1
|
Flanagan SP, Alonzo SH. Supergenes are not necessary to explain the maintenance of complex alternative phenotypes. Proc Biol Sci 2024; 291:20241715. [PMID: 39406344 PMCID: PMC11479756 DOI: 10.1098/rspb.2024.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Evolutionary biology aims to explain the diversity seen in nature. Evolutionary theory provides frameworks to understand how simple polymorphisms or continuous variation are maintained, but phenotypes inherited as discrete suites of quantitative traits are difficult to fit into this framework. Supergenes have been proposed as a solution to this problem-if causal genes are co-located, they can be inherited as if a single gene, thus bridging the gap between simple polymorphisms and continuous traits. We develop models to ask: how are critical supergenes for maintaining phenotypic diversity? In our simplest model, without explicit genetic architectures, three alternative reproductive morphs are maintained in many of the parameter combinations we evaluated. For these same parameter values, models with demographic stochasticity, recombination and mutation (but without explicit genetic architecture) maintained only two of these three morphs, with stochasticity determining which morphs persisted. With explicit genetic architectures, regardless of whether causal loci were co-located in a supergene or distributed randomly, this stochasticity in which morphs are maintained was reduced. Even when phenotypic variation was lost, genetic diversity was maintained. Altogether, categorical traits with polygenic bases exhibited similar evolutionary dynamics to those determined by supergenes. Our work suggests that supergenes are not the only answer to the puzzle of how discrete polygenic phenotypic variation is maintained.
Collapse
Affiliation(s)
- Sarah P. Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Suzanne H. Alonzo
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
2
|
Merondun J, Marques CI, Andrade P, Meshcheryagina S, Galván I, Afonso S, Alves JM, Araújo PM, Bachurin G, Balacco J, Bán M, Fedrigo O, Formenti G, Fossøy F, Fülöp A, Golovatin M, Granja S, Hewson C, Honza M, Howe K, Larson G, Marton A, Moskát C, Mountcastle J, Procházka P, Red’kin Y, Sims Y, Šulc M, Tracey A, Wood JMD, Jarvis ED, Hauber ME, Carneiro M, Wolf JBW. Evolution and genetic architecture of sex-limited polymorphism in cuckoos. SCIENCE ADVANCES 2024; 10:eadl5255. [PMID: 38657058 PMCID: PMC11042743 DOI: 10.1126/sciadv.adl5255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Sex-limited polymorphism has evolved in many species including our own. Yet, we lack a detailed understanding of the underlying genetic variation and evolutionary processes at work. The brood parasitic common cuckoo (Cuculus canorus) is a prime example of female-limited color polymorphism, where adult males are monochromatic gray and females exhibit either gray or rufous plumage. This polymorphism has been hypothesized to be governed by negative frequency-dependent selection whereby the rarer female morph is protected against harassment by males or from mobbing by parasitized host species. Here, we show that female plumage dichromatism maps to the female-restricted genome. We further demonstrate that, consistent with balancing selection, ancestry of the rufous phenotype is shared with the likewise female dichromatic sister species, the oriental cuckoo (Cuculus optatus). This study shows that sex-specific polymorphism in trait variation can be resolved by genetic variation residing on a sex-limited chromosome and be maintained across species boundaries.
Collapse
Affiliation(s)
- Justin Merondun
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Cristiana I. Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Swetlana Meshcheryagina
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Ismael Galván
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Joel M. Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3QY, UK
| | - Pedro M. Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Department of Life Sciences, MARE–Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
| | | | - Jennifer Balacco
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Miklós Bán
- HUN-REN-UD Behavioral Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Olivier Fedrigo
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Giulio Formenti
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Frode Fossøy
- Centre for Biodiversity Genetics, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Attila Fülöp
- HUN-REN-UD Behavioral Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- STAR-UBB Institute of Advanced Studies in Science and Technology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Mikhail Golovatin
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Sofia Granja
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3QY, UK
| | | | - Marcel Honza
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kerstin Howe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3QY, UK
| | - Attila Marton
- Evolutionary Ecology Group, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Csaba Moskát
- Hungarian Natural History Museum, Budapest, Hungary
| | | | - Petr Procházka
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | | | - Ying Sims
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Michal Šulc
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Erich D. Jarvis
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Mark E. Hauber
- Advanced Science Research Center and Program in Psychology, Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jochen B. W. Wolf
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Rodriguez‐Silva R, Spikes M, Monsisbay MI, Schlupp I. Color polymorphism in the Cuban endemic livebearing fish Limia vittata (Teloestei, Poeciliidae): Potential roles of sexual and natural selection. Ecol Evol 2023; 13:e9768. [PMID: 36713487 PMCID: PMC9873589 DOI: 10.1002/ece3.9768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Color polymorphism can be maintained in natural populations by natural selection or sexual selection. In this study, we use two different approaches to test which of these evolutionary mechanisms may explain the presence of color polymorphism in the Cuban Limia (Limia vittata), an endemic livebearing fish from Cuba. First, we investigate the role of sexual selection using traditional binary choice tests looking at both female and male preferences relative to varying degrees of black spotting in stimulus mates. Second, we assess the role of natural selection by analyzing the frequency and geographic distribution of black-spotted and nonspotted morphs of L. vittata in natural populations from Cuba. The frequency of black-spotted morphs is significantly higher in brackish and saltwater environments compared with freshwater habitats, which could be related to higher predation pressure in coastal ecosystems compared with purely freshwater environments. Our results suggest that habitat variation is the most important factor in maintaining color polymorphism in L. vittata. Salinity levels could be indirectly responsible for maintaining different color morphs in this species, likely due to the regulatory effect of saline gradients on predation regimes.
