1
|
Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V, Soukal P, Barlow LD, Herman EK, Pipaliya SV, Pánek T, Žihala D, Petrželková R, Butenko A, Eme L, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Hampl V. The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion. Mol Biol Evol 2019; 36:2292-2312. [PMID: 31387118 PMCID: PMC6759080 DOI: 10.1093/molbev/msz147] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sebastian C Treitli
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Ondřej Brzoň
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Lukáš Novák
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Vojtěch Vacek
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Petr Soukal
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Lael D Barlow
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Emily K Herman
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Shweta V Pipaliya
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anzhelika Butenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Vladimír Hampl
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| |
Collapse
|
2
|
Zhou K, Kuo A, Grigoriev IV. Reverse transcriptase and intron number evolution. Stem Cell Investig 2014; 1:17. [PMID: 27358863 DOI: 10.3978/j.issn.2306-9759.2014.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/04/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND Introns are universal in eukaryotic genomes and play important roles in transcriptional regulation, mRNA export to the cytoplasm, nonsense-mediated decay as both a regulatory and a splicing quality control mechanism, R-loop avoidance, alternative splicing, chromatin structure, and evolution by exon-shuffling. METHODS Sixteen complete fungal genomes were used 13 of which were sequenced and annotated by JGI. Ustilago maydis, Cryptococcus neoformans, and Coprinus cinereus (also named Coprinopsis cinerea) were from the Broad Institute. Gene models from JGI-annotated genomes were taken from the GeneCatalog track that contained the best representative gene models. Varying fractions of the GeneCatalog were manually curated by external users. For clarity, we used the JGI unique database identifier. RESULTS The last common ancestor of eukaryotes (LECA) has an estimated 6.4 coding exons per gene (EPG) and evolved into the diverse eukaryotic life forms, which is recapitulated by the development of a stem cell. We found a parallel between the simulated reverse transcriptase (RT)-mediated intron loss and the comparative analysis of 16 fungal genomes that spanned a wide range of intron density. Although footprints of RT (RTF) were dynamic, relative intron location (RIL) to the 5'-end of mRNA faithfully traced RT-mediated intron loss and revealed 7.7 EPG for LECA. The mode of exon length distribution was conserved in simulated intron loss, which was exemplified by the shared mode of 75 nt between fungal and Chlamydomonas genomes. The dominant ancient exon length was corroborated by the average exon length of the most intron-rich genes in fungal genomes and consistent with ancient protein modules being ~25 aa. Combined with the conservation of a protein length of 400 aa, the earliest ancestor of eukaryotes could have 16 EPG. During earlier evolution, Ascomycota's ancestor had significantly more 3'-biased RT-mediated intron loss that was followed by dramatic RTF loss. There was a down trend of EPG from more conserved to less conserved genes. Moreover, species-specific genes have higher exon-densities, shorter exons, and longer introns when compared to genes conserved at the phylum level. However, intron length in species-specific genes became shorter than that of genes conserved in all species after genomes experiencing drastic intron loss. The estimated EPG from the most frequent exon length is more than double that from the RIL method. CONCLUSIONS This implies significant intron loss during the very early period of eukaryotic evolution. De novo gene-birth contributes to shorter exons, longer introns, and higher exon-density in species-specific genes relative to conserved genes.
Collapse
Affiliation(s)
- Kemin Zhou
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Alan Kuo
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Igor V Grigoriev
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| |
Collapse
|
3
|
Li W, Kuzoff R, Wong CK, Tucker A, Lynch M. Characterization of newly gained introns in Daphnia populations. Genome Biol Evol 2014; 6:2218-34. [PMID: 25123113 PMCID: PMC4202315 DOI: 10.1093/gbe/evu174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As one of the few known species in an active phase of intron proliferation, the microcrustacean Daphnia pulex is an especially attractive system for interrogating the gain and loss of introns in natural populations. In this study, we used a comparative population-genomic approach to identify and characterize 90 recently gained introns in this species. Molecular clock analyses indicate that these introns arose between 3.9 × 10(5) and 1.45 × 10(4) years ago, with a spike in intron proliferation approximately 5.2 × 10(4) to 1.22 × 10(5) years ago. Parallel gains at homologous positions contribute to 47.8% (43/90) of discovered new introns. A disproportionally large number of new introns were found in historically isolated populations in Oregon. Nonetheless, derived, intron-bearing alleles were also identified in a wide range of geographic locations, suggesting intron gain and, to a lesser degree, intron loss are important sources of genetic variation in natural populations of Daphnia. A majority (55/90 or 61.1%) of the identified neointrons have associated internal direct repeats with lengths and compositions that are unlikely to occur by chance, suggesting repeated bouts of staggered double-strand breaks (DSBs) during their evolution. Accordingly, internal, staggered DSBs may contribute to a passive trend toward increased length and sequence diversity in nascent introns.
