1
|
Muller A, Maggi R, Sepulveda-Garcia P, Mau A, Sauvé C, Conan A, Branford I, Bittencourt P, Breitschwerdt E. Sequence typing of Bartonella henselae in small Indian mongooses (Urva auropunctata). Sci Rep 2024; 14:18654. [PMID: 39134642 PMCID: PMC11319332 DOI: 10.1038/s41598-024-69909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
This study aimed to determine the sequence type (ST) of Bartonella henselae infecting small Indian mongooses from Saint Kitts via multi-locus sequence typing (MLST). This investigation used stored EDTA blood (n = 22) samples from mongooses previously identified as positive for B. henselae. Chocolate agar plates were enriched with Bartonella alpha-Proteobacteria growth medium (BAPGM) to culture and isolate Bartonella from the blood samples. To perform MLST, DNA was extracted and purified from isolates followed by amplification by conventional PCR (300-500 bp) for eight genes (16S rDNA, batR, gltA, groEL, ftsZ, nlpD, ribC, and rpoB). Bartonella henselae STs were deposited in the PubMLST repository. Out of 22 B. henselae-positive blood samples, isolates were obtained from 12 mongooses (54.5%; 12/22). Each mongoose was infected with one ST. The studied mongoose population was infected with sequence types ST2, ST3, ST8, and a novel ST represented by ST38. Bartonella henselae ST2, ST3 and ST8 infecting mongooses are known to circulate in humans and cats, with ST2 and ST8 associated with Cat Scratch Disease (bartonellosis) in humans. The results presented herein denote the circulation of B. henselae STs with zoonotic potential in mongooses with risk of B. henselae transmission to humans.
Collapse
Affiliation(s)
- Ananda Muller
- Biomedical Sciences Department, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, West Farm, Saint Kitts and Nevis.
| | - Ricardo Maggi
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Paulina Sepulveda-Garcia
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Alex Mau
- School of Veterinary Medicine, Veterinary Medical Teaching Hospital, University of California-Davis, Davis, CA, USA
| | - Caroline Sauvé
- Faculté de médecine vétérinaire, Université de Montréal, 3190 Rue Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Anne Conan
- Biomedical Sciences Department, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, West Farm, Saint Kitts and Nevis
- French Agricultural Research Centre for International Development (CIRAD), Harare, Zimbabwe
- Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Ian Branford
- Research and Pathology Laboratory Ross University School of Veterinary Medicine, West Farm, Saint Kitts and Nevis
| | - Pedro Bittencourt
- Biomedical Sciences Department, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, West Farm, Saint Kitts and Nevis
| | - Edward Breitschwerdt
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Dias CM, Bressianini do Amaral R, Perles L, Laila dos Santos Muniz A, Rocha TFG, Machado RZ, André MR. Multi-locus Sequencing Typing of Bartonella henselae isolates reveals coinfection with different variants in domestic cats from Midwestern Brazil. Acta Trop 2022; 237:106742. [DOI: 10.1016/j.actatropica.2022.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/09/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022]
|
3
|
Zhang XL, Li XW, Li WF, Huang SJ, Shao JW. Molecular detection and characterization of Bartonella spp. in pet cats and dogs in Shenzhen, China. Acta Trop 2019; 197:105056. [PMID: 31175861 DOI: 10.1016/j.actatropica.2019.105056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/30/2022]
Abstract
Bartonella spp. are emerging vector-borne pathogens distributed worldwide that can infect humans and a wide range of mammals including small companion animals (cats and dogs). An increasing number of studies from the worldwide have reported cat and dog Bartonella infections in recently years. Cats and dogs are the primary reservoir or accidental hosts for Bartonella henselae, the main causal agent of human cat scratch disease. Since pet cat and dog sharing human living environment and have the direct and intimate contact with humans, pet cats and dogs may represent excellent epidemiological sentinels for Bartonella infection in humans. In this study, 475 blood samples were collected from pet cats and dogs in local animal hospitals located at five districts of Shenzhen City, and detected the presence of Bartonella. Bartonella DNA was detected in eight samples collected from pet cats, no positive sample was detected from pet dog samples. Sequence comparison and phylogenetic analysis revealed that the eight sequences of Bartonella identified here shared the highest identity with B. henselae. Given the intimate contact between pet animals and humans, many attentions should be paid to prevent the Bartonella infections originate from pet cats or dogs, although the Bartonella infection rate in pet cats and dogs might be rather low.
