1
|
Mason AJ, Holding ML, Rautsaw RM, Rokyta DR, Parkinson CL, Gibbs HL. Venom gene sequence diversity and expression jointly shape diet adaptation in pitvipers. Mol Biol Evol 2022; 39:6567549. [PMID: 35413123 PMCID: PMC9040050 DOI: 10.1093/molbev/msac082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding the joint roles of protein sequence variation and differential expression during adaptive evolution is a fundamental, yet largely unrealized goal of evolutionary biology. Here, we use phylogenetic path analysis to analyze a comprehensive venom-gland transcriptome dataset spanning three genera of pitvipers to identify the functional genetic basis of a key adaptation (venom complexity) linked to diet breadth (DB). The analysis of gene-family-specific patterns reveals that, for genes encoding two of the most important venom proteins (snake venom metalloproteases and snake venom serine proteases), there are direct, positive relationships between sequence diversity (SD), expression diversity (ED), and increased DB. Further analysis of gene-family diversification for these proteins showed no constraint on how individual lineages achieved toxin gene SD in terms of the patterns of paralog diversification. In contrast, another major venom protein family (PLA2s) showed no relationship between venom molecular diversity and DB. Additional analyses suggest that other molecular mechanisms—such as higher absolute levels of expression—are responsible for diet adaptation involving these venom proteins. Broadly, our findings argue that functional diversity generated through sequence and expression variations jointly determine adaptation in the key components of pitviper venoms, which mediate complex molecular interactions between the snakes and their prey.
Collapse
Affiliation(s)
- Andrew J Mason
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | | | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.,Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Effects of Predator-Prey Interactions on Predator Traits: Differentiation of Diets and Venoms of a Marine Snail. Toxins (Basel) 2019; 11:toxins11050299. [PMID: 31130611 PMCID: PMC6563511 DOI: 10.3390/toxins11050299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
Species interactions are fundamental ecological forces that can have significant impacts on the evolutionary trajectories of species. Nonetheless, the contribution of predator-prey interactions to genetic and phenotypic divergence remains largely unknown. Predatory marine snails of the family Conidae exhibit specializations for different prey items and intraspecific variation in prey utilization patterns at geographic scales. Because cone snails utilize venom to capture prey and venom peptides are direct gene products, it is feasible to examine the evolution of genes associated with changes in resource utilization. Here, we compared feeding ecologies and venom duct transcriptomes of individuals from three populations of Conus miliaris, a species that exhibits geographic variation in prey utilization and dietary breadth, in order to determine the extent to which dietary differences are correlated with differences in venom composition, and if expanded niche breadth is associated with increased variation in venom composition. While populations showed little to no overlap in resource utilization, taxonomic richness of prey was greatest at Easter Island. Changes in dietary breadth were associated with differences in expression patterns and increased genetic differentiation of toxin-related genes. The Easter Island population also exhibited greater diversity of toxin-related transcripts, but did not show increased variance in expression of these transcripts. These results imply that differences in dietary breadth contribute more to the structural and regulatory differentiation of venoms than differences in diet.
Collapse
|
3
|
Phuong MA, Mahardika GN. Targeted Sequencing of Venom Genes from Cone Snail Genomes Improves Understanding of Conotoxin Molecular Evolution. Mol Biol Evol 2018; 35:1210-1224. [PMID: 29514313 PMCID: PMC5913681 DOI: 10.1093/molbev/msy034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To expand our capacity to discover venom sequences from the genomes of venomous organisms, we applied targeted sequencing techniques to selectively recover venom gene superfamilies and nontoxin loci from the genomes of 32 cone snail species (family, Conidae), a diverse group of marine gastropods that capture their prey using a cocktail of neurotoxic peptides (conotoxins). We were able to successfully recover conotoxin gene superfamilies across all species with high confidence (> 100× coverage) and used these data to provide new insights into conotoxin evolution. First, we found that conotoxin gene superfamilies are composed of one to six exons and are typically short in length (mean = ∼85 bp). Second, we expanded our understanding of the following genetic features of conotoxin evolution: 1) positive selection, where exons coding the mature toxin region were often three times more divergent than their adjacent noncoding regions, 2) expression regulation, with comparisons to transcriptome data showing that cone snails only express a fraction of the genes available in their genome (24-63%), and 3) extensive gene turnover, where Conidae species varied from 120 to 859 conotoxin gene copies. Finally, using comparative phylogenetic methods, we found that while diet specificity did not predict patterns of conotoxin evolution, dietary breadth was positively correlated with total conotoxin gene diversity. Overall, the targeted sequencing technique demonstrated here has the potential to radically increase the pace at which venom gene families are sequenced and studied, reshaping our ability to understand the impact of genetic changes on ecologically relevant phenotypes and subsequent diversification.