Collapse
Affiliation(s)
- Wenli Li
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin
| | - Robert Kuzoff
- Department of Biology, University of Wisconsin-Whitewater
| | - Chen Khuan Wong
- Genetics and Genomics Program, Department of Medicine, Boston University
| | | | - Michael Lynch
- Department of Biology, Indiana University, Bloomington
| |
Collapse
|
4
|
Single-Cell DNA barcoding using sequences from the small subunit rRNA and internal transcribed spacer region identifies new species of Trichonympha and Trichomitopsis from the hindgut of the termite Zootermopsis angusticollis. PLoS One 2013; 8:e58728. [PMID: 23536818 PMCID: PMC3594152 DOI: 10.1371/journal.pone.0058728] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
To aid in their digestion of wood, lower termites are known to harbour a diverse community of prokaryotes as well as parabasalid and oxymonad protist symbionts. One of the best-studied lower termite gut communities is that of Zootermopsis angusticollis which has been known for almost 100 years to possess 3 species of Trichonympha (T. campanula, T. collaris, and T. sphaerica), 1 species of Trichomitopsis (T. termopsidis), as well as smaller flagellates. We have re-assessed this community by sequencing the small subunit (SSU) rRNA gene and the internal transcribed spacer (ITS) region from a large number of single Trichonympha and Trichomitopsis cells for which morphology was also documented. Based on phylogenetic clustering and sequence divergence, we identify 3 new species: Trichonympha postcylindrica, Trichomitopsis minor, and Trichomitopsis parvus spp. nov. Once identified by sequencing, the morphology of the isolated cells for all 3 new species was re-examined and found to be distinct from the previously described species: Trichonympha postcylindrica can be morphologically distinguished from the other Trichonympha species by an extension on its posterior end, whereas Trichomitopsis minor and T. parvus are smaller than T. termopsidis but similar in size to each other and cannot be distinguished based on morphology using light microscopy. Given that Z. angusticollis has one of the best characterized hindgut communities, the near doubling of the number of the largest and most easily identifiable symbiont species suggests that the diversity of hindgut symbionts is substantially underestimated in other termites as well. Accurate descriptions of the diversity of these microbial communities are essential for understanding hindgut ecology and disentangling the interactions among the symbionts, and molecular barcoding should be a priority for these systems.
Collapse
|
5
|
Sassera D, Lo N, Epis S, D'Auria G, Montagna M, Comandatore F, Horner D, Peretó J, Luciano AM, Franciosi F, Ferri E, Crotti E, Bazzocchi C, Daffonchio D, Sacchi L, Moya A, Latorre A, Bandi C. Phylogenomic evidence for the presence of a flagellum and cbb(3) oxidase in the free-living mitochondrial ancestor. Mol Biol Evol 2011; 28:3285-96. [PMID: 21690562 DOI: 10.1093/molbev/msr159] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The initiation of the intracellular symbiosis that would give rise to mitochondria and eukaryotes was a major event in the history of life on earth. Hypotheses to explain eukaryogenesis fall into two broad and competing categories: those proposing that the host was a phagocytotic proto-eukaryote that preyed upon the free-living mitochondrial ancestor (hereafter FMA), and those proposing that the host was an archaebacterium that engaged in syntrophy with the FMA. Of key importance to these hypotheses are whether the FMA was motile or nonmotile, and the atmospheric conditions under which the FMA thrived. Reconstructions of the FMA based on genome content of Rickettsiales representatives-generally considered to be the closest living relatives of mitochondria-indicate that it was nonmotile and aerobic. We have sequenced the genome of Candidatus Midichloria mitochondrii, a novel and phylogenetically divergent member of the Rickettsiales. We found that it possesses unique gene sets found in no other Rickettsiales, including 26 genes associated with flagellar assembly, and a cbb(3)-type cytochrome oxidase. Phylogenomic analyses show that these genes were inherited in a vertical fashion from an ancestral α-proteobacterium, and indicate that the FMA possessed a flagellum, and could undergo oxidative phosphorylation under both aerobic and microoxic conditions. These results indicate that the FMA played a more active and potentially parasitic role in eukaryogenesis than currently appreciated and provide an explanation for how the symbiosis could have evolved under low levels of oxygen.
