1
|
Li X, Li Y, Sylvester SP, Zang M, El‐Kassaby YA, Fang Y. Evolutionary patterns of nucleotide substitution rates in plastid genomes of Quercus. Ecol Evol 2021; 11:13401-13414. [PMID: 34646478 PMCID: PMC8495791 DOI: 10.1002/ece3.8063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Molecular evolution, including nucleotide substitutions, plays an important role in understanding the dynamics and mechanisms of species evolution. Here, we sequenced whole plastid genomes (plastomes) of Quercus fabri, Quercus semecarpifolia, Quercus engleriana, and Quercus phellos and compared them with 14 other Quercus plastomes to explore their evolutionary relationships using 67 shared protein-coding sequences. While many previously identified evolutionary relationships were found, our findings do not support previous research which retrieve Quercus subg. Cerris sect. Ilex as a monophyletic group, with sect. Ilex found to be polyphyletic and composed of three strongly supported lineages inserted between sections Cerris and Cyclobalanposis. Compared with gymnosperms, Quercus plastomes showed higher evolutionary rates (Dn/Ds = 0.3793). Most protein-coding genes experienced relaxed purifying selection, and the high Dn value (0.1927) indicated that gene functions adjusted to environmental changes effectively. Our findings suggest that gene interval regions play an important role in Quercus evolution. We detected greater variation in the intergenic regions (trnH-psbA, trnK_UUU-rps16, trnfM_CAU-rps14, trnS_GCU-trnG_GCC, and atpF-atpH), intron losses (petB and petD), and pseudogene loss and degradation (ycf15). Additionally, the loss of some genes suggested the existence of gene exchanges between plastid and nuclear genomes, which affects the evolutionary rate of the former. However, the connective mechanism between these two genomes is still unclear.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the EnvironmentCo‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- Department of Forest and Conservation Sciences Faculty of ForestryThe University of British ColumbiaVancouverBCCanada
| | - Yongfu Li
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the EnvironmentCo‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Steven Paul Sylvester
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the EnvironmentCo‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Mingyue Zang
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the EnvironmentCo‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences Faculty of ForestryThe University of British ColumbiaVancouverBCCanada
| | - Yanming Fang
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the EnvironmentCo‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
2
|
Ingles ED, Deakin JE. Telomeres, species differences, and unusual telomeres in vertebrates: presenting challenges and opportunities to understanding telomere dynamics. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractThere has been increasing interest in the use of telomeres as biomarkers of stress, cellular ageing and life-histories. However, the telomere landscape is a diverse feature, with noticeable differences between species, a fact which is highlighted by the unusual telomeres of various vertebrate organisms. We broadly review differences in telomere dynamics among vertebrates, and emphasize the need to understand more about telomere processes and trends across species. As part of these species differences, we review unusual telomeres in vertebrates. This includes mega-telomeres, which are present across a diverse set of organisms, but also focusing on the unusual telomeres traits of marsupials and monotremes, which have seen little to no prior discussion, yet uniquely stand out from other unusual telomere features discovered thus far. Due to the presence of at least two unique telomere features in the marsupial family Dasyuridae, as well as to the presence of physiological strategies semelparity and torpor, which have implications for telomere life-histories in these species, we suggest that this family has a very large potential to uncover novel information on telomere evolution and dynamics.
