1
|
Xu AF, Molinuevo R, Fazzari E, Tom H, Zhang Z, Menendez J, Casey KM, Ruggero D, Hinck L, Pritchard JK, Barna M. Subfunctionalized expression drives evolutionary retention of ribosomal protein paralogs Rps27 and Rps27l in vertebrates. eLife 2023; 12:e78695. [PMID: 37306301 PMCID: PMC10313321 DOI: 10.7554/elife.78695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
The formation of paralogs through gene duplication is a core evolutionary process. For paralogs that encode components of protein complexes such as the ribosome, a central question is whether they encode functionally distinct proteins or whether they exist to maintain appropriate total expression of equivalent proteins. Here, we systematically tested evolutionary models of paralog function using the ribosomal protein paralogs Rps27 (eS27) and Rps27l (eS27L) as a case study. Evolutionary analysis suggests that Rps27 and Rps27l likely arose during whole-genome duplication(s) in a common vertebrate ancestor. We show that Rps27 and Rps27l have inversely correlated mRNA abundance across mouse cell types, with the highest Rps27 in lymphocytes and the highest Rps27l in mammary alveolar cells and hepatocytes. By endogenously tagging the Rps27 and Rps27l proteins, we demonstrate that Rps27- and Rps27l-ribosomes associate preferentially with different transcripts. Furthermore, murine Rps27 and Rps27l loss-of-function alleles are homozygous lethal at different developmental stages. However, strikingly, expressing Rps27 protein from the endogenous Rps27l locus or vice versa completely rescues loss-of-function lethality and yields mice with no detectable deficits. Together, these findings suggest that Rps27 and Rps27l are evolutionarily retained because their subfunctionalized expression patterns render both genes necessary to achieve the requisite total expression of two equivalent proteins across cell types. Our work represents the most in-depth characterization of a mammalian ribosomal protein paralog to date and highlights the importance of considering both protein function and expression when investigating paralogs.
Collapse
Affiliation(s)
- Adele Francis Xu
- Department of Genetics, Stanford UniversityStanfordUnited States
- Medical Scientist Training Program, Stanford School of MedicineStanfordUnited States
| | - Rut Molinuevo
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Elisa Fazzari
- Helen Diller Family Comprehensive Cancer Center, University of California, Los AngelesLos AngelesUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| | - Harrison Tom
- Helen Diller Family Comprehensive Cancer Center, University of California, Los AngelesLos AngelesUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| | - Zijian Zhang
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Julien Menendez
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Kerriann M Casey
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Comparative Medicine, Stanford School of MedicineStanfordUnited States
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| | - Lindsay Hinck
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | | | - Maria Barna
- Department of Genetics, Stanford UniversityStanfordUnited States
| |
Collapse
|
2
|
Gene clusters related to metamorphosis in Solea senegalensis are highly conserved. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100706. [PMID: 32645591 DOI: 10.1016/j.cbd.2020.100706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022]
Abstract
The flatfish, Solea senegalensis has considerable scientific interest and commercial value. The metamorphosis in this species occurs between 12 and 19 days after hatching and it takes about 1 week to complete. Eleven Bacterial Artificial Chromosomes (BAC) clones containing the various candidate genes involved in the process of metamorphosis: thyroxine 5 deiodinase 3 (dio3); forkhead box protein E4 (foxe4); melatonin receptor type 1C (mel1c); calsequestrin 1b (casq1b); thyrotropin subunit beta (tshβ); thyrotropin-releasing hormone receptor 1, 2, and 3 (trhr1, trhr2, trhr3); thyroid hormone receptor α a and b (thrαa, thrαb); and thyroid hormone receptor beta (thrβ) were analyzed by multiple Fluorescence in situ Hybridization (mFISH) and Next Generation Sequencing (NGS) techniques. The mFISH technique localized the 11 BAC clones on 12 different chromosome pairs because three of them, specifically the trhr1a, trhr2 and thrβ BAC clones, showed double signals. This signal duplication indicates a duplication of the genomic region inserted within the BAC clone, which provides evidence for the Teleost-Specific Whole Genome Duplication (TS-WGD). Micro-synteny and phylogenetic analysis showed that Cynoglossus semilaevis is the nearest species to S. senegalensis and that Danio rerio is the most distant one. The tshβ BAC clone was highly conserved as the genes belonging to this BAC were located on a single chromosome in all the species studied. These genes participate in proliferation, migration and cell-death, which are key processes during metamorphosis. Overall, micro-synteny analysis showed that most candidate genes are found in conserved genomic surroundings.