Collapse
Affiliation(s)
- Davide Sassera
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol 2011; 162:607-18. [PMID: 21392573 DOI: 10.1016/j.resmic.2011.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/29/2011] [Indexed: 11/24/2022]
Abstract
Naegleria gruberi, a free-living protist, has long been treasured as a model for basal body and flagellar assembly due to its ability to differentiate from crawling amoebae into swimming flagellates. The full genome sequence of Naegleria gruberi has recently been used to estimate gene families ancestral to all eukaryotes and to identify novel aspects of Naegleria biology, including likely facultative anaerobic metabolism, extensive signaling cascades, and evidence for sexuality. Distinctive features of the Naegleria genome and nuclear biology provide unique perspectives for comparative cell biology, including cell division, RNA processing and nucleolar assembly. We highlight here exciting new and novel aspects of Naegleria biology identified through genomic analysis.
Collapse
|
7
|
Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, Sogin ML, Patterson DJ, Katz LA. Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 2010; 59:518-33. [PMID: 20656852 DOI: 10.1093/sysbio/syq037] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g., plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level "supergroups," many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Furthermore, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduce power to evaluate hypotheses. Here, we use a taxon-rich strategy to assess eukaryotic relationships. We show that analyses emphasizing broad taxonomic sampling (up to 451 taxa representing 72 major lineages) combined with a moderate number of genes yield a well-resolved eukaryotic tree of life. The consistency across analyses with varying numbers of taxa (88-451) and levels of missing data (17-69%) supports the accuracy of the resulting topologies. The resulting stable topology emerges without the removal of rapidly evolving genes or taxa, a practice common to phylogenomic analyses. Several major groups are stable and strongly supported in these analyses (e.g., SAR, Rhizaria, Excavata), whereas the proposed supergroup "Chromalveolata" is rejected. Furthermore, extensive instability among photosynthetic lineages suggests the presence of systematic biases including endosymbiotic gene transfer from symbiont (nucleus or plastid) to host. Our analyses demonstrate that stable topologies of ancient evolutionary relationships can be achieved with broad taxonomic sampling and a moderate number of genes. Finally, taxon-rich analyses such as presented here provide a method for testing the accuracy of relationships that receive high bootstrap support (BS) in phylogenomic analyses and enable placement of the multitude of lineages that lack genome scale data.
Collapse
Affiliation(s)
- Laura Wegener Parfrey
- Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 2010; 140:631-42. [PMID: 20211133 DOI: 10.1016/j.cell.2010.01.032] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/17/2009] [Accepted: 01/15/2010] [Indexed: 12/18/2022]
Abstract
Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.