Collapse
Affiliation(s)
- Mark A Phuong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
| | - Gusti N Mahardika
- Animal Biomedical and Molecular Biology Laboratory, Faculty of Veterinary Medicine, Udayana University Bali, Denpasar, Bali, Indonesia
| |
Collapse
|
4
|
Dunn CW, Zapata F, Munro C, Siebert S, Hejnol A. Pairwise comparisons across species are problematic when analyzing functional genomic data. Proc Natl Acad Sci U S A 2018; 115:E409-E417. [PMID: 29301966 PMCID: PMC5776959 DOI: 10.1073/pnas.1707515115] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There is considerable interest in comparing functional genomic data across species. One goal of such work is to provide an integrated understanding of genome and phenotype evolution. Most comparative functional genomic studies have relied on multiple pairwise comparisons between species, an approach that does not incorporate information about the evolutionary relationships among species. The statistical problems that arise from not considering these relationships can lead pairwise approaches to the wrong conclusions and are a missed opportunity to learn about biology that can only be understood in an explicit phylogenetic context. Here, we examine two recently published studies that compare gene expression across species with pairwise methods, and find reason to question the original conclusions of both. One study interpreted pairwise comparisons of gene expression as support for the ortholog conjecture, the hypothesis that orthologs tend to have more similar attributes (expression in this case) than paralogs. The other study interpreted pairwise comparisons of embryonic gene expression across distantly related animals as evidence for a distinct evolutionary process that gave rise to phyla. In each study, distinct patterns of pairwise similarity among species were originally interpreted as evidence of particular evolutionary processes, but instead, we find that they reflect species relationships. These reanalyses concretely show the inadequacy of pairwise comparisons for analyzing functional genomic data across species. It will be critical to adopt phylogenetic comparative methods in future functional genomic work. Fortunately, phylogenetic comparative biology is also a rapidly advancing field with many methods that can be directly applied to functional genomic data.
Collapse
Affiliation(s)
- Casey W Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912;
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Catriona Munro
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5006, Norway
| |
Collapse
|
5
|
Chang D, Duda TF. Age-related association of venom gene expression and diet of predatory gastropods. BMC Evol Biol 2016; 16:27. [PMID: 26818019 PMCID: PMC4730619 DOI: 10.1186/s12862-016-0592-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/13/2016] [Indexed: 11/29/2022] Open
Abstract
Background Venomous organisms serve as wonderful systems to study the evolution and expression of genes that are directly associated with prey capture. To evaluate the relationship between venom gene expression and prey utilization, we examined these features among individuals of different ages of the venomous, worm-eating marine snail Conus ebraeus. We determined expression levels of six genes that encode venom components, used a DNA-based approach to evaluate the identity of prey items, and compared patterns of venom gene expression and dietary specialization. Results C. ebraeus exhibits two major shifts in diet with age—an initial transition from a relatively broad dietary breadth to a narrower one and then a return to a broader diet. Venom gene expression patterns also change with growth. All six venom genes are up-regulated in small individuals, down-regulated in medium-sized individuals, and then either up-regulated or continued to be down-regulated in members of the largest size class. Venom gene expression is not significantly different among individuals consuming different types of prey, but instead is coupled and slightly delayed with shifts in prey diversity. Conclusion These results imply that changes in gene expression contribute to intraspecific variation of venom composition and that gene expression patterns respond to changes in the diversity of food resources during different growth stages. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0592-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Chang
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA. .,Department of Statistics, University of Michigan, Ann Arbor, Michigan, USA. .,Present address: University of California Santa Cruz, 1156 High Street -- Mail Stop EEBiology, Santa Cruz, CA, 95064, USA.
| | - Thomas F Duda
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA. .,Smithsonian Tropical Research Institute, Balboa, Ancόn, Republic of Panama.
| |
Collapse
|
6
|
Barghi N, Concepcion GP, Olivera BM, Lluisma AO. Structural features of conopeptide genes inferred from partial sequences of the Conus tribblei genome. Mol Genet Genomics 2015; 291:411-22. [PMID: 26423067 DOI: 10.1007/s00438-015-1119-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 09/18/2015] [Indexed: 10/23/2022]
Abstract
The evolvability of venom components (in particular, the gene-encoded peptide toxins) in venomous species serves as an adaptive strategy allowing them to target new prey types or respond to changes in the prey field. The structure, organization, and expression of the venom peptide genes may provide insights into the molecular mechanisms that drive the evolution of such genes. Conus is a particularly interesting group given the high chemical diversity of their venom peptides, and the rapid evolution of the conopeptide-encoding genes. Conus genomes, however, are large and characterized by a high proportion of repetitive sequences. As a result, the structure and organization of conopeptide genes have remained poorly known. In this study, a survey of the genome of Conus tribblei was undertaken to address this gap. A partial assembly of C. tribblei genome was generated; the assembly, though consisting of a large number of fragments, accounted for 2160.5 Mb of sequence. A large number of repetitive genomic elements consisting of 642.6 Mb of retrotransposable elements, simple repeats, and novel interspersed repeats were observed. We characterized the structural organization and distribution of conotoxin genes in the genome. A significant number of conopeptide genes (estimated to be between 148 and 193) belonging to different superfamilies with complete or nearly complete exon regions were observed, ~60 % of which were expressed. The unexpressed conopeptide genes represent hidden but significant conotoxin diversity. The conotoxin genes also differed in the frequency and length of the introns. The interruption of exons by long introns in the conopeptide genes and the presence of repeats in the introns may indicate the importance of introns in facilitating recombination, evolution and diversification of conotoxins. These findings advance our understanding of the structural framework that promotes the gene-level molecular evolution of venom peptides.