Collapse
Affiliation(s)
- Xue-Lian Zhang
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan 528231, Guangdong, China; College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Xiao-Wen Li
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Wen-Feng Li
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Shu-Jian Huang
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan 528231, Guangdong, China; College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Jian-Wei Shao
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China; Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
4
|
Québatte M, Dehio C. Bartonella gene transfer agent: Evolution, function, and proposed role in host adaptation. Cell Microbiol 2019; 21:e13068. [PMID: 31231937 PMCID: PMC6899734 DOI: 10.1111/cmi.13068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/09/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023]
Abstract
The processes underlying host adaptation by bacterial pathogens remain a fundamental question with relevant clinical, ecological, and evolutionary implications. Zoonotic pathogens of the genus Bartonella constitute an exceptional model to study these aspects. Bartonellae have undergone a spectacular diversification into multiple species resulting from adaptive radiation. Specific adaptations of a complex facultative intracellular lifestyle have enabled the colonisation of distinct mammalian reservoir hosts. This remarkable host adaptability has a multifactorial basis and is thought to be driven by horizontal gene transfer (HGT) and recombination among a limited genus‐specific pan genome. Recent functional and evolutionary studies revealed that the conserved Bartonella gene transfer agent (BaGTA) mediates highly efficient HGT and could thus drive this evolution. Here, we review the recent progress made towards understanding BaGTA evolution, function, and its role in the evolution and pathogenesis of Bartonella spp. We notably discuss how BaGTA could have contributed to genome diversification through recombination of beneficial traits that underlie host adaptability. We further address how BaGTA may counter the accumulation of deleterious mutations in clonal populations (Muller's ratchet), which are expected to occur through the recurrent transmission bottlenecks during the complex infection cycle of these pathogens in their mammalian reservoir hosts and arthropod vectors.
Collapse
|
5
|
Banerjee R, Shine O, Rajachandran V, Krishnadas G, Minnick MF, Paul S, Chattopadhyay S. Gene duplication and deletion, not horizontal transfer, drove intra-species mosaicism of Bartonella henselae. Genomics 2019; 112:467-471. [PMID: 30902757 DOI: 10.1016/j.ygeno.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/24/2019] [Accepted: 03/18/2019] [Indexed: 11/28/2022]
Abstract
Bartonella henselae is a facultative intracellular pathogen that occurs worldwide and is responsible primarily for cat-scratch disease in young people and bacillary angiomatosis in immunocompromised patients. The principal source of genome-level diversity that contributes to B. henselae's host-adaptive features is thought to be horizontal gene transfer events. However, our analyses did not reveal the acquisition of horizontally-transferred islands in B. henselae after its divergence from other Bartonella. Rather, diversity in gene content and genome size was apparently acquired through two alternative mechanisms, including deletion and, more predominantly, duplication of genes. Interestingly, a majority of these events occurred in regions that were horizontally transferred long before B. henselae's divergence from other Bartonella species. Our study indicates the possibility that gene duplication, in response to positive selection pressures in specific clones of B. henselae, might be linked to the pathogen's adaptation to arthropod vectors, the cat reservoir, or humans as incidental host-species.
Collapse
Affiliation(s)
- Rachana Banerjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Oshina Shine
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
| | - Vyshakh Rajachandran
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
| | - Govind Krishnadas
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
| | - Michael F Minnick
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Sandip Paul
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujay Chattopadhyay
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India.