Collapse
Affiliation(s)
- Lillian K Fritz-Laylin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
An Overview of the Introns-First Theory. J Mol Evol 2009; 69:527-40. [DOI: 10.1007/s00239-009-9279-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
|
10
|
Roy SW, Irimia M. Mystery of intron gain: new data and new models. Trends Genet 2008; 25:67-73. [PMID: 19070397 DOI: 10.1016/j.tig.2008.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 11/18/2008] [Accepted: 11/18/2008] [Indexed: 11/19/2022]
Abstract
Despite their ubiquity, the mechanisms and evolutionary forces responsible for the origins of spliceosomal introns remain mysterious. Recent molecular evidence supports the idea that intronic RNAs can reverse splice into RNA transcripts, a crucial step for an influential model of intron gain. However, a paradox attends this model because the rate of intron gain is expected to be orders of magnitude lower than the rate of intron loss in general, in contrast to findings from several lineages. We suggest two possible resolutions to this paradox, based on steric considerations and on the possibility of co-option by specific introns of retroelement transposition pathways, respectively. In addition, we introduce two potential mechanisms for intron creation, based on hybrid RNA-DNA reverse splicing and on template switching errors by reverse transcriptase.
Collapse
Affiliation(s)
- Scott William Roy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
11
|
Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event. BMC Evol Biol 2008; 8:305. [PMID: 18980666 PMCID: PMC2633302 DOI: 10.1186/1471-2148-8-305] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 11/03/2008] [Indexed: 11/22/2022] Open
Abstract
Background Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5) have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN). The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria) or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Results Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea); all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida). Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. Conclusion We conclude that the ancestral PPN GHF5 endoglucanase gene most probably consisted of the whole gene cassette, i.e. the GHF5 catalytic domain and the CBM2, rather than that it evolved by domain shuffling. Our evolutionary model for the gene structure in PPN GHF5 endoglucanases implies the occurrence of an early duplication event, and more recent gene duplications at genus or species level.
Collapse
|
12
|
Irimia M, Roy SW. Evolutionary convergence on highly-conserved 3' intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome. PLoS Genet 2008; 4:e1000148. [PMID: 18688272 PMCID: PMC2483917 DOI: 10.1371/journal.pgen.1000148] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 07/01/2008] [Indexed: 02/04/2023] Open
Abstract
The presence of spliceosomal introns in eukaryotes raises a range of questions about genomic evolution. Along with the fundamental mysteries of introns' initial proliferation and persistence, the evolutionary forces acting on intron sequences remain largely mysterious. Intron number varies across species from a few introns per genome to several introns per gene, and the elements of intron sequences directly implicated in splicing vary from degenerate to strict consensus motifs. We report a 50-species comparative genomic study of intron sequences across most eukaryotic groups. We find two broad and striking patterns. First, we find that some highly intron-poor lineages have undergone evolutionary convergence to strong 3' consensus intron structures. This finding holds for both branch point sequence and distance between the branch point and the 3' splice site. Interestingly, this difference appears to exist within the genomes of green alga of the genus Ostreococcus, which exhibit highly constrained intron sequences through most of the intron-poor genome, but not in one much more intron-dense genomic region. Second, we find evidence that ancestral genomes contained highly variable branch point sequences, similar to more complex modern intron-rich eukaryotic lineages. In addition, ancestral structures are likely to have included polyT tails similar to those in metazoans and plants, which we found in a variety of protist lineages. Intriguingly, intron structure evolution appears to be quite different across lineages experiencing different types of genome reduction: whereas lineages with very few introns tend towards highly regular intronic sequences, lineages with very short introns tend towards highly degenerate sequences. Together, these results attest to the complex nature of ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron structures across modern lineages, and the impressive evolutionary malleability of eukaryotic gene structures.