Collapse
Affiliation(s)
| | - Montrai Spikes
- Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | | | - Ingo Schlupp
- Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| |
Collapse
|
4
|
Cook JM. Sexual selection on population-level mating opportunities drives morph ratios in a fig wasp with extreme male dimorphism. BMC Ecol Evol 2021; 21:168. [PMID: 34488650 PMCID: PMC8422632 DOI: 10.1186/s12862-021-01898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Background Alternative mating tactics are widespread in animals and associated with extreme morphological polymorphism in some insects. Some fig wasps have both highly modified wingless males and dispersing winged males. Wingless males mate inside figs before females disperse, while winged males mate elsewhere after dispersal. Hamilton proposed a model for this system with morphs determined by alternative alleles. This has an equilibrium where the proportion of winged males equals the proportion of females dispersing unmated; i.e. the proportion of matings that they obtain. Previously, we have shown qualitative support for this prediction across nine wing-dimorphic fig wasp species. Here I test the quantitative prediction in the fig wasp Pseudidarnes minerva. In addition, some fig wasp species that lack winged males, but have two wingless morphs, show a conditional strategy with morph determination influenced by the number of wasps developing in a patch. I also test for this alternative pattern in the wing-dimorphic P. minerva. Results I sampled 114 figs that contained a mean of 2.1 P. minerva wasps from 44 trees across four sites in Sydney, Australia. At the whole population level, the proportion of winged males (0.84 or 0.79 corrected for sampling bias) did not differ significantly from the proportion of unmated females (0.84), providing strong quantitative support for the prediction of Hamilton’s model. In addition, there was no evidence for other factors, such as local mate competition or fighting between wingless males, that could violate simplifying assumptions of the model. Meanwhile, the proportion of winged males was not correlated with the number of wasps per fig, providing no evidence for a conditional strategy. Conclusion The morph ratio in P. minerva is consistent with Hamilton’s simple Mendelian strategy model, where morph ratios are set by average mating opportunities at the population level. This contrasts with some fig wasps from another subfamily that show conditional morph determination, allowing finer scale adaptation to fig-level mating opportunities. However, these conditional cases do not involve wing polymorphism. Male polymorphism is common and variable in fig wasps and has evolved independently in multiple lineages with apparently different underlying mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01898-3.
Collapse
Affiliation(s)
- James M Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
5
|
Abstract
AbstractIn Odonates, female colour polymorphism is common and implies the presence of two or more female types with different colours and behaviours. To explain this phenomenon, several hypotheses have been proposed that consider morph frequency, population density, the presence of parasites, and mating behaviour. We studied the blue-tailed damselfly Ischnura elegans, a species with a blue androchrome morph and two gynochrome morphs (the common green infuscans, and the rare orange rufescens-obsoleta). The size of adult males and females, the presence of parasites, and pairing behaviour between males and the three female morphs was assessed in field conditions throughout the reproductive season in NW Italy. Moreover, growth and emergence success of larvae produced by the different morphs was analyzed in standardized conditions. In the field, males showed a preference for the gynochrome infuscans females, despite a similar frequency of androchrome females. In test conditions, male preference for the infuscans females was also observed. Paired males and paired androchrome females were larger than unpaired individuals, while there were no differences in size between paired and unpaired infuscans females. Males and androchrome females were more parasitized than infuscans females. The survival and emergence success of larvae produced by androchrome females was higher than those of offspring produced by the infuscans females. Our results suggest that a higher survival of progeny at the larval stage could counterbalance the higher parasitism and the lower pairing success of andromorph adult females and highlight the importance of considering the whole life-cycle in polymorphism studies.
Collapse
|
6
|
Piersanti S, Salerno G, Di Pietro V, Giontella L, Rebora M, Jones A, Fincke OM. Tests of search image and learning in the wild: Insights from sexual conflict in damselflies. Ecol Evol 2021; 11:4399-4412. [PMID: 33976818 PMCID: PMC8093675 DOI: 10.1002/ece3.7335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/05/2023] Open
Abstract
Search image formation, a proximal mechanism to maintain genetic polymorphisms by negative frequency-dependent selection, has rarely been tested under natural conditions. Females of many nonterritorial damselflies resemble either conspecific males or background vegetation. Mate-searching males are assumed to form search images of the majority female type, sexually harassing it at rates higher than expected from its frequency, thus selectively favoring the less common morph. We tested this and how morph coloration and behavior influenced male perception and intersexual encounters by following marked Ischnura elegans and noting their reactions to conspecifics. Contrary to search image formation and associative learning hypotheses, although males encountered the minority, male-like morph more often, sexual harassment and clutch size were similar for both morphs. Prior mating attempts or copula with morphs did not affect a male's subsequent reaction to them; males rarely attempted matings with immature females or males. Females mated early in the day, reducing the opportunity for males to learn their identity beforehand. Once encountered, the male-like morph was more readily noticed by males than the alternative morph, which once noticed was more likely to receive mating attempts. Flexible behavior gave morphs considerable control over their apparency to males, influencing intersexual encounters. Results suggested a more subtle proximal mechanism than male learning maintains these color polymorphisms and call for inferences of learning to be validated by behavior of wild receivers and their signalers.