| |
Collapse
|
6
|
Abstract
Microbial populations exchange genetic material through a process called homologous recombination. Although this process has been studied in particular organisms, we lack an understanding of its differential impact over the genome and across microbes with different life-styles. We used a common analytical framework to assess this process in a representative set of microorganisms. Our results uncovered important trends. First, microbes with different lifestyles are differentially impacted, with endosymbionts and obligate pathogens being those less prone to undergo this process. Second, certain genetic elements such as restriction-modification systems seem to be associated with higher rates of recombination. Most importantly, recombined genomes show the footprints of natural selection in which recombined regions preferentially contain genes that can be related to specific ecological adaptations. Taken together, our results clarify the relative contributions of factors modulating homologous recombination and show evidence for a clear a role of this process in shaping microbial genomes and driving ecological adaptations. Homologous recombination (HR) enables the exchange of genetic material between and within species. Recent studies suggest that this process plays a major role in the microevolution of microbial genomes, contributing to core genome homogenization and to the maintenance of cohesive population structures. However, we still have a very poor understanding of the possible adaptive roles of intraspecific HR and of the factors that determine its differential impact across clades and lifestyles. Here we used a unified methodological framework to assess HR in 338 complete genomes from 54 phylogenetically diverse and representative prokaryotic species, encompassing different lifestyles and a broad phylogenetic distribution. Our results indicate that lifestyle and presence of restriction-modification (RM) machineries are among the main factors shaping HR patterns, with symbionts and intracellular pathogens having the lowest HR levels. Similarly, the size of exchanged genomic fragments correlated with the presence of RM and competence machineries. Finally, genes exchanged by HR showed functional enrichments which could be related to adaptations to different environments and ecological strategies. Taken together, our results clarify the factors underlying HR impact and suggest important adaptive roles of genes exchanged through this mechanism. Our results also revealed that the extent of genetic exchange correlated with lifestyle and some genomic features. Moreover, the genes in exchanged regions were enriched for functions that reflected specific adaptations, supporting identification of HR as one of the main evolutionary mechanisms shaping prokaryotic core genomes.
Collapse
|
7
|
Jibrin MO, Potnis N, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Jones JB, Goss EM. Genomic Inference of Recombination-Mediated Evolution in Xanthomonas euvesicatoria and X. perforans. Appl Environ Microbiol 2018; 84:e00136-18. [PMID: 29678917 PMCID: PMC6007113 DOI: 10.1128/aem.00136-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/06/2018] [Indexed: 01/23/2023] Open
Abstract
Recombination is a major driver of evolution in bacterial populations, because it can spread and combine independently evolved beneficial mutations. Recombinant lineages of bacterial pathogens of plants are typically associated with the colonization of novel hosts and the emergence of new diseases. Here we show that recombination between evolutionarily and phenotypically distinct plant-pathogenic lineages generated recombinant lineages with unique combinations of pathogenicity and virulence factors. Xanthomonas euvesicatoria and Xanthomonas perforans are two closely related lineages causing bacterial spot disease on tomato and pepper worldwide. We sequenced the genomes of atypical strains collected from tomato in Nigeria and observed recombination in the type III secretion system and effector genes, which showed alleles from both X. euvesicatoria and X. perforans Wider horizontal gene transfer was indicated by the fact that the lipopolysaccharide cluster of one strain was most similar to that of a distantly related Xanthomonas pathogen of barley. This strain and others have experienced extensive genomewide homologous recombination, and both species exhibited dynamic open pangenomes. Variation in effector gene repertoires within and between species must be taken into consideration when one is breeding tomatoes for disease resistance. Resistance breeding strategies that target specific effectors must consider possibly dramatic variation in bacterial spot populations across global production regions, as illustrated by the recombinant strains observed here.IMPORTANCE The pathogens that cause bacterial spot of tomato and pepper are extensively studied models of plant-microbe interactions and cause problematic disease worldwide. Atypical bacterial spot strains collected from tomato in Nigeria, and other strains from Italy, India, and Florida, showed evidence of genomewide recombination that generated genetically distinct pathogenic lineages. The strains from Nigeria and Italy were found to have a mix of type III secretion system genes from X. perforans and X. euvesicatoria, as well as effectors from Xanthomonas gardneri These genes and effectors are important in the establishment of disease, and effectors are common targets of resistance breeding. Our findings point to global diversity in the genomes of bacterial spot pathogens, which is likely to affect the host-pathogen interaction and influence management decisions.