Collapse
Affiliation(s)
- Manuel Irimia
- Departament de Genetica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (MI); (SWR)
| | - Scott William Roy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (MI); (SWR)
| |
Collapse
|
13
|
de Koning AP, Noble GP, Heiss AA, Wong J, Keeling PJ. Environmental PCR survey to determine the distribution of a non-canonical genetic code in uncultivable oxymonads. Environ Microbiol 2008; 10:65-74. [PMID: 18211267 DOI: 10.1111/j.1462-2920.2007.01430.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The universal genetic code is conserved throughout most living systems, but a non-canonical code where TAA and TAG encode glutamine has evolved in several eukaryotes, including oxymonad protists. Most oxymonads are uncultivable, so environmental RT-PCR and PCR was used to examine the distribution of this rare character. A total of 253 unique isolates of four protein-coding genes were sampled from the hindgut community of the cockroach, Cryptocercus punctulatus, an environment rich in diversity from two of the five subgroups of oxymonad, saccinobaculids and polymastigids. Four alpha-tubulins were found with non-canonical glutamine codons. Environmental RACE confirmed that these and related genes used only TGA as stop codons, as expected for the non-canonical code, whereas other genes used TAA or TAG as stop codons, as expected for the universal code. We characterized alpha-tubulin from manually isolated Saccinobaculus ambloaxostylus, confirming it uses the universal code and suggesting, by elimination, that the non-canonical code is used by a polymastigid. HSP90 and EF-1alpha phylogenies also showed environmental sequences falling into two distinct groups, and are generally consistent with previous hypotheses that polymastigids and Streblomastix are closely related. Overall, we propose that the non-canonical genetic code arose once in a common ancestor of Streblomastix and a subgroup of polymastigids.
Collapse
Affiliation(s)
- Audrey P de Koning
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | |
Collapse
|
14
|
Abstract
Eukaryotes compensate for inefficient splicing by mechanisms that prevent the translation of mis-spliced or unspliced mRNAs. A recent report reveals widespread mis-splicing of RNA transcripts in eukaryotes, with mis-spliced RNA destroyed by nonsense-mediated mRNA decay. This striking inefficiency deepens the mystery of the proliferation and persistence of introns.
Collapse
Affiliation(s)
- Scott William Roy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, USA.
| | | |
Collapse
|
15
|
Irimia M, Roy SW. Spliceosomal introns as tools for genomic and evolutionary analysis. Nucleic Acids Res 2008; 36:1703-12. [PMID: 18263615 PMCID: PMC2275149 DOI: 10.1093/nar/gkn012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over the past 5 years, the availability of dozens of whole genomic sequences from a wide variety of eukaryotic lineages has revealed a very large amount of information about the dynamics of intron loss and gain through eukaryotic history, as well as the evolution of intron sequences. Implicit in these advances is a great deal of information about the structure and evolution of surrounding sequences. Here, we review the wealth of ways in which structures of spliceosomal introns as well as their conservation and change through evolution may be harnessed for evolutionary and genomic analysis. First, we discuss uses of intron length distributions and positions in sequence assembly and annotation, and for improving alignment of homologous regions. Second, we review uses of introns in evolutionary studies, including the utility of introns as indicators of rates of sequence evolution, for inferences about molecular evolution, as signatures of orthology and paralogy, and for estimating rates of nucleotide substitution. We conclude with a discussion of phylogenetic methods utilizing intron sequences and positions.
Collapse
Affiliation(s)
- Manuel Irimia
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
16
|
Irimia M, Rukov JL, Penny D, Roy SW. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing. BMC Evol Biol 2007; 7:188. [PMID: 17916237 PMCID: PMC2082043 DOI: 10.1186/1471-2148-7-188] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 10/04/2007] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing has been reported in various eukaryotic groups including plants, apicomplexans, diatoms, amoebae, animals and fungi. However, whether widespread alternative splicing has evolved independently in the different eukaryotic groups or was inherited from their last common ancestor, and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional classes, cellular locations, intron/exon structures and evolutionary origins. Results For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants) show high levels of alternative splicing. Genes with products expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general, we find several similarities in patterns of alternative splicing across these diverse eukaryotes. Conclusion Along with previous studies indicating intron-rich genes with weak intron boundary consensus and complex spliceosomes in ancestral organisms, our results suggest that at least a simple form of alternative splicing may already have been present in the unicellular ancestor of plants, fungi and animals. A role for alternative splicing in the evolution of multicellularity then would largely have arisen by co-opting the preexisting process.