Collapse
Affiliation(s)
- Silvana Piersanti
- Dipartimento di Chimica, Biologia, e BiotecnologieUniversity of PerugiaPerugiaItaly
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e AmbientaliUniversity of PerugiaPerugiaItaly
| | - Viviana Di Pietro
- Department of Life Science and SystemticsUniversity of TorinoTorinoItaly
| | - Leonardo Giontella
- Dipartimento di Chimica, Biologia, e BiotecnologieUniversity of PerugiaPerugiaItaly
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia, e BiotecnologieUniversity of PerugiaPerugiaItaly
| | - Albyn Jones
- Department of MathematicsReed CollegePortlandORUSA
| | - Ola M. Fincke
- Department of BiologyUniversity of OklahomaNormanOKUSA
| |
Collapse
|
7
|
A molecularphylogeny offorktail damselflies(genus Ischnura)revealsa dynamic macroevolutionary history of female colour polymorphisms. Mol Phylogenet Evol 2021; 160:107134. [PMID: 33677008 DOI: 10.1016/j.ympev.2021.107134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Colour polymorphisms are popular study systems among biologists interested in evolutionary dynamics, genomics, sexual selection and sexual conflict. In many damselfly groups, such as in the globally distributed genus Ischnura (forktails), sex-limited female colour polymorphisms occur in multiple species. Female-polymorphic species contain two or three female morphs, one of which phenotypically matches the male (androchrome or male mimic) and the other(s) which are phenotypically distinct from the male (heterochrome). These female colour polymorphisms are thought to be maintained by frequency-dependent sexual conflict, but their macroevolutionary histories are unknown, due to the lack of a robust molecular phylogeny. Here, we present the first time-calibrated phylogeny of Ischnura, using a multispecies coalescent approach (StarBEAST2) and incorporating both molecular and fossil data for 41 extant species (55% of the genus). We estimate the age of Ischnura to be between 13.8 and 23.4 millions of years, i.e. Miocene. We infer the ancestral state of this genus as female monomorphism with heterochrome females, with multiple gains and losses of female polymorphisms, evidence of trans-species female polymorphisms and a significant positive relationship between female polymorphism incidence and current geographic range size. Our study provides a robust phylogenetic framework for future research on the dynamic macroevolutionary history of this clade with its extraordinary diversity of sex-limited female polymorphisms.
Collapse
|
8
|
Diamant ES, Falk JJ, Rubenstein DR. Male-like female morphs in hummingbirds: the evolution of a widespread sex-limited plumage polymorphism. Proc Biol Sci 2021; 288:20203004. [PMID: 33622128 PMCID: PMC7935062 DOI: 10.1098/rspb.2020.3004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Differences in the way males and females look or behave are common in animals. However, discrete variation within sexes (sex-limited polymorphism) also occurs in several vertebrate and invertebrate lineages. In birds, female-limited polymorphism (FLP) in which some females resemble males in coloration is most prominent in hummingbirds, a group known for its morphological and behavioural sexual dimorphism. Yet, it remains unclear whether this intrasexual colour variation in hummingbirds arises through direct selection on females, or indirectly as a non-adaptive byproduct resulting from selection on males. Here, we analysed specimens from more than 300 hummingbird species to determine the extent, evolutionary history and function of FLP. We found that FLP evolved independently in every major clade and occurs in nearly 25% of hummingbird species. Using phylogenetically informed analyses, we rejected non-adaptive hypotheses that FLP is the result of indirect selection or pleiotropy across species. Instead, FLP is associated with ecology, migratory status, and marginally with social dominance, suggesting a socioecological benefit to females. Ultimately, we show that FLP is not only widespread in hummingbirds and likely adaptive, but may also be useful for understanding the evolution of female ornamentation in systems under strong sexual selection.
Collapse
Affiliation(s)
- Eleanor S Diamant
- Department of Ecology Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA 90095, USA
| | - Jay J Falk
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
9
|
Braunschmid H, Dötterl S. Does the Rarity of a Flower's Scent Phenotype in a Deceptive Orchid Explain Its Pollination Success? FRONTIERS IN PLANT SCIENCE 2020; 11:584081. [PMID: 33391298 PMCID: PMC7772181 DOI: 10.3389/fpls.2020.584081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Floral scent, a key mediator in plant-pollinator interactions, varies not only among plant species, but also within species. In deceptive plants, it is assumed that variation in floral scents and other traits involved in pollinator attraction is maintained by negative frequency-dependent selection, i.e., rare phenotypes are more attractive to pollinators and hence, have a higher fitness than common phenotypes. So far, it is unknown whether the rarity of multivariate and/or continuous floral scent traits influences the pollination success of flowers. Here, we tested in the deceptive orchid Cypripedium calceolus, whether flowers with rarer scent bouquets within a population have a higher chance to getting pollinated than flowers with more common scents. We collected the scent of more than 100 flowers in two populations by dynamic headspace and analyzed the samples by gas chromatography coupled to mass spectrometry (GC/MS). From the same flowers we also recorded whether they set a fruit or not. We introduced rarity measures of uni- and multivariate floral scent traits for single flowers, which allowed us to finally test for frequency-dependent pollination, a prerequisite for negative frequency-dependent selection. Our results do not show rarity has an effect on the likelihood to set fruits in neither of the two populations and in none of the scent characteristics analyzed. Hence, there is no evidence of negative frequency-dependent pollination mediated by the floral scent of C. calceolus. We discuss that our approach to determine rarity of a scent is applicable to any univariate or multivariate (semi)quantitative trait.