Collapse
Affiliation(s)
- Mustafa O Jibrin
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Southwest Research and Education Center, University of Florida, Immokalee, Florida, USA
- Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Gerald V Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Gary E Vallad
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Pamela D Roberts
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Southwest Research and Education Center, University of Florida, Immokalee, Florida, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Harms A, Segers FHID, Quebatte M, Mistl C, Manfredi P, Körner J, Chomel BB, Kosoy M, Maruyama S, Engel P, Dehio C. Evolutionary Dynamics of Pathoadaptation Revealed by Three Independent Acquisitions of the VirB/D4 Type IV Secretion System in Bartonella. Genome Biol Evol 2017; 9:761-776. [PMID: 28338931 PMCID: PMC5381568 DOI: 10.1093/gbe/evx042] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
The α-proteobacterial genus Bartonella comprises a group of ubiquitous mammalian pathogens that are studied as a model for the evolution of bacterial pathogenesis. Vast abundance of two particular phylogenetic lineages of Bartonella had been linked to enhanced host adaptability enabled by lineage-specific acquisition of a VirB/D4 type IV secretion system (T4SS) and parallel evolution of complex effector repertoires. However, the limited availability of genome sequences from one of those lineages as well as other, remote branches of Bartonella has so far hampered comprehensive understanding of how the VirB/D4 T4SS and its effectors called Beps have shaped Bartonella evolution. Here, we report the discovery of a third repertoire of Beps associated with the VirB/D4 T4SS of B. ancashensis, a novel human pathogen that lacks any signs of host adaptability and is only distantly related to the two species-rich lineages encoding a VirB/D4 T4SS. Furthermore, sequencing of ten new Bartonella isolates from under-sampled lineages enabled combined in silico analyses and wet lab experiments that suggest several parallel layers of functional diversification during evolution of the three Bep repertoires from a single ancestral effector. Our analyses show that the Beps of B. ancashensis share many features with the two other repertoires, but may represent a more ancestral state that has not yet unleashed the adaptive potential of such an effector set. We anticipate that the effectors of B. ancashensis will enable future studies to dissect the evolutionary history of Bartonella effectors and help unraveling the evolutionary forces underlying bacterial host adaptation.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | | | - Maxime Quebatte
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | - Claudia Mistl
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | - Pablo Manfredi
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | - Jonas Körner
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | - Bruno B Chomel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis
| | - Michael Kosoy
- Bacterial Diseases Branch, Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Tokyo, Japan
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| |
Collapse
|
9
|
Genotyping ofBartonellabacteria and their animal hosts: current status and perspectives. Parasitology 2017; 145:543-562. [DOI: 10.1017/s0031182017001263] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SUMMARYGrowing evidence demonstrates that bacterial species diversity is substantial, and many of these species are pathogenic in some contexts or hosts. At the same time, laboratories and museums have collected valuable animal tissue and ectoparasite samples that may contain substantial novel information on bacterial prevalence and diversity. However, the identification of bacterial species is challenging, partly due to the difficulty in culturing many microbes and the reliance on molecular data. Although the genomics revolution will surely add to our knowledge of bacterial systematics, these approaches are not accessible to all researchers and rely predominantly on cultured isolates. Thus, there is a need for comprehensive molecular analyses capable of accurately genotyping bacteria from animal tissues or ectoparasites using common methods that will facilitate large-scale comparisons of species diversity and prevalence. To illustrate the challenges of genotyping bacteria, we focus on the genusBartonella, vector-borne bacteria common in mammals. We highlight the value and limitations of commonly used techniques for genotyping bartonellae and make recommendations for researchers interested in studying the diversity of these bacteria in various samples. Our recommendations could be applicable to many bacterial taxa (with some modifications) and could lead to a more complete understanding of bacterial species diversity.
Collapse
|
10
|
Québatte M, Christen M, Harms A, Körner J, Christen B, Dehio C. Gene Transfer Agent Promotes Evolvability within the Fittest Subpopulation of a Bacterial Pathogen. Cell Syst 2017. [PMID: 28624614 PMCID: PMC5496983 DOI: 10.1016/j.cels.2017.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Bartonella gene transfer agent (BaGTA) is an archetypical example for domestication of a phage-derived element to permit high-frequency genetic exchange in bacterial populations. Here we used multiplexed transposon sequencing (TnSeq) and single-cell reporters to globally define the core components and transfer dynamics of BaGTA. Our systems-level analysis has identified inner- and outer-circle components of the BaGTA system, including 55 regulatory components, as well as an additional 74 and 107 components mediating donor transfer and recipient uptake functions. We show that the stringent response signal guanosine-tetraphosphate (ppGpp) restricts BaGTA induction to a subset of fast-growing cells, whereas BaGTA particle uptake depends on a functional Tol-Pal trans-envelope complex that mediates outer-membrane invagination upon cell division. Our findings suggest that Bartonella evolved an efficient strategy to promote genetic exchange within the fittest subpopulation while disfavoring exchange of deleterious genetic information, thereby facilitating genome integrity and rapid host adaptation.
Collapse
Affiliation(s)
- Maxime Québatte
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Matthias Christen
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, HPT E71, 8093 Zürich, Switzerland
| | - Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Jonas Körner
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Beat Christen
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, HPT E71, 8093 Zürich, Switzerland.