Collapse
|
3
|
Kuang G, Tao W, Zheng S, Wang X, Wang D. Genome-Wide Identification, Evolution and Expression of the Complete Set of Cytoplasmic Ribosomal Protein Genes in Nile Tilapia. Int J Mol Sci 2020; 21:ijms21041230. [PMID: 32059409 PMCID: PMC7072992 DOI: 10.3390/ijms21041230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/03/2022] Open
Abstract
Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. In the present study, we carried out a comprehensive analysis of RPs in chordates and examined the expression profiles of the complete set of 92 cytoplasmic RP genes in Nile tilapia. The RP genes were randomly distributed throughout the tilapia genome. Phylogenetic and syntenic analyses revealed the existence of duplicated RP genes from 2R (RPL3, RPL7, RPL22 and RPS27) and 3R (RPL5, RPL19, RPL22, RPL41, RPLP2, RPS17, RPS19 and RPS27) in tilapia and even more from 4R in common carp and Atlantic salmon. The RP genes were found to be expressed in all tissues examined, but their expression levels differed among different tissues. Gonadal transcriptome analysis revealed that almost all RP genes were highly expressed, and their expression levels were highly variable between ovaries and testes at different developmental stages in tilapia. No sex- and stage-specific RP genes were found. Eleven RP genes displayed sexually dimorphic expression with nine higher in XY gonad and two higher in XX gonad at all stages examined, which were proved to be phenotypic sex dependent. Quantitative real-time PCR and immunohistochemistry ofRPL5b and RPL24 were performed to validate the transcriptome data. The genomic resources and expression data obtained in this study will contribute to a better understanding of RPs evolution and functions in chordates.
Collapse
|
4
|
Ma F, Liu Z, Huang J, Kang Y, Wang J. Evaluation of reference genes for quantitative real-time PCR analysis of messenger RNAs and microRNAs in rainbow trout Oncorhynchus mykiss under heat stress. JOURNAL OF FISH BIOLOGY 2019; 95:540-554. [PMID: 30993691 DOI: 10.1111/jfb.13986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
We assessed the expression stability of several messenger (m)RNAs and micro (mi)RNAs from liver and head kidney of rainbow trout Oncorhynchus mykiss using high-throughput RNA sequencing (RNA-seq) and miRNA-seq data. Additionally, four commonly used reference genes and one small non-coding RNA (u6) were also selected to identify ideal reference mRNAs and miRNAs for quantitative real-time (qrt)-PCR analysis of heat stress responses. GeNorm, NormFinder, BestKeeper and comparative ΔCt were employed for analysis of qrt-PCR data to systematically assess the expression stability of candidate mRNAs and miRNAs and stability was ranked using geometric means. β-actin and ef1-α were the most stably expressed reference mRNAs in liver and head kidney, respectively and ssa-mir-26a-5p and ssa-mir-462b-5p were the most stably expressed miRNAs in these tissues. This is the first identification of appropriate reference mRNAs and miRNAs for qrt-PCR analysis of O. mykiss under heat stress.
Collapse
Affiliation(s)
- Fang Ma
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmencun, Anning District, Lanzhou, Gansu, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmencun, Anning District, Lanzhou, Gansu, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmencun, Anning District, Lanzhou, Gansu, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmencun, Anning District, Lanzhou, Gansu, China
| | - Jianfu Wang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmencun, Anning District, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Jiang W, Lin F, Fang J, Gao Y, Du M, Fang J, Li W, Jiang Z. Transcriptome analysis of the Yesso scallop, Patinopecten yessoensis gills in response to water temperature fluctuations. FISH & SHELLFISH IMMUNOLOGY 2018; 80:133-140. [PMID: 29860069 DOI: 10.1016/j.fsi.2018.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Water temperature fluctuations are considered to be a major factor affecting the immune functions and metabolic processes of scallops. To better understand the immune defense mechanisms of Yesso scallop, Patinopecten yessoensis following exposure to water temperature fluctuations, transcriptomic profiles in the gills from high-frequency fluctuations (HF_G), low-frequency fluctuations (LF_G), and no fluctuations (NF_G) groups were obtained using HiSeq™ 2500 (Illumina). For HF_G, scallops were transferred directly between 18 and 8 °C every 4 h and for 10 fluctuations, while scallops in LF_G were transferred between 18 and 13 °C every 12 h, for a total of 4 fluctuations. A total of 442,922,590 clean reads were generated in 9 libraries and then assembled into 210,780 unigenes with an average length of 705 bp and an N50 of 1253 bp. Based on sequence similarity, 54,529 unigenes (25.87%) were annotated in at least one database. Comparative analysis revealed that 696 unigenes differentially expressed in temperature stressed groups compared with the control, including 229 unigenes between HF_G and NF_G, and 548 unigenes between LF_G and NF_G, respectively. Additionally, among these differentially expressed genes (DEGs), there were 41 immune-related unigenes and 16 protein metabolism-related unigenes. These results provide fundamental information on the molecular defense mechanisms in the Yesso scallop gills after exposure to water temperature fluctuations.