Collapse
Affiliation(s)
- Emory D. Ingles
- Institute of Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Janine E. Deakin
- Institute of Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Lu Y, Xing H, Zhang D. Evidence for relaxed selection of mitogenome in rapid-flow cyprinids. Genes Genomics 2019; 41:863-869. [PMID: 31016677 PMCID: PMC6560226 DOI: 10.1007/s13258-019-00817-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/02/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hypoxia adaptation is developed in many fish species, which helped them to habitat most of water bodies. However, fishes living under high oxygen concentration may lose this feature. Rapid flows provide high level and stable dissolved oxygen, which facilitate organism's oxygen supply and energy production. Previous studies showed that fish species from rapid-flow habitats exhibited lower hypoxia tolerance compared with fish from intermediate- and slow-flow habitats. Mitochondrial genomes code 13 key components in oxidative phosphorylation pathway; these genes may be under relaxed selection in rapid-flow species. OBJECTIVES The primary objectives of this study is to investigate the evolutionary patterns of the 13 mitochondrial OXPHOS genes among nine cyprinids from different water bodies and to test the hypotheses that mitochondrial OXPHOS genes may experience relaxed selection in rapid-flow habitats. METHODS We classified nine cyprinid fish species into three groups based on their habitats: rapid-flow, intermediate-flow and slow-flow. To detect relaxed selections, we investigated the 13 protein-coding genes with codon evolution programs RELAX; to estimate evolutionary rates among the cyprinids, free-ratio model in Codeml program was applied; Branch-site models were applied to detect positive selection sites. The polymorphisms of homologous sites were evaluated with PROVEAN program and projected to 3D structure prediction of the proteins using SWISS-MODEL. RESULTS We found that nine out of the 13 genes are under relaxed selection in rapid-flow species. Furthermore, dN, dS and dN/dS are relatively increased when compared with those of intermediate-flow species. More amino acid polymorphic sites are presented in rapid-flow species than in intermediate- and slow-flow species. Furthermore, rapid-flow species had more deleterious substitutions than other groups. 3D structure prediction of these proteins and projection of the polymorphic sites indicated that these sites were randomly distributed, suggesting relaxed functional constraints of these proteins in rapid-flow species. CONCLUSION Our results suggest that mitochondrial genes are under relaxed selection in rapid-flow cyprinids.
Collapse
Affiliation(s)
- Yao Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Hu Xing
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Dongsheng Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
4
|
Li X, Feng T, Randle C, Schneeweiss GM. Phylogenetic Relationships in Orobanchaceae Inferred From Low-Copy Nuclear Genes: Consolidation of Major Clades and Identification of a Novel Position of the Non-photosynthetic Orobanche Clade Sister to All Other Parasitic Orobanchaceae. FRONTIERS IN PLANT SCIENCE 2019; 10:902. [PMID: 31379896 PMCID: PMC6646720 DOI: 10.3389/fpls.2019.00902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/26/2019] [Indexed: 05/18/2023]
Abstract
Molecular phylogenetic analyses have greatly advanced our understanding of phylogenetic relationships in Orobanchaceae, a model system to study parasitism in angiosperms. As members of this group may lack some genes widely used for phylogenetic analysis and exhibit varying degrees of accelerated base substitution in other genes, relationships among major clades identified previously remain contentious. To improve inferences of phylogenetic relationships in Orobanchaceae, we used two pentatricopeptide repeat (PPR) and three low-copy nuclear (LCN) genes, two of which have been developed for this study. Resolving power and level of support strongly differed among markers. Despite considerable incongruence among newly and previously sequenced markers, monophyly of major clades identified in previous studies was confirmed and, especially in analyses of concatenated data, strongly supported after the exclusion of a small group of East Asian genera (Pterygiella and Phtheirospermum) from the Euphrasia-Rhinanthus clade. The position of the Orobanche clade sister to all other parasitic Orobanchaceae may indicate that the shift to holoparasitism occurred early in the evolution of the family. Although well supported in analyses of concatenated data comprising ten loci (five newly and five previously sequenced), relationships among major clades, most prominently the Striga-Alectra clade, the Euphrasia-Rhinanthus clade, and the Castilleja-Pedicularis clade, were uncertain because of strongly supported incongruence also among well-resolving loci. Despite the limitations of using a few selected loci, congruence among markers with respect to circumscription of major clades of Orobanchaceae renders those frameworks for detailed, species-level, phylogenetic studies.