Collapse
Affiliation(s)
| | - Stefan Dötterl
- Department of Biosciences, Plant Ecology, Paris-Lodron-University of Salzburg, Salzburg, Austria
| |
Collapse
|
10
|
|
11
|
Khan MK. Female prereproductive coloration reduces mating harassment in damselflies. Evolution 2020; 74:2293-2303. [PMID: 32573766 DOI: 10.1111/evo.14048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/09/2020] [Accepted: 06/18/2020] [Indexed: 12/01/2022]
Abstract
Conspicuous female coloration can evolve through male mate choice or via female-female competition thereby increasing female mating success. However, when mating is not beneficial, such as in pre-reproductive females, selection should favor cryptic rather than conspicuous coloration to avoid male detection and the associated harassment. Nevertheless, conspicuous female coloration occurs in many prereproductive animals, and its evolution remains an enigma. Here, I studied conspicuous female coloration in Agriocnemis femina damselflies, in which the conspicuous red color of the immature females changes to a less conspicuous green approximately a week after their emergence. I measured body size, weight, and egg numbers of the female morphs and found that red females are smaller and lighter and do not carry developed eggs. Finally, I calculated the occurrence frequency and mating frequency of red and green females in several populations over a three-year period. The results demonstrate that red females mated less frequently than green females even when red females were the abundant morph in the populations. I concluded that conspicuous female coloration is likely to function as a warning signal of sexual unprofitability, thereby reducing sexual harassment for females and unprofitable mating for males.
Collapse
Affiliation(s)
- Md Kawsar Khan
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
12
|
Henze MJ, Lind O, Wilts BD, Kelber A. Pterin-pigmented nanospheres create the colours of the polymorphic damselfly Ischnura elegans. J R Soc Interface 2019; 16:20180785. [PMID: 30991898 PMCID: PMC6505549 DOI: 10.1098/rsif.2018.0785] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/28/2019] [Indexed: 01/04/2023] Open
Abstract
Animal colours commonly act as signals for mates or predators. In many damselfly species, both sexes go through a developmental colour change as adults, and females often show colour polymorphism, which may have a function in mate choice, avoidance of mating harassment and camouflage. In the blue-tailed damselfly, Ischnura elegans, young males are bright green and turn blue as they reach maturity. Females are red ( rufescens) or violet ( violacea) as immatures and, when mature, either mimic the blue colour of the males ( androchrome), or acquire an inconspicuous olive-green ( infuscans) or olive-brown ( obsoleta). The genetic basis of these differences is still unknown. Here, we quantify the colour development of all morphs of I. elegans and investigate colour formation by combining anatomical data and reflectance spectra with optical finite-difference time-domain simulations. While the coloration primarily arises from a disordered assembly of nanospheres in the epidermis, morph-dependent changes result from adjustments in the composition of pterin pigments within the nanospheres, and from associated shifts in optical density. Other pigments fine-tune hue and brilliance by absorbing stray light. These mechanisms produce an impressive palette of colours and offer guidance for genetic studies on the evolution of colour polymorphism and visual communication.
Collapse
Affiliation(s)
- Miriam J. Henze
- Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Olle Lind
- Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Bodo D. Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
- Zernike Institute for Advanced Materials, University of Groningen, NL-9747AG Groningen, The Netherlands
| | - Almut Kelber
- Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
13
|
Rios-Cardenas O, Bono L, Morris MR. Frequency-dependent selection and fluctuations around an equilibrium for alternative reproductive tactics in a swordtail. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Westerman EL, Letchinger R, Tenger-Trolander A, Massardo D, Palmer D, Kronforst MR. Does male preference play a role in maintaining female limited polymorphism in a Batesian mimetic butterfly? Behav Processes 2018; 150:47-58. [PMID: 29471021 DOI: 10.1016/j.beproc.2018.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/16/2018] [Accepted: 02/13/2018] [Indexed: 11/28/2022]
Abstract
Female-limited polymorphism occurs in multiple butterfly species with Batesian mimicry. While frequency-dependent selection is often argued as the driving force behind polymorphism in Batesian mimicry systems, male preference and alternative female mating strategies may also influence the maintenance of multiple female forms. Through a series of behavioural assays with the female-limited Batesian mimetic butterfly Papilio polytes, we show that males prefer stationary mimetic females over stationary non-mimetic females, but weigh female activity levels more heavily than female wing pattern when choosing between active mimetic and active non-mimetic females. Male preference for mimetic vs. non-mimetic females is independent of male genotype at the locus responsible for the female wing pattern, the autosomal gene doublesex. However male genotype does influence their response to active females. Male emphasis on female behaviour instead of appearance may reduce sexual selection pressures on female morphology, thereby facilitating frequency-dependent natural selection due to predation risk and toxic model abundance.