Collapse
Affiliation(s)
- Manuel Irimia
- Allan Wilson Centre for Molecular Evolution and Ecology, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
17
|
Bulman S, Ridgway HJ, Eady C, Conner AJ. Intron-rich gene structure in the intracellular plant parasite Plasmodiophora brassicae. Protist 2007; 158:423-33. [PMID: 17618828 DOI: 10.1016/j.protis.2007.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 04/28/2007] [Indexed: 01/22/2023]
Abstract
Plasmodiophora brassicae, a pathogen of Brassicaceae plants, is grouped within the eukaryotic supergroup, the Rhizaria. Although a large diversity of protists is found in the Rhizaria, genomes of organisms within the group have barely been examined. In this study, we identified DNA sequences spanning or flanking 24 P. brassicae genes, eventually sequencing close to 44 kb of genomic DNA. Evidence from this preliminary genome survey suggested that splicing is an important feature of P. brassicae gene expression; the P. brassicae genes were rich in spliceosomal introns and two mini-exons of less than 20 bp were identified. Consensus splice sites and branch-point sequences in P. brassicae introns were similar to those found in other eukaryotes. Examination of the promoter and transcription start sites of genes indicated that P. brassicae transcription is likely to begin from initiator elements rather than TATA-box containing promoters. Where neighbouring genes were confirmed, intergenic distances were short, ranging from 44 to 470 bp, but a number of larger DNA fragments containing no obvious genes were also sequenced.
Collapse
Affiliation(s)
- Simon Bulman
- National Centre for Advanced Bio-Protection Technologies, Lincoln University, Canterbury, New Zealand.
| | | | | | | |
Collapse
|
18
|
Niu DK. Protecting exons from deleterious R-loops: a potential advantage of having introns. Biol Direct 2007; 2:11. [PMID: 17459149 PMCID: PMC1863416 DOI: 10.1186/1745-6150-2-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/25/2007] [Indexed: 02/02/2023] Open
Abstract
Background Accumulating evidence indicates that the nascent RNA can invade and pair with one strand of DNA, forming an R-loop structure that threatens the stability of the genome. In addition, the cost and benefit of introns are still in debate. Results At least three factors are likely required for the R-loop formation: 1) sequence complementarity between the nascent RNA and the target DNA, 2) spatial juxtaposition between the nascent RNA and the template DNA, and 3) accessibility of the template DNA and the nascent RNA. The removal of introns from pre-mRNA reduces the complementarity between RNA and the template DNA and avoids the spatial juxtaposition between the nascent RNA and the template DNA. In addition, the secondary structures of group I and group II introns may act as spatial obstacles for the formation of R-loops between nearby exons and the genomic DNA. Conclusion Organisms may benefit from introns by avoiding deleterious R-loops. The potential contribution of this benefit in driving intron evolution is discussed. I propose that additional RNA polymerases may inhibit R-loop formation between preceding nascent RNA and the template DNA. This idea leads to a testable prediction: intermittently transcribed genes and genes with frequently prolonged transcription should have higher intron density. Reviewers This article was reviewed by Dr. Eugene V. Koonin, Dr. Alexei Fedorov (nominated by Dr. Laura F Landweber), and Dr. Scott W. Roy (nominated by Dr. Arcady Mushegian).
Collapse
Affiliation(s)
- Deng-Ke Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
19
|
Irimia M, Penny D, Roy SW. Coevolution of genomic intron number and splice sites. Trends Genet 2007; 23:321-5. [PMID: 17442445 DOI: 10.1016/j.tig.2007.04.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 02/07/2007] [Accepted: 04/04/2007] [Indexed: 11/20/2022]
Abstract
Spliceosomal intron numbers and boundary sequences vary dramatically in eukaryotes. We found a striking correspondence between low intron number and strong sequence conservation of 5' splice sites (5'ss) across eukaryotic genomes. The phylogenetic pattern suggests that ancestral 5'ss were relatively weakly conserved, but that some lineages independently underwent both major intron loss and 5'ss strengthening. It seems that eukaryotic ancestors had relatively large intron numbers and 'weak' 5'ss, a pattern associated with frequent alternative splicing in modern organisms.