Collapse
Affiliation(s)
- Weiwei Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Fan Lin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Jianguang Fang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Shandong Province, 266200, PR China
| | - Yaping Gao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Meirong Du
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Jinghui Fang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Wenhao Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Zengjie Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Shandong Province, 266200, PR China.
| |
Collapse
|
6
|
Pallotta MM, Turano M, Ronca R, Mezzasalma M, Petraccioli A, Odierna G, Capriglione T. Brain Gene Expression is Influenced by Incubation Temperature During Leopard Gecko (Eublepharis macularius) Development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:360-370. [DOI: 10.1002/jez.b.22736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mimmo Turano
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | - Raffaele Ronca
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | | | - Agnese Petraccioli
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | - Gaetano Odierna
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | - Teresa Capriglione
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| |
Collapse
|
7
|
Benzekri H, Armesto P, Cousin X, Rovira M, Crespo D, Merlo MA, Mazurais D, Bautista R, Guerrero-Fernández D, Fernandez-Pozo N, Ponce M, Infante C, Zambonino JL, Nidelet S, Gut M, Rebordinos L, Planas JV, Bégout ML, Claros MG, Manchado M. De novo assembly, characterization and functional annotation of Senegalese sole (Solea senegalensis) and common sole (Solea solea) transcriptomes: integration in a database and design of a microarray. BMC Genomics 2014; 15:952. [PMID: 25366320 PMCID: PMC4232633 DOI: 10.1186/1471-2164-15-952] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/15/2014] [Indexed: 12/26/2022] Open
Abstract
Background Senegalese sole (Solea senegalensis) and common sole (S. solea) are two economically and evolutionary important flatfish species both in fisheries and aquaculture. Although some genomic resources and tools were recently described in these species, further sequencing efforts are required to establish a complete transcriptome, and to identify new molecular markers. Moreover, the comparative analysis of transcriptomes will be useful to understand flatfish evolution. Results A comprehensive characterization of the transcriptome for each species was carried out using a large set of Illumina data (more than 1,800 millions reads for each sole species) and 454 reads (more than 5 millions reads only in S. senegalensis), providing coverages ranging from 1,384x to 2,543x. After a de novo assembly, 45,063 and 38,402 different transcripts were obtained, comprising 18,738 and 22,683 full-length cDNAs in S. senegalensis and S. solea, respectively. A reference transcriptome with the longest unique transcripts and putative non-redundant new transcripts was established for each species. A subset of 11,953 reference transcripts was qualified as highly reliable orthologs (>97% identity) between both species. A small subset of putative species-specific, lineage-specific and flatfish-specific transcripts were also identified. Furthermore, transcriptome data permitted the identification of single nucleotide polymorphisms and simple-sequence repeats confirmed by FISH to be used in further genetic and expression studies. Moreover, evidences on the retention of crystallins crybb1, crybb1-like and crybb3 in the two species of soles are also presented. Transcriptome information was applied to the design of a microarray tool in S. senegalensis that was successfully tested and validated by qPCR. Finally, transcriptomic data were hosted and structured at SoleaDB. Conclusions Transcriptomes and molecular markers identified in this study represent a valuable source for future genomic studies in these economically important species. Orthology analysis provided new clues regarding sole genome evolution indicating a divergent evolution of crystallins in flatfish. The design of a microarray and establishment of a reference transcriptome will be useful for large-scale gene expression studies. Moreover, the integration of transcriptomic data in the SoleaDB will facilitate the management of genomic information in these important species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-952) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Manuel Manchado
- IFAPA Centro El Toruño, IFAPA, Consejeria de Agricultura y Pesca, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
8
|
Darias MJ, Andree KB, Boglino A, Rotllant J, Cerdá-Reverter JM, Estévez A, Gisbert E. Morphological and molecular characterization of dietary-induced pseudo-albinism during post-embryonic development of Solea senegalensis (Kaup, 1858). PLoS One 2013; 8:e68844. [PMID: 23874785 PMCID: PMC3712922 DOI: 10.1371/journal.pone.0068844] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/01/2013] [Indexed: 12/28/2022] Open
Abstract