Collapse
Affiliation(s)
- E L Westerman
- Department of Ecology & Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 60637, USA; Department of Biological Sciences, University of Arkansas, 850 W. Dickson St., Fayetteville, AR 72701, USA.
| | - R Letchinger
- Department of Ecology & Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 60637, USA.
| | - A Tenger-Trolander
- Department of Ecology & Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 60637, USA.
| | - D Massardo
- Department of Ecology & Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 60637, USA.
| | - D Palmer
- Department of Ecology & Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 60637, USA.
| | - M R Kronforst
- Department of Ecology & Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Sánchez-Guillén RA, Wellenreuther M, Chávez-Ríos JR, Beatty CD, Rivas-Torres A, Velasquez-Velez M, Cordero-Rivera A. Alternative reproductive strategies and the maintenance of female color polymorphism in damselflies. Ecol Evol 2017; 7:5592-5602. [PMID: 28811877 PMCID: PMC5552903 DOI: 10.1002/ece3.3083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Genetic polymorphisms are powerful model systems to study the maintenance of diversity in nature. In some systems, polymorphisms are limited to female coloration; these are thought to have arisen as a consequence of reducing male mating harassment, commonly resulting in negative frequency-dependent selection on female color morphs. One example is the damselfly Ischnura elegans, which shows three female color morphs and strong sexual conflict over mating rates. Here, we present research integrating male tactics, and female evolutionary strategies (female mating behavior and morph-specific female fecundity) in populations with different morph-specific mating frequencies, to obtain an understanding of mating rates in nature that goes beyond the mere measure of color frequencies. We found that female morph behavior differed significantly among but not within morphs (i.e., female morph behavior was fixed). In contrast, male tactics were strongly affected by the female morph frequency in the population. Laboratory work comparing morph-specific female fecundity revealed that androchrome females have lower fecundity than both of the gynochrome female morphs in the short term (3-days), but over a 10-day period one of the gynochrome female morphs became more fecund than either of the other morphs. In summary, our study found sex-specific dynamics in response to different morph frequencies and also highlights the importance of studying morph-specific fecundities across different time frames to gain a better understanding of the role of alternative reproductive strategies in the maintenance of female-limited color polymorphism.
Collapse
Affiliation(s)
- Rosa A Sánchez-Guillén
- Instituto de Ecología AC (INECOL) Red de Biología Evolutiva Xalapa, Veracruz Mexico.,Department of Biology Lund University Lund Sweden
| | - Maren Wellenreuther
- Department of Biology Lund University Lund Sweden.,Institute for Plant and Food Research Limited Nelson New Zealand
| | - Jesús R Chávez-Ríos
- Centro Tlaxcala de Biología de la Conducta Universidad Autónoma de Tlaxcala Tlaxcala Mexico.,Departamento de Biología Celular y Fisiología Instituto de investigaciones biomédicas Universidad Nacional Autónoma de México Tlaxcala Mexico
| | | | - Anais Rivas-Torres
- ECOEVO Lab Departamento de Ecoloxía e Bioloxía animal Universidade de Vigo Vigo Spain
| | - María Velasquez-Velez
- Laboratorio de Zoología y Ecología Acuática (LAZOEA) Universidad de los Andes Bogotá Colombia
| | - Adolfo Cordero-Rivera
- ECOEVO Lab Departamento de Ecoloxía e Bioloxía animal Universidade de Vigo Vigo Spain
| |
Collapse
|
16
|
Willink B, Svensson EI. Intra- and intersexual differences in parasite resistance and female fitness tolerance in a polymorphic insect. Proc Biol Sci 2017; 284:20162407. [PMID: 28123090 PMCID: PMC5310041 DOI: 10.1098/rspb.2016.2407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/20/2016] [Indexed: 11/12/2022] Open
Abstract
To understand host-parasite interactions, it is necessary to quantify variation and covariation in defence traits. We quantified parasite resistance and fitness tolerance of a polymorphic damselfly (Ischnura elegans), an insect with three discrete female colour morphs but with monomorphic males. We quantified sex and morph differences in parasite resistance (prevalence and intensity of water mite infections) and morph-specific fitness tolerance in the females in natural populations for over a decade. There was no evidence for higher parasite susceptibility in males as a cost of sexual selection, whereas differences in defence mechanisms between female morphs are consistent with correlational selection operating on combinations of parasite resistance and tolerance. We suggest that tolerance differences between female morphs interact with frequency-dependent sexual conflict, which maintains the polymorphism locally. Host-parasite interactions can therefore shape intra- and intersexual phenotypic divergence and interfere with sexual selection and sexual conflict.