Collapse
Affiliation(s)
- Manuel Irimia
- Allan Wilson Centre for Molecular Evolution and Ecology, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
20
|
Roy SW, Penny D, Neafsey DE. Evolutionary conservation of UTR intron boundaries in Cryptococcus. Mol Biol Evol 2007; 24:1140-8. [PMID: 17374879 DOI: 10.1093/molbev/msm045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Despite significant progress, the general functional and evolutionary significance of the untranslated regions (UTRs) of eukaryotic transcripts remain mysterious. Particularly mysterious is the common occurrence of spliceosomal introns in transcript UTRs because UTR splicing is not necessary for restoration of transcript coding sequence. In general, it is not known to what extent such splicing performs an important function or merely represents spliceosomal "noise." We conducted the first analysis of evolutionary conservation of UTR splicing. Among 4 species from Cryptococcus neoformans species complex, we find high levels of conservation of UTR intron boundary sequences, strongly suggesting that UTR intron splicing is conserved by purifying selection. We estimate that 50-90% of splice boundaries are maintained by selection. Donor site sequences are more highly conserved than acceptor sequences, and splicing boundaries are more conserved in 5' UTRs than in 3' UTRs. In addition, we report a variety of differences between patterns of UTR splicing in Cryptococcus and corresponding patterns in animals and plants. These results focus attention on the functional roles of eukaryotic UTRs and deepen the mystery of UTR intron splicing.
Collapse
Affiliation(s)
- Scott William Roy
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
21
|
de Roos ADG. Conserved intron positions in ancient protein modules. Biol Direct 2007; 2:7. [PMID: 17288589 PMCID: PMC1800838 DOI: 10.1186/1745-6150-2-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 12/31/2022] Open
Abstract
Background The timing of the origin of introns is of crucial importance for an understanding of early genome architecture. The Exon theory of genes proposed a role for introns in the formation of multi-exon proteins by exon shuffling and predicts the presence of conserved splice sites in ancient genes. In this study, large-scale analysis of potential conserved splice sites was performed using an intron-exon database (ExInt) derived from GenBank. Results A set of conserved intron positions was found by matching identical splice sites sequences from distantly-related eukaryotic kingdoms. Most amino acid sequences with conserved introns were homologous to consensus sequences of functional domains from conserved proteins including kinases, phosphatases, small GTPases, transporters and matrix proteins. These included ancient proteins that originated before the eukaryote-prokaryote split, for instance the catalytic domain of protein phosphatase 2A where a total of eleven conserved introns were found. Using an experimental setup in which the relation between a splice site and the ancientness of its surrounding sequence could be studied, it was found that the presence of an intron was positively correlated to the ancientness of its surrounding sequence. Intron phase conservation was linked to the conservation of the gene sequence and not to the splice site sequence itself. However, no apparent differences in phase distribution were found between introns in conserved versus non-conserved sequences. Conclusion The data confirm an origin of introns deep in the eukaryotic branch and is in concordance with the presence of introns in the first functional protein modules in an 'Exon theory of genes' scenario. A model is proposed in which shuffling of primordial short exonic sequences led to the formation of the first functional protein modules, in line with hypotheses that see the formation of introns integral to the origins of genome evolution. Reviewers This article was reviewed by Scott Roy (nominated by Anthony Poole), Sandro de Souza (nominated by Manyuan Long), and Gáspár Jékely.
Collapse
Affiliation(s)
- Albert D G de Roos
- Syncyte BioIntelligence, P.O. Box 600, 1000 AP, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Abstract
Research into the origins of introns is at a critical juncture in the resolution of theories on the evolution of early life (which came first, RNA or DNA?), the identity of LUCA (the last universal common ancestor, was it prokaryotic- or eukaryotic-like?), and the significance of noncoding nucleotide variation. One early notion was that introns would have evolved as a component of an efficient mechanism for the origin of genes. But alternative theories emerged as well. From the debate between the "introns-early" and "introns-late" theories came the proposal that introns arose before the origin of genetically encoded proteins and DNA, and the more recent "introns-first" theory, which postulates the presence of introns at that early evolutionary stage from a reconstruction of the "RNA world." Here we review seminal and recent ideas about intron origins. Recent discoveries about the patterns and causes of intron evolution make this one of the most hotly debated and exciting topics in molecular evolutionary biology today.
Collapse
Affiliation(s)
- Francisco Rodríguez-Trelles
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | | | |
Collapse
|