Collapse
Affiliation(s)
- Xi Li
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Tao Feng
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Chris Randle
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, United States
| | - Gerald M. Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- *Correspondence: Gerald M. Schneeweiss,
| |
Collapse
|
5
|
Sequencing, Characterization, and Comparative Analyses of the Plastome of Caragana rosea var. rosea. Int J Mol Sci 2018; 19:ijms19051419. [PMID: 29747436 PMCID: PMC5983699 DOI: 10.3390/ijms19051419] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
To exploit the drought-resistant Caragana species, we performed a comparative study of the plastomes from four species: Caragana rosea, C. microphylla, C. kozlowii, and C. Korshinskii. The complete plastome sequence of the C. rosea was obtained using the next generation DNA sequencing technology. The genome is a circular structure of 133,122 bases and it lacks inverted repeat. It contains 111 unique genes, including 76 protein-coding, 30 tRNA, and four rRNA genes. Repeat analyses obtained 239, 244, 258, and 246 simple sequence repeats in C. rosea, C. microphylla, C. kozlowii, and C. korshinskii, respectively. Analyses of sequence divergence found two intergenic regions: trnI-CAU-ycf2 and trnN-GUU-ycf1, exhibiting a high degree of variations. Phylogenetic analyses showed that the four Caragana species belong to a monophyletic clade. Analyses of Ka/Ks ratios revealed that five genes: rpl16, rpl20, rps11, rps7, and ycf1 and several sites having undergone strong positive selection in the Caragana branch. The results lay the foundation for the development of molecular markers and the understanding of the evolutionary process for drought-resistant characteristics.
Collapse
|
6
|
Zuther E, Lee YP, Erban A, Kopka J, Hincha DK. Natural Variation in Freezing Tolerance and Cold Acclimation Response in Arabidopsis thaliana and Related Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:81-98. [DOI: 10.1007/978-981-13-1244-1_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Song H, Gao H, Liu J, Tian P, Nan Z. Comprehensive analysis of correlations among codon usage bias, gene expression, and substitution rate in Arachis duranensis and Arachis ipaënsis orthologs. Sci Rep 2017; 7:14853. [PMID: 29093502 PMCID: PMC5665869 DOI: 10.1038/s41598-017-13981-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
The relationship between evolutionary rates and gene expression in model plant orthologs is well documented. However, little is known about the relationships between gene expression and evolutionary trends in Arachis orthologs. We identified 7,435 one-to-one orthologs, including 925 single-copy and 6,510 multiple-copy sequences in Arachis duranensis and Arachis ipaënsis. Codon usage was stronger for shorter polypeptides, which were encoded by codons with higher GC contents. Highly expressed coding sequences had higher codon usage bias, GC content, and expression breadth. Additionally, expression breadth was positively correlated with polypeptide length, but there was no correlation between gene expression and polypeptide length. Inferred selective pressure was also negatively correlated with both gene expression and expression breadth in all one-to-one orthologs, while positively but non-significantly correlated with gene expression in sequences with signatures of positive selection. Gene expression levels and expression breadth were significantly higher for single-copy genes than for multiple-copy genes. Similarly, the gene expression and expression breadth in sequences with signatures of purifying selection were higher than those of sequences with positive selective signatures. These results indicated that gene expression differed between single-copy and multiple-copy genes as well as sequences with signatures of positive and purifying selection.
Collapse
Affiliation(s)
- Hui Song
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| | - Hongjuan Gao
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Jing Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Pei Tian
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Yang J, Yue M, Niu C, Ma XF, Li ZH. Comparative Analysis of the Complete Chloroplast Genome of Four Endangered Herbals of Notopterygium. Genes (Basel) 2017; 8:E124. [PMID: 28422071 PMCID: PMC5406871 DOI: 10.3390/genes8040124] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
Notopterygium H. de Boissieu (Apiaceae) is an endangered perennial herb endemic to China. A good knowledge of phylogenetic evolution and population genomics is conducive to the establishment of effective management and conservation strategies of the genus Notopterygium. In this study, the complete chloroplast (cp) genomes of four Notopterygium species (N. incisum C. C. Ting ex H. T. Chang, N. oviforme R. H. Shan, N. franchetii H. de Boissieu and N. forrestii H. Wolff) were assembled and characterized using next-generation sequencing. We investigated the gene organization, order, size and repeat sequences of the cp genome and constructed the phylogenetic relationships of Notopterygium species based on the chloroplast DNA and nuclear internal transcribed spacer (ITS) sequences. Comparative analysis of plastid genome showed that the cp DNA are the standard double-stranded molecule, ranging from 157,462 bp (N. oviforme) to 159,607 bp (N. forrestii) in length. The circular DNA each contained a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeats (IRs). The cp DNA of four species contained 85 protein-coding genes, 37 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes, respectively. We determined the marked conservation of gene content and sequence evolutionary rate in the cp genome of four Notopterygium species. Three genes (psaI, psbI and rpoA) were possibly under positive selection among the four sampled species. Phylogenetic analysis showed that four Notopterygium species formed a monophyletic clade with high bootstrap support. However, the inconsistent interspecific relationships with the genus Notopterygium were identified between the cp DNA and ITS markers. The incomplete lineage sorting, convergence evolution or hybridization, gene infiltration and different sampling strategies among species may have caused the incongruence between the nuclear and cp DNA relationships. The present results suggested that Notopterygium species may have experienced a complex evolutionary history and speciation process.