Collapse
Affiliation(s)
- Beatriz Willink
- Department of Biology, Evolutionary Ecology Unit, Lund University, Ecology Building, Lund 223-62, Sweden
| | - Erik I Svensson
- Department of Biology, Evolutionary Ecology Unit, Lund University, Ecology Building, Lund 223-62, Sweden
| |
Collapse
|
17
|
Sanmartín-Villar I, Rivas-Torres A, Gabela-Flores MV, Encalada AC, Cordero-Rivera A. Female polymorphism and colour variability in Argia oculata (Coenagrionidae: Zygoptera). NEOTROPICAL BIODIVERSITY 2017. [DOI: 10.1080/23766808.2017.1398037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Iago Sanmartín-Villar
- ECOEVO Lab, Universidade de Vigo, Escola de Enxeñaría Forestal, Campus A Xunqueira, Pontevedra, Spain
| | - Anais Rivas-Torres
- ECOEVO Lab, Universidade de Vigo, Escola de Enxeñaría Forestal, Campus A Xunqueira, Pontevedra, Spain
| | - María Virginia Gabela-Flores
- Laboratorio de Ecología Acuática, Instituto BIOSFERA, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Campus Cumbayá, Quito, Ecuador
| | - Andrea C. Encalada
- Laboratorio de Ecología Acuática, Instituto BIOSFERA, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Campus Cumbayá, Quito, Ecuador
| | - Adolfo Cordero-Rivera
- ECOEVO Lab, Universidade de Vigo, Escola de Enxeñaría Forestal, Campus A Xunqueira, Pontevedra, Spain
| |
Collapse
|
18
|
Cotoras DD, Brewer MS, Croucher PJP, Oxford GS, Lindberg DR, Gillespie RG. Convergent evolution in the colour polymorphism ofSelkirkiellaspiders (Theridiidae) from the South American temperate rainforest. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Darko D. Cotoras
- Department of Integrative Biology; University of California; 3060 Valley Life Sciences Building Berkeley CA 94720-3140 USA
| | - Michael S. Brewer
- Department of Biology; East Carolina University; 1000 E 5th Street Greenville NC 27858-4353 USA
| | - Peter J. P. Croucher
- Essig Museum of Entomology; University of California; 1170 Valley Life Sciences Building Berkeley CA 94720-3140 USA
- Trovagene Inc.; 11055 Flintkote Avenue San Diego CA 92121 USA
| | - Geoff S. Oxford
- Department of Biology; University of York; Wentworth Way Heslington York YO10 5DD UK
| | - David R. Lindberg
- Department of Integrative Biology; University of California; 3060 Valley Life Sciences Building Berkeley CA 94720-3140 USA
- Museum of Paleontology; University of California; 1101 Valley Life Sciences Building Berkeley CA 94720-3140 USA
| | - Rosemary G. Gillespie
- Department of Environmental Science; University of California; 137 Mulford Hall Berkeley CA 94720-3114 USA
| |
Collapse
|
19
|
Sanmartín-Villar I, Cordero-Rivera A. The inheritance of female colour polymorphism in Ischnura genei (Zygoptera: Coenagrionidae), with observations on melanism under laboratory conditions. PeerJ 2016; 4:e2380. [PMID: 27635344 PMCID: PMC5012302 DOI: 10.7717/peerj.2380] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/29/2016] [Indexed: 11/23/2022] Open
Abstract
Current research on female colour polymorphism in Ischnura damselflies suggests that a balanced fitness trade-off between morphotypes contributes to the maintenance of polymorphism inside populations. The genetic inheritance system constitutes a key factor to understand morph fluctuation and fitness. Ischnura genei, an endemic species of some Mediterranean islands, has three female colour morphs, including one androchrome (male-coloured) and two gynochromes. In this study, we reared two generations of I. genei under laboratory conditions and tested male behavioural responses to female colour morphs in the field. We recorded ontogenetic colour changes and studied morph frequency in three populations from Sardinia (Italy). Morph frequencies of laboratory crosses can be explained by a model based on an autosomal locus with three alleles and sex-restricted expression, except for one crossing of 42 families with unexpected offspring. The allelic dominance relationship was androchrome > infuscans > aurantiaca. Old individuals reared in the laboratory exhibited different levels of melanism in variable extent depending on sex and morph. Results of model presentations indicate a male preference for gynochrome females and the lack of recognition of androchromes as potential mates. Aurantiaca females were the most frequent morph in the field (63–87%). Further studies in other populations and islands are needed to understand the maintenance of this polymorphism.
Collapse
|
20
|
Culumber ZW, Tobler M. Spatiotemporal environmental heterogeneity and the maintenance of the tailspot polymorphism in the variable platyfish (Xiphophorus variatus). Evolution 2016; 70:408-19. [PMID: 26748941 DOI: 10.1111/evo.12852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/29/2015] [Accepted: 12/08/2015] [Indexed: 11/28/2022]
Abstract
Genetic variation is critical for adaptive evolution. Despite its importance, there is still limited evidence in support of some prominent theoretical models explaining the maintenance of genetic polymorphism within populations. We examined 84 populations of Xiphophorus variatus, a livebearing fish with a genetic polymorphism associated with physiological performance, to test: (1) whether niche differentiation explains broad-scale maintenance of polymorphism, (2) whether polymorphism is maintained among populations by local adaptation and migration, or (3) whether heterogeneity in explicit environmental variables could be linked to levels of polymorphism within populations. We found no evidence of climatic niche differentiation that could generate or maintain broad geographic variation in polymorphism. Subsequently, hierarchical partitioning of genetic richness and partial mantel tests revealed that 76% of the observed genetic richness was partitioned within populations with no effect of geographic distance on polymorphism. These results strongly suggest a lack of migration-selection balance in the maintenance of polymorphism, and model selection confirmed a significant relationship between environmental heterogeneity and genetic richness within populations. Few studies have demonstrated such effects at this scale, and additional studies in other taxa should examine the generality of gene-by-environment interactions across populations to better understand the dynamics and scale of balancing selection.