The appearance of the pseudo-albino phenotype was investigated in developing Senegalese sole (Solea senegalensis, Kaup 1858) larvae at morphological and molecular levels. In order to induce the development of pseudo-albinos, Senegalese sole larvae were fed Artemia enriched with high levels of arachidonic acid (ARA). The development of their skin pigmentation was compared to that of a control group fed Artemia enriched with a reference commercial product. The relative amount of skin melanophores, xanthophores and iridophores revealed that larval pigmentation developed similarly in both groups. However, results from different relative proportions, allocation patterns, shapes and sizes of skin chromatophores revealed changes in the pigmentation pattern between ARA and control groups from 33 days post hatching onwards. The new populations of chromatophores that should appear at post-metamorphosis were not formed in the ARA group. Further, spatial patterns of distribution between the already present larval xanthophores and melanophores were suggestive of short-range interaction that seemed to be implicated in the degradation of these chromatophores, leading to the appearance of the pseudo-albino phenotype. The expression profile of several key pigmentation-related genes revealed that melanophore development was promoted in pseudo-albinos without a sufficient degree of terminal differentiation, thus preventing melanogenesis. Present results suggest the potential roles of asip1 and slc24a5 genes on the down-regulation of trp1 expression, leading to defects in melanin production. Moreover, gene expression data supports the involvement of pax3, mitf and asip1 genes in the developmental disruption of the new post-metamorphic populations of melanophores, xanthophores and iridophores.
Collapse
Affiliation(s)
- Maria J Darias
- Cultius Experimentals, Institut de Recerca i Tecnologia Agroalimentàries, Sant Carles de la Ràpita, Catalunya, Spain.
| | | | | | | | | | | | | |
Collapse
|
9
|
Ribas L, Pardo BG, Fernández C, Alvarez-Diós JA, Gómez-Tato A, Quiroga MI, Planas JV, Sitjà-Bobadilla A, Martínez P, Piferrer F. A combined strategy involving Sanger and 454 pyrosequencing increases genomic resources to aid in the management of reproduction, disease control and genetic selection in the turbot (Scophthalmus maximus). BMC Genomics 2013; 14:180. [PMID: 23497389 PMCID: PMC3700835 DOI: 10.1186/1471-2164-14-180] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/27/2013] [Indexed: 02/02/2023] Open
Abstract
Background Genomic resources for plant and animal species that are under exploitation primarily for human consumption are increasingly important, among other things, for understanding physiological processes and for establishing adequate genetic selection programs. Current available techniques for high-throughput sequencing have been implemented in a number of species, including fish, to obtain a proper description of the transcriptome. The objective of this study was to generate a comprehensive transcriptomic database in turbot, a highly priced farmed fish species in Europe, with potential expansion to other areas of the world, for which there are unsolved production bottlenecks, to understand better reproductive- and immune-related functions. This information is essential to implement marker assisted selection programs useful for the turbot industry. Results Expressed sequence tags were generated by Sanger sequencing of cDNA libraries from different immune-related tissues after several parasitic challenges. The resulting database (“Turbot 2 database”) was enlarged with sequences generated from a 454 sequencing run of brain-hypophysis-gonadal axis-derived RNA obtained from turbot at different development stages. The assembly of Sanger and 454 sequences generated 52,427 consensus sequences (“Turbot 3 database”), of which 23,661 were successfully annotated. A total of 1,410 sequences were confirmed to be related to reproduction and key genes involved in sex differentiation and maturation were identified for the first time in turbot (AR, AMH, SRY-related genes, CYP19A, ZPGs, STAR FSHR, etc.). Similarly, 2,241 sequences were related to the immune system and several novel key immune genes were identified (BCL, TRAF, NCK, CD28 and TOLLIP, among others). The number of genes of many relevant reproduction- and immune-related pathways present in the database was 50–90% of the total gene count of each pathway. In addition, 1,237 microsatellites and 7,362 single nucleotide polymorphisms (SNPs) were also compiled. Further, 2,976 putative natural antisense transcripts (NATs) including microRNAs were also identified. Conclusions The combined sequencing strategies employed here significantly increased the turbot genomic resources available, including 34,400 novel sequences. The generated database contains a larger number of genes relevant for reproduction- and immune-associated studies, with an excellent coverage of most genes present in many relevant physiological pathways. This database also allowed the identification of many microsatellites and SNP markers that will be very useful for population and genome screening and a valuable aid in marker assisted selection programs.