Collapse
Affiliation(s)
- Jiao Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Chuan Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xiong-Feng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
9
|
Olsen CE, Huang XC, Hansen CIC, Cipollini D, Ørgaard M, Matthes A, Geu-Flores F, Koch MA, Agerbirk N. Glucosinolate diversity within a phylogenetic framework of the tribe Cardamineae (Brassicaceae) unraveled with HPLC-MS/MS and NMR-based analytical distinction of 70 desulfoglucosinolates. PHYTOCHEMISTRY 2016; 132:33-56. [PMID: 27743600 DOI: 10.1016/j.phytochem.2016.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 05/22/2023]
Abstract
As a basis for future investigations of evolutionary trajectories and biosynthetic mechanisms underlying variations in glucosinolate structures, we screened members of the crucifer tribe Cardamineae by HPLC-MS/MS, isolated and identified glucosinolates by NMR, searched the literature for previous data for the tribe, and collected HPLC-MS/MS data for nearly all glucosinolates known from the tribe as well as some related structures (70 in total). This is a considerable proportion of the approximately 142 currently documented natural glucosinolates. Calibration with authentic references allowed distinction (or elucidation) of isomers in many cases, such as distinction of β-hydroxyls, methylthios, methylsulfinyls and methylsulfonyls. A mechanism for fragmentation of secondary β-hydroxyls in MS was elucidated, and two novel glucosinolates were discovered: 2-hydroxy-3-methylpentylglucosinolate in roots of Cardamine pratensis and 2-hydroxy-8-(methylsulfinyl)octylglucosinolate in seeds of Rorippa amphibia. A large number of glucosinolates (ca. 54 with high structural certainty and a further 28 or more suggested from tandem MS), representing a wide structural variation, is documented from the tribe. This included glucosinolates apparently derived from Met, Phe, Trp, Val/Leu, Ile and higher homologues. Normal side chain elongation and side chain decoration by oxidation or methylation was observed, as well as rare abnormal side chain decoration (hydroxylation of aliphatics at the δ rather than β-position). Some species had diverse profiles, e.g. R. amphibia and C. pratensis (19 and 16 individual glucosinolates, respectively), comparable to total diversity in literature reports of Armoracia rusticana (17?), Barbarea vulgaris (20-24), and Rorippa indica (>20?). The ancestor or the tribe would appear to have used Trp, Met, and homoPhe as glucosinolate precursor amino acids, and to exhibit oxidation of thio to sulfinyl, formation of alkenyls, β-hydroxylation of aliphatic chains and hydroxylation and methylation of indole glucosinolates. Two hotspots of apparent biochemical innovation and loss were identified: C. pratensis and the genus Barbarea. Diversity in other species mainly included structures also known from other crucifers. In addition to a role of gene duplication, two contrasting genetic/biochemical mechanisms for evolution of such combined diversity and redundancy are discussed: (i) involvement of widespread genes with expression varying during evolution, and (ii) mutational changes in substrate specificities of CYP79F and GS-OH enzymes.