Collapse
Affiliation(s)
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, Kansas, 66506
| |
Collapse
|
21
|
Cooper IA, Brown JM, Getty T. A role for ecology in the evolution of colour variation and sexual dimorphism in Hawaiian damselflies. J Evol Biol 2015; 29:418-27. [DOI: 10.1111/jeb.12796] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/01/2015] [Accepted: 11/09/2015] [Indexed: 11/29/2022]
Affiliation(s)
- I. A. Cooper
- Department of Zoology Kellogg Biological Station Michigan State University Hickory Corners MI USA
- Department of Biology James Madison University Harrisonburg VA USA
| | - J. M. Brown
- Department of Biology Grinnell College Grinnell IA USA
| | - T. Getty
- Department of Zoology Kellogg Biological Station Michigan State University Hickory Corners MI USA
| |
Collapse
|
22
|
Le Rouzic A, Hansen TF, Gosden TP, Svensson EI. Evolutionary Time-Series Analysis Reveals the Signature of Frequency-Dependent Selection on a Female Mating Polymorphism. Am Nat 2015; 185:E182-96. [DOI: 10.1086/680982] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Bots J, Iserbyt A, Van Gossum H, Hammers M, Sherratt TN. Frequency-dependent selection on female morphs driven by premating interactions with males. Am Nat 2015; 186:141-50. [PMID: 26098345 DOI: 10.1086/681005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Species showing color polymorphisms-the presence of two or more genetically determined color morphs within a single population-are excellent systems for studying the selective forces driving the maintenance of genetic diversity. Despite a shortage of empirical evidence, it is often suggested that negative frequency-dependent mate preference by males (or diet choice by predators) results in fitness benefits for the rare female morph (or prey type). Moreover, most studies have focused on the male (or predator) behavior in these systems and largely overlooked the importance of female (or prey) resistance behavior. Here, we provide the first explicit test of the role of frequency-dependent and frequency-independent intersexual interactions in female polymorphic damselflies. We identify the stage of the mating sequence when frequency-dependent selection is likely to act by comparing indexes of male mate preference when the female has little (females presented on sticks), moderate (females in cages), and high (females free to fly in the field) ability to avoid male mating attempts. Frequency-dependent male preferences were found only in those experiments where females had little ability to resist male harassment, indicating that premating interactions most likely drive negative frequency-dependent selection in this system. In addition, by separating frequency-dependent male mating preference from the baseline frequency-independent component, we reconcile the seemingly contradictory results of previous studies and highlight the roles of both forms of selection in maintaining the polymorphism at a given equilibrium. We conclude that considering interactions among all players-here, males and females-is crucial to fully understanding the mechanisms underlying the maintenance of genetic polymorphisms in the wild.
Collapse
Affiliation(s)
- Jessica Bots
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
24
|
Abstract
Longevity as a complex life-history trait shares an ontogenetic relationship with other quantitative traits and varies among individuals, families and populations. Heritability estimates of longevity suggest that about a third of the phenotypic variation associated with the trait is attributable to genetic factors, and the rest is influenced by epigenetic and environmental factors. Individuals react differently to the environments that they are a part of, as well as to the environments they construct for their survival and reproduction; the latter phenomenon is known as niche construction. Lifestyle influences longevity at all the stages of development and levels of human diversity. Hence, lifestyle may be viewed as a component of niche construction. Here, we: a) interpret longevity using a combination of genotype-epigenetic-phenotype (GEP) map approach and niche-construction theory, and b) discuss the plausible influence of genetic and epigenetic factors in the distribution and maintenance of longevity among individuals with normal life span on the one hand, and centenarians on the other. Although similar genetic and environmental factors appear to be common to both of these groups, exceptional longevity may be influenced by polymorphisms in specific genes, coupled with superior genomic stability and homeostatic mechanisms, maintained by negative frequency-dependent selection. We suggest that a comparative analysis of longevity between individuals with normal life span and centenarians, along with insights from population ecology and evolutionary biology, would not only advance our knowledge of biological mechanisms underlying human longevity, but also provide deeper insights into extending healthy life span.
Collapse
Affiliation(s)
- Diddahally Govindaraju
- Division of Gerontology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, United States
| | - Gil Atzmon
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, United States
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Nir Barzilai
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, United States
| |
Collapse
|
25
|
Roulin A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol Rev Camb Philos Soc 2015; 91:328-48. [PMID: 25631160 DOI: 10.1111/brv.12171] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 11/30/2014] [Accepted: 12/11/2014] [Indexed: 02/03/2023]
Abstract
The signalling function of melanin-based colouration is debated. Sexual selection theory states that ornaments should be costly to produce, maintain, wear or display to signal quality honestly to potential mates or competitors. An increasing number of studies supports the hypothesis that the degree of melanism covaries with aspects of body condition (e.g. body mass or immunity), which has contributed to change the initial perception that melanin-based colour ornaments entail no costs. Indeed, the expression of many (but not all) melanin-based colour traits is weakly sensitive to the environment but strongly heritable suggesting that these colour traits are relatively cheap to produce and maintain, thus raising the question of how such colour traits could signal quality honestly. Here I review the production, maintenance and wearing/displaying costs that can generate a correlation between melanin-based colouration and body condition, and consider other evolutionary mechanisms that can also lead to covariation between colour and body condition. Because genes controlling melanic traits can affect numerous phenotypic traits, pleiotropy could also explain a linkage between body condition and colouration. Pleiotropy may result in differently coloured individuals signalling different aspects of quality that are maintained by frequency-dependent selection or local adaptation. Colouration may therefore not signal absolute quality to potential mates or competitors (e.g. dark males may not achieve a higher fitness than pale males); otherwise genetic variation would be rapidly depleted by directional selection. As a consequence, selection on heritable melanin-based colouration may not always be directional, but mate choice may be conditional to environmental conditions (i.e. context-dependent sexual selection). Despite the interest of evolutionary biologists in the adaptive value of melanin-based colouration, its actual role in sexual selection is still poorly understood.