Collapse
Affiliation(s)
- Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gamboa-Delgado J, Le Vay L, Fernández-Díaz C, Cañavate P, Ponce M, Zerolo R, Manchado M. Effect of different diets on proteolytic enzyme activity, trypsinogen gene expression and dietary carbon assimilation in Senegalese sole (Solea senegalensis) larvae. Comp Biochem Physiol B Biochem Mol Biol 2010; 158:251-8. [PMID: 21167954 DOI: 10.1016/j.cbpb.2010.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 11/12/2010] [Accepted: 11/12/2010] [Indexed: 11/18/2022]
Abstract
The effect of diet on larval growth, anionic trypsinogen gene expression (ssetryp1), and trypsin (EC 3.4.21.4) and chymotrypsin (EC 3.4.21.1) activities was assessed in Solea senegalensis. Changes in larval carbon stable isotope (δ(13)C) composition were used to estimate carbon assimilation. Diets were supplied for 20days to fish held in larval rearing tanks and consisted of live rotifers, Artemia sp. nauplii, rotifers followed by Artemia sp., rotifers co-fed with inert diet and inert diet alone. Growth was significantly faster in larvae fed only Artemia and those fed rotifers and Artemia (k=0.381-0.387day(-1)). Trypsin and chymotrypsin activities increased from 3 to 4days after hatching (DAH) in all dietary treatments, while ssetryp1 transcripts increased at 4-5 DAH only in larvae fed live prey. ssetryp1 gene expression was activated later in larvae fed only Artemia and this corresponded with Artemia δ(13)C values being reflected in larval tissue. Larval δ(13)C values also indicated greater selection and/or assimilation of rotifers in relation to the inert diet. Results demonstrate that during early larval development of sole, diet modulates ssetryp1 gene expression. The rapid and intense response to diets that promoted different growth and survival suggests the suitability of this biomarker as a nutritional status indicator in early sole larvae.
Collapse
Affiliation(s)
- Julián Gamboa-Delgado
- School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey, Wales, LL59 5AB UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Thorne MAS, Burns G, Fraser KPP, Hillyard G, Clark MS. Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus. Mar Genomics 2010; 3:35-44. [PMID: 21798195 DOI: 10.1016/j.margen.2010.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/03/2010] [Accepted: 02/11/2010] [Indexed: 11/15/2022]
Abstract
Harpagifer antarcticus (the Antarctic plunderfish), a shallow-water benthic fish distributed around the Antarctic Peninsula, is a member of the notothenioid family, one of whose adaptations to the cold waters of Antarctica has been the loss of the classic heat shock response. In order to gain a more comprehensive understanding of the effects of temperature stress on H. antarcticus, we constructed a liver cDNA library and a 10,371 feature microarray. This was hybridized with material from a time course series of animals held at 6°C for 48h. The resulting expression profiles show that this fish displays the classical vertebrate acute inflammatory response. There was also a pronounced signal for increased energy requirements via up-regulation of genes involved in the β oxidation of fatty acids and also a strong signature of response to oxidative stress. Genes in the latter category did not include the "classic" antioxidants such as glutathione S-transferase, but genes involved in the production of reducing potential in the form of NADPH, peroxisome proliferation via peroxisomal acyl co-enzyme A oxidase 1 and genes known to be up-regulated by hypoxia-inducible factor 1 (HIF1). These identifications provide clear support for oxygen being the whole animal limiting factor at least in acute short-term temperature challenges. The classical heat shock proteins were not up-regulated during this trial, although numerous clones for each were present on the gene chip, confirming the lack of this response in this species. These data significantly increase our knowledge of the cellular stress response from animals in this unique environment.