Collapse
Affiliation(s)
- Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Xiao-Chen Huang
- Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Cecilie I C Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Annemarie Matthes
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Fernando Geu-Flores
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Marcus A Koch
- Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
10
|
Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life. PLoS One 2015; 10:e0130600. [PMID: 26075903 PMCID: PMC4468109 DOI: 10.1371/journal.pone.0130600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background Collembola (springtails) represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor. Method We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade. Results Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response), ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development). Conclusions We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land.
Collapse
|
11
|
Ometto L, Li M, Bresadola L, Barbaro E, Neteler M, Varotto C. Demographic History, Population Structure, and Local Adaptation in Alpine Populations of Cardamine impatiens and Cardamine resedifolia. PLoS One 2015; 10:e0125199. [PMID: 25933225 PMCID: PMC4416911 DOI: 10.1371/journal.pone.0125199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/21/2015] [Indexed: 01/22/2023] Open
Abstract
Species evolution depends on numerous and distinct forces, including demography and natural selection. For example, local adaptation and population structure affect the evolutionary history of species living along environmental clines. This is particularly relevant in plants, which are often characterized by limited dispersal ability and the need to respond to abiotic and biotic stress factors specific to the local environment. Here we study the demographic history and the possible existence of local adaptation in two related species of Brassicaceae, Cardamine impatiens and Cardamine resedifolia, which occupy separate habitats along the elevation gradient. Previous genome-wide analyses revealed the occurrence of distinct selective pressures in the two species, with genes involved in cold response evolving particularly fast in C. resedifolia. In this study we surveyed patterns of molecular evolution and genetic variability in a set of 19 genes, including neutral and candidate genes involved in cold response, across 10 populations each of C. resedifolia and C. impatiens from the Italian Alps (Trentino). We inferred the population structure and demographic history of the two species, and tested the occurrence of signatures of local adaptation in these genes. The results indicate that, despite a slightly higher population differentiation in C. resedifolia than in C. impatiens, both species are only weakly structured and that populations sampled at high altitude experience less gene flow than low-altitude ones. None of the genes showed signatures of positive selection, suggesting that they do not seem to play relevant roles in the current evolutionary processes of adaptation to alpine environments of these species.
Collapse
Affiliation(s)
- Lino Ometto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all′Adige (TN), Italy
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all′Adige (TN), Italy
| | - Luisa Bresadola
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all′Adige (TN), Italy
| | - Enrico Barbaro
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all′Adige (TN), Italy
| | - Markus Neteler
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all′Adige (TN), Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all′Adige (TN), Italy
| |
Collapse
|
12
|
Hu S, Sablok G, Wang B, Qu D, Barbaro E, Viola R, Li M, Varotto C. Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genomics 2015; 16:306. [PMID: 25887666 PMCID: PMC4446112 DOI: 10.1186/s12864-015-1498-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/27/2015] [Indexed: 11/10/2022] Open
Abstract
Background Plastid genomes, also known as plastomes, are shaped by the selective forces acting on the fundamental cellular functions they code for and thus they are expected to preserve signatures of the adaptive path undertaken by different plant species during evolution. To identify molecular signatures of positive selection associated to adaptation to contrasting ecological niches, we sequenced with Solexa technology the plastomes of two congeneric Brassicaceae species with different habitat preference, Cardamine resedifolia and Cardamine impatiens. Results Following in-depth characterization of plastome organization, repeat patterns and gene space, the comparison of the newly sequenced plastomes between each other and with 15 fully sequenced Brassicaceae plastomes publically available in GenBank uncovered dynamic variation of the IR boundaries in the Cardamine lineage. We further detected signatures of positive selection in ten of the 75 protein-coding genes of the examined plastomes, identifying a range of chloroplast functions putatively involved in adaptive processes within the family. For instance, the three residues found to be under positive selection in RUBISCO could possibly be involved in the modulation of RUBISCO aggregation/activation and enzymatic specificty in Brassicaceae. In addition, our results points to differential evolutionary rates in Cardamine plastomes. Conclusions Overall our results support the existence of wider signatures of positive selection in the plastome of C. resedifolia, possibly as a consequence of adaptation to high altitude environments. We further provide a first characterization of the selective patterns shaping the Brassicaceae plastomes, which could help elucidate the driving forces underlying adaptation and evolution in this important plant family. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1498-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiliang Hu
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Gaurav Sablok
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Bo Wang
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Dong Qu
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy. .,College of Horticulture, Northwest Agricultural and Forest University, 712100, Yangling, Shaanxi, PR China.