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
11
|
Prevalence, hematological findings and genetic diversity of Bartonella spp. in domestic cats from Valdivia, Southern Chile. Parasitology 2016; 144:773-782. [PMID: 27938417 DOI: 10.1017/s003118201600247x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study determined the prevalence, hematological findings and genetic diversity of Bartonella spp. in domestic cats from Valdivia, Southern Chile. A complete blood count and nuoG gene real-time quantitative PCR (qPCR) for Bartonella spp. were performed in 370 blood samples from cats in Valdivia, Southern Chile. nuoG qPCR-positive samples were submitted to conventional PCR for the gltA gene and sequencing for species differentiation and phylogenetic analysis. Alignment of gltA gene was used to calculate the nucleotide diversity, polymorphic level, number of variable sites and average number of nucleotide differences. Bartonella DNA prevalence in cats was 18·1% (67/370). Twenty-nine samples were sequenced with 62·0% (18/29) identified as Bartonella henselae, 34·4% (10/29) as Bartonella clarridgeiae, and 3·4% (1/29) as Bartonella koehlerae. Bartonella-positive cats had low DNA bacterial loads and their hematological parameters varied minimally. Each Bartonella species from Chile clustered together and with other Bartonella spp. described in cats worldwide. Bartonella henselae and B. clarridgeiae showed a low number of variable sites, haplotypes and nucleotide diversity. Bartonella clarridgeiae and B. koehlerae are reported for the first time in cats from Chile and South America, respectively.
Collapse
|
12
|
Mazaheri Nezhad Fard R, Vahedi SM, Ashrafi I, Alipour F, Sharafi G, Akbarein H, Aldavood SJ. Molecular identification and phylogenic analysis of Bartonella henselae isolated from Iranian cats based on gltA gene. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2016; 7:69-72. [PMID: 27226890 PMCID: PMC4867040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/23/2015] [Indexed: 10/30/2022]
Abstract
One of the most important species of the Bartonella genus is B. henselae that causes a zoonotic infection, cat scratch disease (CSD). The main source of the bacteria is cat and the carrier is Ctenocephalides felis flea. One hundred and forty nail and saliva samples were collected from 70 domestic cats. Positive samples for B. henselae were characterized by polymerase chain reaction (PCR) and sequencing. Sequences of gltA gene were trimmed using BioEdit software and then compared with the sequences of the same gene from B. henselae isolated from cats and humans in GenBank database. Phylogenic tree was constructed using CLC Sequence Viewer software and unweighted pair group method with arithmetic mean (UPGMA) method. Molecular assessments showed that five samples out of 70 nail samples (7.14%) and one sample out of 70 saliva samples (1.42%) were genetically positive for B. henselae. At least an 87.00% similarity was seen between the gene sequences from the current study and the reference sequences from the GenBank database. Phylogenic analysis has shown that strains isolated in this study were grouped in a different haplo group, compared to other strains. Among the Asian countries, the prevalence of the bacteria in Iran was close to that in Japan and Turkey. In conclusion, findings of this study showed the prevalence of B. henselae in Iranian cats which is important due to its public health issues, especially for the immunocompromised pet owners.