Collapse
Affiliation(s)
- M A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
12
|
Manchado M, Infante C, Rebordinos L, Cañavate JP. Molecular characterization, gene expression and transcriptional regulation of thyroid hormone receptors in Senegalese sole. Gen Comp Endocrinol 2009; 160:139-47. [PMID: 19028494 DOI: 10.1016/j.ygcen.2008.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/13/2008] [Accepted: 11/01/2008] [Indexed: 11/21/2022]
Abstract
Thyroid hormones (THs) play a key role in larval development, growth and metamorphosis in flatfish. Their genomic effects are mediated by thyroid hormone receptors (TRs). In this study, cDNAs encoding for TRalphaA, TRalphaB, and TRbeta have been sequenced in Senegalese sole (Soleasenegalensis). Main domains and conserved motifs were identified. Also, a truncated TRalphaB isoform (referred to as TRalphaBtr) and a spliced TRbeta variant (referred to as TRbetav) were detected. A phylogenetic analysis grouped both TRalpha and TRbeta genes into two separate clusters with their fish and mammalian counterparts. Expression profiles during larval development and in juvenile tissues were analyzed using a real-time PCR approach. In juvenile fish, TRalphaA, TRalphaB, TRbetav, and TRbeta showed distinct transcript levels in tissues. During metamorphosis, only TRbetav and TRbeta modified their mRNA levels in a similar way to the T4 contents. To evaluate the possible regulation of TRs by their cognate ligand T4 during sole metamorphosis, larvae were exposed to the goitrogen thiourea (TU). TRbeta transcripts decreased significantly at 11 and 15 days after treatment. Moreover, adding exogenous T4 hormone to TU-treated larvae restored the steady-state levels or even increased TRbeta and TRbetav mRNAs with respect to the untreated control. Overall, these results demonstrate that TRbeta transcription is up-regulated by THs playing a major role during metamorphosis in Senegalese sole.
Collapse
Affiliation(s)
- Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro de pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | | | | | | |
Collapse
|
13
|
Matsuoka MP, Infante C, Reith M, Cañavate JP, Douglas SE, Manchado M. Translational machinery of senegalese sole (Solea senegalensis Kaup) and Atlantic halibut (Hippoglossus hippoglossus L.): comparative sequence analysis of the complete set of 60s ribosomal proteins and their expression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:676-691. [PMID: 18478294 DOI: 10.1007/s10126-008-9104-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/26/2008] [Accepted: 04/04/2008] [Indexed: 05/26/2023]
Abstract
Ribosomal proteins (RPs) comprise a large set of highly evolutionarily conserved proteins that are often over-represented in complementary DNA libraries. They have become very useful markers in comparative genomics, genome evolution, and phylogenetic studies across taxa. In this study, we report the sequences of the complete set of 60S RPs in Senegalese sole (Solea senegalensis) and Atlantic halibut (Hippoglossus hippoglossus), two commercially important flatfish species. Amino-acid sequence comparisons of the encoded proteins showed a high similarity both between these two flatfish species and with respect to other fish and human counterparts. Expressed sequence tag analysis revealed the existence of paralogous genes for RPL3, RPL7, RPL41, and RPLP2 in Atlantic halibut and RPL13a in Senegalese sole as well as RPL19 and RPL22 in both species. Phylogenetic analysis of paralogs revealed distinct evolutionary histories for each RP in agreement with three rounds of genome duplications and lineage-specific duplications during flatfish evolution. Steady-state transcript levels for RPL19 and RPL22 RPs were quantitated during larval development and in different tissues of sole and halibut using a real-time polymerase chain reaction approach. All paralogs were expressed ubiquitously although at different levels in different tissues. Most RP transcripts increased coordinately after larval first-feeding in both species but decreased progressively during the metamorphic process. In all cases, expression profiles and transcript levels of orthologous genes in Senegalese sole and Atlantic halibut were highly congruent. The genomic resources and knowledge developed in this survey will be useful for the study of Pleuronectiformes evolution.