Collapse
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, 1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Abstract
At the end of the last century, sexual conflict was identified as a powerful engine of speciation, potentially even more important than ecological selection. Earlier work that followed--experimental, comparative, and mathematical--provided strong initial support for this assertion. However, as the field matures, both the power of sexual conflict and constraints on the evolution of reproductive isolation as driven by sexual conflict are becoming better understood. From theoretical studies, we now know that speciation is only one of several possible evolutionary outcomes of sexual conflict. In line with these predictions, both experimental evolution studies and comparative analyses of fertilization proteins and of species richness show that sexual conflict leads to, or is associated with, reproductive isolation and speciation in some cases but not in others. Increased genetic variation (especially in females) without reproductive isolation is an underappreciated consequence of sexually antagonistic selection.
Collapse
Affiliation(s)
- Sergey Gavrilets
- Department of Ecology and Evolutionary Biology, Department of Mathematics, National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
27
|
Wellenreuther M, Svensson EI, Hansson B. Sexual selection and genetic colour polymorphisms in animals. Mol Ecol 2014; 23:5398-414. [DOI: 10.1111/mec.12935] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Maren Wellenreuther
- Evolutionary Ecology; Department of Biology; Lund University; SE-223 62 Lund Sweden
| | - Erik I. Svensson
- Evolutionary Ecology; Department of Biology; Lund University; SE-223 62 Lund Sweden
| | - Bengt Hansson
- Molecular Ecology; Department of Biology; Lund University; SE-223 62 Lund Sweden
| |
Collapse
|
28
|
Evolution of increased phenotypic diversity enhances population performance by reducing sexual harassment in damselflies. Nat Commun 2014; 5:4468. [DOI: 10.1038/ncomms5468] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 06/19/2014] [Indexed: 11/09/2022] Open
|
29
|
Jorge F, Perera A, Roca V, Carretero MA, Harris DJ, Poulin R. Evolution of alternative male morphotypes in oxyurid nematodes: a case of convergence? J Evol Biol 2014; 27:1631-43. [DOI: 10.1111/jeb.12430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/16/2014] [Indexed: 11/29/2022]
Affiliation(s)
- F. Jorge
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO; Universidade do Porto; Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Porto Portugal
- Department of Zoology; University of Otago; Dunedin New Zealand
| | - A. Perera
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO; Universidade do Porto; Vairão Portugal
| | - V. Roca
- Departament de Zoologia; Facultat de Ciències Biològiques; Universitat de València; València Spain
| | - M. A. Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO; Universidade do Porto; Vairão Portugal
| | - D. J. Harris
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO; Universidade do Porto; Vairão Portugal
| | - R. Poulin
- Department of Zoology; University of Otago; Dunedin New Zealand
| |
Collapse
|
30
|
Green KK, Svensson EI, Bergsten J, Härdling R, Hansson B. The interplay between local ecology, divergent selection, and genetic drift in population divergence of a sexually antagonistic female trait. Evolution 2014; 68:1934-46. [PMID: 24635214 DOI: 10.1111/evo.12408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/03/2014] [Indexed: 12/21/2022]
Abstract
Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus and Graphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, whereas for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data, therefore, suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism.
Collapse
Affiliation(s)
- Kristina Karlsson Green
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden; Current Address: Department of Biosciences, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
31
|
The sicker sex: understanding male biases in parasitic infection, resource allocation and fitness. PLoS One 2013; 8:e76246. [PMID: 24194830 PMCID: PMC3806765 DOI: 10.1371/journal.pone.0076246] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/21/2013] [Indexed: 11/20/2022] Open
Abstract
The "sicker sex" idea summarizes our knowledge of sex biases in parasite burden and immune ability whereby males fare worse than females. The theoretical basis of this is that because males invest more on mating effort than females, the former pay the costs by having a weaker immune system and thus being more susceptible to parasites. Females, conversely, have a greater parental investment. Here we tested the following: a) whether both sexes differ in their ability to defend against parasites using a natural host-parasite system; b) the differences in resource allocation conflict between mating effort and parental investment traits between sexes; and, c) effect of parasitism on survival for both sexes. We used a number of insect damselfly species as study subjects. For (a), we quantified gregarine and mite parasites, and experimentally manipulated gregarine levels in both sexes during adult ontogeny. For (b), first, we manipulated food during adult ontogeny and recorded thoracic fat gain (a proxy of mating effort) and abdominal weight (a proxy of parental investment) in both sexes. Secondly for (b), we manipulated food and gregarine levels in both sexes when adults were about to become sexually mature, and recorded gregarine number. For (c), we infected male and female adults of different ages and measured their survival. Males consistently showed more parasites than females apparently due to an increased resource allocation to fat production in males. Conversely, females invested more on abdominal weight. These differences were independent of how much food/infecting parasites were provided. The cost of this was that males had more parasites and reduced survival than females. Our results provide a resource allocation mechanism for understanding sexual differences in parasite defense as well as survival consequences for each sex.
Collapse
|