Collapse
Affiliation(s)
- Neda Barghi
- Marine Science Institute, University of the Philippines-Diliman, 1101, Quezon City, Philippines.,Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines-Diliman, 1101, Quezon City, Philippines.,Philippine Genome Center, University of the Philippines, 1101, Quezon City, Philippines
| | | | - Arturo O Lluisma
- Marine Science Institute, University of the Philippines-Diliman, 1101, Quezon City, Philippines. .,Philippine Genome Center, University of the Philippines, 1101, Quezon City, Philippines.
| |
Collapse
|
7
|
Barghi N, Concepcion GP, Olivera BM, Lluisma AO. Comparison of the Venom Peptides and Their Expression in Closely Related Conus Species: Insights into Adaptive Post-speciation Evolution of Conus Exogenomes. Genome Biol Evol 2015; 7:1797-814. [PMID: 26047846 PMCID: PMC4494072 DOI: 10.1093/gbe/evv109] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/24/2022] Open
Abstract
Genes that encode products with exogenous targets, which comprise an organism's "exogenome," typically exhibit high rates of evolution. The genes encoding the venom peptides (conotoxins or conopeptides) in Conus sensu lato exemplify this class of genes. Their rapid diversification has been established and is believed to be linked to the high speciation rate in this genus. However, the molecular mechanisms that underlie venom peptide diversification and ultimately emergence of new species remain poorly understood. In this study, the sequences and expression levels of conotoxins from several specimens of two closely related worm-hunting species, Conus tribblei and Conus lenavati, were compared through transcriptome analysis. Majority of the identified putative conopeptides were novel, and their diversity, even in each specimen, was remarkably high suggesting a wide range of prey targets for these species. Comparison of the interspecific expression patterns of conopeptides at the superfamily level resulted in the discovery of both conserved as well as species-specific expression patterns, indicating divergence in the regulatory network affecting conotoxin gene expression. Comparison of the transcriptomes of the individual snails revealed that each specimen produces a distinct set of highly expressed conopeptides, reflecting the capability of individual snails to fine-tune the composition of their venoms. These observations reflect the role of sequence divergence and divergence in the control of expression for specific conopeptides in the evolution of the exogenome and hence venom composition in Conus.
Collapse
Affiliation(s)
- Neda Barghi
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, Philippines
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, Philippines Philippine Genome Center, University of the Philippines, Quezon City, Philippines
| | | | - Arturo O Lluisma
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, Philippines Philippine Genome Center, University of the Philippines, Quezon City, Philippines
| |
Collapse
|
8
|
Application of community phylogenetic approaches to understand gene expression: differential exploration of venom gene space in predatory marine gastropods. BMC Evol Biol 2014; 14:123. [PMID: 24903151 PMCID: PMC4064522 DOI: 10.1186/1471-2148-14-123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 05/23/2014] [Indexed: 11/10/2022] Open
Abstract
Background Predatory marine gastropods of the genus Conus exhibit substantial variation in venom composition both within and among species. Apart from mechanisms associated with extensive turnover of gene families and rapid evolution of genes that encode venom components (‘conotoxins’), the evolution of distinct conotoxin expression patterns is an additional source of variation that may drive interspecific differences in the utilization of species’ ‘venom gene space’. To determine the evolution of expression patterns of venom genes of Conus species, we evaluated the expression of A-superfamily conotoxin genes of a set of closely related Conus species by comparing recovered transcripts of A-superfamily genes that were previously identified from the genomes of these species. We modified community phylogenetics approaches to incorporate phylogenetic history and disparity of genes and their expression profiles to determine patterns of venom gene space utilization. Results Less than half of the A-superfamily gene repertoire of these species is expressed, and only a few orthologous genes are coexpressed among species. Species exhibit substantially distinct expression strategies, with some expressing sets of closely related loci (‘under-dispersed’ expression of available genes) while others express sets of more disparate genes (‘over-dispersed’ expression). In addition, expressed genes show higher dN/dS values than either unexpressed or ancestral genes; this implies that expression exposes genes to selection and facilitates rapid evolution of these genes. Few recent lineage-specific gene duplicates are expressed simultaneously, suggesting that expression divergence among redundant gene copies may be established shortly after gene duplication. Conclusions Our study demonstrates that venom gene space is explored differentially by Conus species, a process that effectively permits the independent and rapid evolution of venoms in these species.
Collapse
|