Collapse
Affiliation(s)
- Makoto P Matsuoka
- Institute for Marine Biosciences, National Research Council, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Cerdà J, Mercadé J, Lozano JJ, Manchado M, Tingaud-Sequeira A, Astola A, Infante C, Halm S, Viñas J, Castellana B, Asensio E, Cañavate P, Martínez-Rodríguez G, Piferrer F, Planas JV, Prat F, Yúfera M, Durany O, Subirada F, Rosell E, Maes T. Genomic resources for a commercial flatfish, the Senegalese sole (Solea senegalensis): EST sequencing, oligo microarray design, and development of the Soleamold bioinformatic platform. BMC Genomics 2008; 9:508. [PMID: 18973667 PMCID: PMC2612027 DOI: 10.1186/1471-2164-9-508] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022] Open
Abstract
Background The Senegalese sole, Solea senegalensis, is a highly prized flatfish of growing commercial interest for aquaculture in Southern Europe. However, despite the industrial production of Senegalese sole being hampered primarily by lack of information on the physiological mechanisms involved in reproduction, growth and immunity, very limited genomic information is available on this species. Results Sequencing of a S. senegalensis multi-tissue normalized cDNA library, from adult tissues (brain, stomach, intestine, liver, ovary, and testis), larval stages (pre-metamorphosis, metamorphosis), juvenile stages (post-metamorphosis, abnormal fish), and undifferentiated gonads, generated 10,185 expressed sequence tags (ESTs). Clones were sequenced from the 3'-end to identify isoform specific sequences. Assembly of the entire EST collection into contigs gave 5,208 unique sequences of which 1,769 (34%) had matches in GenBank, thus showing a low level of redundancy. The sequence of the 5,208 unigenes was used to design and validate an oligonucleotide microarray representing 5,087 unique Senegalese sole transcripts. Finally, a novel interactive bioinformatic platform, Soleamold, was developed for the Senegalese sole EST collection as well as microarray and ISH data. Conclusion New genomic resources have been developed for S. senegalensis, an economically important fish in aquaculture, which include a collection of expressed genes, an oligonucleotide microarray, and a publicly available bioinformatic platform that can be used to study gene expression in this species. These resources will help elucidate transcriptional regulation in wild and captive Senegalese sole for optimization of its production under intensive culture conditions.
Collapse
Affiliation(s)
- Joan Cerdà
- Laboratory of the Institut de Recerca i Tecnologia Agroalimentàries-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, 08003 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Manchado M, Salas-Leiton E, Infante C, Ponce M, Asensio E, Crespo A, Zuasti E, Cañavate JP. Molecular characterization, gene expression and transcriptional regulation of cytosolic HSP90 genes in the flatfish Senegalese sole (Solea senegalensis Kaup). Gene 2008; 416:77-84. [DOI: 10.1016/j.gene.2008.03.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 10/24/2022]
|
16
|
Infante C, Matsuoka MP, Asensio E, Cañavate JP, Reith M, Manchado M. Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR. BMC Mol Biol 2008; 9:28. [PMID: 18325098 PMCID: PMC2275743 DOI: 10.1186/1471-2199-9-28] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 03/06/2008] [Indexed: 02/06/2023] Open
Abstract
Background Flatfish metamorphosis involves major physiological and morphological changes. Due to its importance in aquaculture and as a model for developmental studies, some gene expression studies have focused on the understanding of this process using quantitative real-time PCR (qRT-PCR) technique. Therefore, adequate reference genes for accurate normalization are required. Results The stability of 12 potential reference genes was examined during larval development in Senegalese sole (Solea senegalensis) and Atlantic halibut (Hippoglossus hippoglossus) to determine the most suitable genes for qRT-PCR analysis. Transcription levels of genes encoding β-Actin (ACTB), glyceraldehyde-3P-dehydrogenase (GAPDH), annexin A2 (ANXA2), glutathione S-transferase (GST), ornithine decarboxylase (ODC), hypoxanthine phosphoribosyltransferase (HPRT1), ubiquitin (UBQ), elongation factor 1 alpha (eEF1A1), 18S ribosomal RNA, and the ribosomal proteins S4 (RPS4) and L13a (RPL13a) were quantitated. Two paralogous genes for ACTB were analyzed in each of both flatfish species. In addition, two paralogous genes for GAPDH were studied in Senegalese sole. RPL13a represented non-orthologous genes between both flatfish species. GeNorm and NormFinder analyses for expression stability revealed RPS4, UBQ and eEF1A1 as the most stable genes in Senegalese sole, Atlantic halibut and in a combined analysis. In all cases, paralogous genes exhibited differences in expression stability. Conclusion This work suggests RPS4, UBQ, and eEF1A1 genes as useful reference genes for accurate normalization in qRT-PCR studies in Senegalese sole and Atlantic halibut larvae. The congruent results between both species in spite of the drastic differences in larval development suggest that selected housekeeping genes (HKGs) could be useful in other flatfish species. However, the finding of paralogous gene copies differentially expressed during development in some HKGs underscores the necessity to identify orthologous genes.
