cicadettini. Additional subclade analyses suggest that COI relaxed-clock rates and maximum-likelihood branch lengths become inflated relative to EF-1[Formula: see text] intron and exon rates and branch lengths as clade age increases. We present corrected estimates derived from: (i) an extrapolated EF-1[Formula: see text] exon clock derived from COI-calibrated analysis within the largest New Zealand subclade; (ii) post hoc scaling of the tribe-level chronogram using results from subclade analyses; and (iii) exploitation of a geological calibration point associated with New Caledonia. We caution that considerable uncertainty is generated due to dependence of substitution estimates on both the taxon sample and the choice of model, including gamma category number and the choice of empirical versus estimated base frequencies. Our results suggest that diversification of the tribe Cicadettini commenced in the early- to mid-Cenozoic and continued with the development of open, arid habitats in Australia and worldwide. We find that Cicadettini is a rare example of a global terrestrial animal group with an Australasian origin, with all non-Australasian genera belonging to two distal clades. Within Australia, we show that Cicadettini is more widely distributed than any other cicada tribe, diverse in temperate, arid and monsoonal habitats, and nearly absent from rainforests. We comment on the taxonomic implications of our findings for thirteen cicada genera.
Collapse
Affiliation(s)
- David C Marshall
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA;
| | - Kathy B R Hill
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA
| | - Max Moulds
- Entomology Department, Australian Museum, 6 College Street, Sydney NSW 2010, Australia
| | - Dan Vanderpool
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA; Division of Biological Sciences, Health Sciences 304, U. Montana, Missoula, MT 59812
| | - John R Cooley
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA
| | - Alma B Mohagan
- Central Mindanao University, Sayre Highway, Bukidnon, Philippines
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA
| |
Collapse
|
16
|
Foottit RG, Maw E, Hebert PDN. DNA barcodes for Nearctic Auchenorrhyncha (Insecta: Hemiptera). PLoS One 2014; 9:e101385. [PMID: 25004106 PMCID: PMC4087040 DOI: 10.1371/journal.pone.0101385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/06/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Many studies have shown the suitability of sequence variation in the 5' region of the mitochondrial cytochrome c oxidase I (COI) gene as a DNA barcode for the identification of species in a wide range of animal groups. We examined 471 species in 147 genera of Hemiptera: Auchenorrhyncha drawn from specimens in the Canadian National Collection of Insects to assess the effectiveness of DNA barcoding in this group. METHODOLOGY/PRINCIPAL FINDINGS Analysis of the COI gene revealed less than 2% intra-specific divergence in 93% of the taxa examined, while minimum interspecific distances exceeded 2% in 70% of congeneric species pairs. Although most species are characterized by a distinct sequence cluster, sequences for members of many groups of closely related species either shared sequences or showed close similarity, with 25% of species separated from their nearest neighbor by less than 1%. CONCLUSIONS/SIGNIFICANCE This study, although preliminary, provides DNA barcodes for about 8% of the species of this hemipteran suborder found in North America north of Mexico. Barcodes can enable the identification of many species of Auchenorrhyncha, but members of some species groups cannot be discriminated. Future use of DNA barcodes in regulatory, pest management, and environmental applications will be possible as the barcode library for Auchenorrhyncha expands to include more species and broader geographic coverage.
Collapse
Affiliation(s)
- Robert G. Foottit
- Agriculture and Agri-Food Canada, Invertebrate Biodiversity – National Environmental Health Program, and Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, Canada
| | - Eric Maw
- Agriculture and Agri-Food Canada, Invertebrate Biodiversity – National Environmental Health Program, and Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, Canada
| | - P. D. N. Hebert
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
17
|
Nunes VL, Mendes R, Marabuto E, Novais BM, Hertach T, Quartau JA, Seabra SG, Paulo OS, Simões PC. Conflicting patterns of DNA barcoding and taxonomy in the cicada genus Tettigettalna from Southern Europe (Hemiptera: Cicadidae). Mol Ecol Resour 2013; 14:27-38. [PMID: 24034529 DOI: 10.1111/1755-0998.12158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/16/2013] [Accepted: 07/31/2013] [Indexed: 02/02/2023]
Abstract
DNA barcodes have great potential to assist in species identification, especially when high taxonomical expertise is required. We investigated the utility of the 5' mitochondrial cytochrome c oxidase I (COI) region to discriminate between 13 European cicada species. These included all nine species currently recognized under the genus Tettigettalna, from which seven are endemic to the southern Iberian Peninsula. These cicadas have species-specific male calling songs but are morphologically very similar. Mean COI divergence between congeners ranged from 0.4% to 10.6%, but this gene was proven insufficient to determine species limits within genus Tettigettalna because a barcoding gap was absent for several of its species, that is, the highest intraspecific distance exceeded the lowest interspecific distance. The genetic data conflicted with current taxonomic classification for T. argentata and T. mariae. Neighbour-joining and Bayesian analyses revealed that T. argentata is geographically structured (clades North and South) and might constitute a species complex together with T. aneabi and T. mariae. The latter diverges very little from the southern clade of T. argentata and shares with it its most common haplotype. T. mariae is often in sympatry with T. argentata but it remains unclear whether introgression or incomplete lineage sorting may be responsible for the sharing of haplotypes. T. helianthemi and T. defauti also show high intraspecific variation that might signal hidden cryptic diversity. These taxonomic conflicts must be re-evaluated with further studies using additional genes and extensive morphological and acoustic analyses.
Collapse
Affiliation(s)
- Vera L Nunes
- Computational Biology and Population Genomics Group, Centro de Biologia Ambiental, DBA/FCUL, Lisboa, 1749-016, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Buckley TR, Leschen RAB. Comparative phylogenetic analysis reveals long-term isolation of lineages on the Three Kings Islands, New Zealand. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.02009.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Richard A. B. Leschen
- New Zealand Arthropod Collection; Landcare Research; Private Bag 92170; Auckland; New Zealand
| |
Collapse
|