| | - Enrico Barbaro
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Roberto Viola
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Mingai Li
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Claudio Varotto
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| |
Collapse
|
13
|
De La Torre AR, Lin YC, Van de Peer Y, Ingvarsson PK. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in picea gene families. Genome Biol Evol 2015; 7:1002-15. [PMID: 25747252 PMCID: PMC4419791 DOI: 10.1093/gbe/evv044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The recent sequencing of several gymnosperm genomes has greatly facilitated studying the evolution of their genes and gene families. In this study, we examine the evidence for expression-mediated selection in the first two fully sequenced representatives of the gymnosperm plant clade (Picea abies and Picea glauca). We use genome-wide estimates of gene expression (>50,000 expressed genes) to study the relationship between gene expression, codon bias, rates of sequence divergence, protein length, and gene duplication. We found that gene expression is correlated with rates of sequence divergence and codon bias, suggesting that natural selection is acting on Picea protein-coding genes for translational efficiency. Gene expression, rates of sequence divergence, and codon bias are correlated with the size of gene families, with large multicopy gene families having, on average, a lower expression level and breadth, lower codon bias, and higher rates of sequence divergence than single-copy gene families. Tissue-specific patterns of gene expression were more common in large gene families with large gene expression divergence than in single-copy families. Recent family expansions combined with large gene expression variation in paralogs and increased rates of sequence evolution suggest that some Picea gene families are rapidly evolving to cope with biotic and abiotic stress. Our study highlights the importance of gene expression and natural selection in shaping the evolution of protein-coding genes in Picea species, and sets the ground for further studies investigating the evolution of individual gene families in gymnosperms.
Collapse
Affiliation(s)
| | - Yao-Cheng Lin
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium Genomics Research Institute, University of Pretoria, South Africa
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Sweden Umeå Plant Science Centre, Umeå, Sweden
| |
Collapse
|
14
|
Paape T, Bataillon T, Zhou P, J Y Kono T, Briskine R, Young ND, Tiffin P. Selection, genome-wide fitness effects and evolutionary rates in the model legume Medicago truncatula. Mol Ecol 2013; 22:3525-38. [PMID: 23773281 DOI: 10.1111/mec.12329] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/22/2013] [Accepted: 03/12/2013] [Indexed: 12/15/2022]
Abstract
Sequence data for >20 000 annotated genes from 56 accessions of Medicago truncatula were used to identify potential targets of positive selection, the determinants of evolutionary rate variation and the relative importance of positive and purifying selection in shaping nucleotide diversity. Based upon patterns of intraspecific diversity and interspecific divergence, c. 50-75% of nonsynonymous polymorphisms are subject to strong purifying selection and 1% of the sampled genes harbour a signature of positive selection. Combining polymorphism with expression data, we estimated the distribution of fitness effects and found that the proportion of deleterious mutations is significantly greater for expressed genes than for genes with undetected transcripts (nonexpressed) in a previous RNA-seq experiment and greater for broadly expressed genes than those expressed in only a single tissue. Expression level is the strongest correlate of evolutionary rates at nonsynonymous sites, and despite multiple genomic features being significantly correlated with evolutionary rates, they explain less than 20% of the variation in nonsynonymous rates (dN) and <15% of the variation in either synonymous rates (dS) or dN:dS. Among putative targets of selection were genes involved in defence against pathogens and herbivores, genes with roles in mediating the relationship with rhizobial symbionts and one-third of annotated histone-lysine methyltransferases. Adaptive evolution of the methyltransferases suggests that positive selection in gene expression may have occurred through evolution of enzymes involved in epigenetic modification.
Collapse
Affiliation(s)
- Timothy Paape
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland
| | | | | | | | | | | | | |
Collapse
|