Collapse
Affiliation(s)
- Carlos Infante
- IFAPA Centro El Toruño, CICE, Junta de Andalucía, Camino Tiro de pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
Infante C, Asensio E, Cañavate JP, Manchado M. Molecular characterization and expression analysis of five different elongation factor 1 alpha genes in the flatfish Senegalese sole (Solea senegalensis Kaup): differential gene expression and thyroid hormones dependence during metamorphosis. BMC Mol Biol 2008; 9:19. [PMID: 18234081 PMCID: PMC2270864 DOI: 10.1186/1471-2199-9-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 01/30/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eukaryotic elongation factor 1 alpha (eEF1A) is one of the four subunits composing eukaryotic translation elongation factor 1. It catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome in a GTP-dependent manner during protein synthesis, although it also seems to play a role in other non-translational processes. Currently, little information is still available about its expression profile and regulation during flatfish metamorphosis. With regard to this, Senegalese sole (Solea senegalensis) is a commercially important flatfish in which eEF1A gene remains to be characterized. RESULTS The development of large-scale genomics of Senegalese sole has facilitated the identification of five different eEF1A genes, referred to as SseEF1A1, SseEF1A2, SseEF1A3, SseEF1A4, and Sse42Sp50. Main characteristics and sequence identities with other fish and mammalian eEF1As are described. Phylogenetic and tissue expression analyses allowed for the identification of SseEF1A1 and SseEF1A2 as the Senegalese sole counterparts of mammalian eEF1A1 and eEF1A2, respectively, and of Sse42Sp50 as the ortholog of Xenopus laevis and teleost 42Sp50 gene. The other two elongation factors, SseEF1A3 and SseEF1A4, represent novel genes that are mainly expressed in gills and skin. The expression profile of the five genes was also studied during larval development, revealing different behaviours. To study the possible regulation of SseEF1A gene expressions by thyroid hormones (THs), larvae were exposed to the goitrogen thiourea (TU). TU-treated larvae exhibited lower SseEF1A4 mRNA levels than untreated controls at both 11 and 15 days after treatment, whereas transcripts of the other four genes remained relatively unchanged. Moreover, addition of exogenous T4 hormone to TU-treated larvae increased significantly the steady-state levels of SseEF1A4 with respect to untreated controls, demonstrating that its expression is up-regulated by THs. CONCLUSION We have identified five different eEF1A genes in the Senegalese sole, referred to as SseEF1A1, SseEF1A2, SseEF1A3, SseEF1A4, and Sse42Sp50. The five genes exhibit different expression patterns in tissues and during larval development. TU and T4 treatments demonstrate that SseEF1A4 is up-regulated by THs, suggesting a role in the translational regulation of the factors involved in the dramatic changes that occurs during Senegalese sole metamorphosis.
Collapse
Affiliation(s)
- Carlos Infante
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro de pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | | | | | | |
Collapse
|
18
|
Manchado M, Infante C, Asensio E, Crespo A, Zuasti E, Cañavate JP. Molecular characterization and gene expression of six trypsinogens in the flatfish Senegalese sole (Solea senegalensis Kaup) during larval development and in tissues. Comp Biochem Physiol B Biochem Mol Biol 2007; 149:334-44. [PMID: 18006348 DOI: 10.1016/j.cbpb.2007.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
The application of large-scale genomics to Senegalese sole (Solea senegalensis) has allowed for the identification of six different trypsinogen genes. The catalytic triad (His-57, Asp-102, and Ser-195) and other residues required for trypsin functionality were conserved across all trypsinogens. Sequence identities, charges and phylogenetic analysis allowed them to be classified into three groups: group I or anionic trypsinogens (ssetryp1a, ssetryp1b and ssetryp1c), group II or cationic trypsinogen (ssetryp2) and group III or psychrophilic trypsinogens (ssetryp3 and ssetrypY). The expression profiles of these genes were studied in juvenile tissues and during larval development using a real-time PCR approach. In juvenile fish, trypsinogens were expressed mainly in the intestine. Transcripts of ssetryp1c were the highest in all tissues except in brain where those of ssetryp2 were the most abundant. During larval development, ssetryp1 variants and ssetryp2 transcript levels increased from 2 to 6 days after hatching, and decreased thereafter. In contrast, transcripts of group III trypsinogens increased slightly or not significantly in premetamorphosis and decreased at metamorphosis. The expression levels ssetryp3 and ssetrypY were the lowest in larvae (from 172- to 1391-fold lower than ssetryp1 and ssetryp2). In contrast, they were expressed at a similar level as ssetryp2, although lower than ssetryp1, in juvenile tissues.
Collapse
Affiliation(s)
- Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro de pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | | | | | | | | | | |
Collapse
|