Collapse
Affiliation(s)
| | - Seyed Milad Vahedi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran;
| | - Iraj Ashrafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran;
| | - Faranak Alipour
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran;
| | - Golnaz Sharafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran;
| | - Hesam Akbarein
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Seyed Javid Aldavood
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; ,Correspondence Seyed Javid Aldavood. DVM, DVSc ,Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. E-mail:
| |
Collapse
|
13
|
Fearnhead P, Yu S, Biggs P, Holland B, French N. Estimating the relative rate of recombination to mutation in bacteria from single-locus variants using composite likelihood methods. Ann Appl Stat 2015. [DOI: 10.1214/14-aoas795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Engel P, Stepanauskas R, Moran NA. Hidden diversity in honey bee gut symbionts detected by single-cell genomics. PLoS Genet 2014; 10:e1004596. [PMID: 25210772 PMCID: PMC4161309 DOI: 10.1371/journal.pgen.1004596] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/02/2014] [Indexed: 12/29/2022] Open
Abstract
Microbial communities in animal guts are composed of diverse, specialized bacterial species, but little is known about how gut bacteria diversify to produce genetically and ecologically distinct entities. The gut microbiota of the honey bee, Apis mellifera, presents a useful model, because it consists of a small number of characteristic bacterial species, each showing signs of diversification. Here, we used single-cell genomics to study the variation within two species of the bee gut microbiota: Gilliamella apicola and Snodgrassella alvi. For both species, our analyses revealed extensive variation in intraspecific divergence of protein-coding genes but uniformly high levels of 16S rRNA similarity. In both species, the divergence of 16S rRNA loci appears to have been curtailed by frequent recombination within populations, while other genomic regions have continuously diverged. Furthermore, gene repertoires differ markedly among strains in both species, implying distinct metabolic capabilities. Our results show that, despite minimal divergence at 16S rRNA genes, in situ diversification occurs within gut communities and generates bacterial lineages with distinct ecological niches. Therefore, important dimensions of microbial diversity are not evident from analyses of 16S rRNA, and single cell genomics has potential to elucidate processes of bacterial diversification. Gut microbial communities are often complex, consisting of bacteria from divergent phyla as well as multiple strains of each of the constituent species. But because the composition of these communities is typically assessed using 16S rRNA analyses, little is known about genomic changes associated with in situ diversification of bacterial lineages in animal guts. We undertook a single-cell genomic approach to investigate the diversification within two species of the gut microbiota of honey bees. Each species exhibited a surprisingly high level of genomic variation, despite uniformity in the 16S rRNA sequences. Our data indicate that genetically and ecologically distinct lineages can evolve in the gut of the same host species in the presence of frequent recombination at 16S rRNA genes. These findings parallel observations from mammals, suggesting that in situ diversification of a few bacterial lineages is a common pattern in the evolution of gut communities.
Collapse
Affiliation(s)
- Philipp Engel
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
| | - Nancy A. Moran
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
15
|
A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella. PLoS Genet 2013; 9:e1003393. [PMID: 23555299 PMCID: PMC3610622 DOI: 10.1371/journal.pgen.1003393] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/08/2013] [Indexed: 12/31/2022] Open
Abstract
Gene transfer agents (GTAs) randomly transfer short fragments of a bacterial genome. A novel putative GTA was recently discovered in the mouse-infecting bacterium Bartonella grahamii. Although GTAs are widespread in phylogenetically diverse bacteria, their role in evolution is largely unknown. Here, we present a comparative analysis of 16 Bartonella genomes ranging from 1.4 to 2.6 Mb in size, including six novel genomes from Bartonella isolated from a cow, two moose, two dogs, and a kangaroo. A phylogenetic tree inferred from 428 orthologous core genes indicates that the deadly human pathogen B. bacilliformis is related to the ruminant-adapted clade, rather than being the earliest diverging species in the genus as previously thought. A gene flux analysis identified 12 genes for a GTA and a phage-derived origin of replication as the most conserved innovations. These are located in a region of a few hundred kb that also contains 8 insertions of gene clusters for type III, IV, and V secretion systems, and genes for putatively secreted molecules such as cholera-like toxins. The phylogenies indicate a recent transfer of seven genes in the virB gene cluster for a type IV secretion system from a cat-adapted B. henselae to a dog-adapted B. vinsonii strain. We show that the B. henselae GTA is functional and can transfer genes in vitro. We suggest that the maintenance of the GTA is driven by selection to increase the likelihood of horizontal gene transfer and argue that this process is beneficial at the population level, by facilitating adaptive evolution of the host-adaptation systems and thereby expansion of the host range size. The process counters gene loss and forces all cells to contribute to the production of the GTA and the secreted molecules. The results advance our understanding of the role that GTAs play for the evolution of bacterial genomes. Viruses are selfish genetic elements that replicate and transfer their own DNA, often killing the host cell in the process. Unlike viruses, gene transfer agents (GTAs) transfer random pieces of the bacterial genome rather than their own DNA. GTAs are widespread in bacterial genomes, but it is not known whether they are beneficial to the bacterium. In this study, we have used the emerging pathogen Bartonella as our model to study the evolution of GTAs. We sequenced the genomes of six isolates of Bartonella, including two new strains isolated from wild moose in Sweden. Using a comparative genomics approach, we searched for innovations in the last common ancestor that could help explain the explosive radiation of the genus. Surprisingly, we found that a gene cluster for a GTA and a phage-derived origin of replication was the most conserved innovation, indicative of strong selective constraints. We argue that the reason for the remarkable stability of the GTA is that it provides a mechanism to duplicate and recombine genes for secretion systems. This leads to adaptability to a broad range of hosts.
Collapse
|