1
|
Singh E, Gupta A, Singh P, Jain M, Muthukumaran J, Singh RP, Singh AK. Exploring mammalian heme peroxidases: A comprehensive review on the structure and function of myeloperoxidase, lactoperoxidase, eosinophil peroxidase, thyroid peroxidase and peroxidasin. Arch Biochem Biophys 2024; 761:110155. [PMID: 39278306 DOI: 10.1016/j.abb.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The peroxidase family of enzymes is a ubiquitous cluster of enzymes primarily responsible for the oxidation of organic and inorganic substrates. The mammalian heme peroxidase subfamily is characterized by a covalently linked heme prosthetic group which plays a key role in the oxidation of halides and psuedohalides into their respective hypohalous acid and hypothiocyanous acid under the influence of H2O2 as substrate. The members of the heme peroxidase family include Lactoperoxidase (LPO), Eosinophil peroxidase (EPO), Myeloperoxidase (MPO), Thyroid peroxidase (TPO) and Peroxidasin (PXDN). The biological activity of LPO, MPO and EPO pertains to antibacterial, antifungal and antiviral while TPO is involved in the biosynthesis of the thyroid hormone and PXDN helps maintain the ECM. While these enzymes play several immunomodulatory roles, aberrations in their activity have been implicated in diseases such as myocardial infarction, asthma and Alzheimer's amongst others. The sequence and structural similarities amongst the members of the family are strikingly high while the substrate specificities and subcellular locations vary. Hence, it becomes important to provide a consortium of information regarding the members to study their biochemical, pathological and clinical function.
Collapse
Affiliation(s)
- Ekampreet Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Ayushi Gupta
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Pratyaksha Singh
- School of Biotechnology, Gautam Buddha University, P.C. 201312, Greater Noida, U.P., India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Rashmi Prabha Singh
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, P.C. 201310, Greater Noida, U.P., India.
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India.
| |
Collapse
|
2
|
Quinn M, Zhang RYK, Bello I, Rye KA, Thomas SR. Myeloperoxidase as a Promising Therapeutic Target after Myocardial Infarction. Antioxidants (Basel) 2024; 13:788. [PMID: 39061857 PMCID: PMC11274265 DOI: 10.3390/antiox13070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coronary artery disease (CAD) and myocardial infarction (MI) remain leading causes of death and disability worldwide. CAD begins with the formation of atherosclerotic plaques within the intimal layer of the coronary arteries, a process driven by persistent arterial inflammation and oxidation. Myeloperoxidase (MPO), a mammalian haem peroxidase enzyme primarily expressed within neutrophils and monocytes, has been increasingly recognised as a key pro-inflammatory and oxidative enzyme promoting the development of vulnerable coronary atherosclerotic plaques that are prone to rupture, and can precipitate a MI. Mounting evidence also implicates a pathogenic role for MPO in the inflammatory process that follows a MI, which is characterised by the rapid infiltration of activated neutrophils into the damaged myocardium and the release of MPO. Excessive and persistent cardiac inflammation impairs normal cardiac healing post-MI, resulting in adverse cardiac outcomes and poorer long-term cardiac function, and eventually heart failure. This review summarises the evidence for MPO as a significant oxidative enzyme contributing to the inappropriate inflammatory responses driving the progression of CAD and poor cardiac healing after a MI. It also details the proposed mechanisms underlying MPO's pathogenic actions and explores MPO as a novel therapeutic target for the treatment of unstable CAD and cardiac damage post-MI.
Collapse
Affiliation(s)
| | | | | | | | - Shane R. Thomas
- Cardiometabolic Disease Research Group, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Barreiro DS, Oliveira RN, Pauleta SR. Bacterial peroxidases – Multivalent enzymes that enable the use of hydrogen peroxide for microaerobic and anaerobic proliferation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
4
|
Min Y, Li Q, Yu H. Heme-Peroxidase 2 Modulated by POU2F1 and SOX5 is Involved in Pigmentation in Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:263-275. [PMID: 35275290 DOI: 10.1007/s10126-022-10098-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Color polymorphism is frequently observed in molluscan shellfish, while the molecular regulation of shell pigmentation is not well understood. Peroxidase is a key enzyme involved in melanogenesis. Here, we identified a heme-peroxidase 2 gene (CgHPX2), and characterized the expression patterns and transcriptional regulation of CgHPX2 in the Pacific oyster Crassostrea gigas. Tissues expression analysis showed that CgHPX2 was a mantle-specific gene and primarily expressed in the edge mantle in black shell color oyster compared with white shell oyster. In situ hybridization showed that strong signals for CgHPX2 were detected in the both inner and outer surface of the outer fold of mantle in the black shell color oyster, whereas positive signals in white shell oyster were mainly localized in the outer surface of the outer fold of mantle. In the embryos and larvae, a high expression level of CgHPX2 was detected in the trochophore stage in both black and white shell color oysters. The temporal localization of CgHPX2 was mainly detected in the shell gland and edge mantle of trochophore and calcified shell larvae, respectively. In addition, a 2227 bp of 5' flanking region sequence of CgHPX2 was cloned, which contained a presumed core promoter region and many potential transcription factor binding sites. Further luciferase assay experiment confirmed that POU domain, class 2, transcription factor 1 (POU2F1), and SRY-box transcription factor 5 (SOX5) were involved in transcriptional regulation of CgHPX2 gene through binding to its specific promoter region. After CgPOU2F1 and CgSOX5 RNA interference, the CgHPX2 gene expression was significantly decreased. These results suggested that CgPOU2F1 and CgSOX5 might be two important transcription factors that positively regulated the expression of CgHPX2 gene, improving our understanding of the transcriptional regulation of molluscan shell pigmentation.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education College of Fisheries, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education College of Fisheries, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
5
|
Noia M, Fontenla-Iglesias F, Valle A, Blanco-Abad V, Leiro JM, Lamas J. Characterization of the turbot Scophthalmus maximus (L.) myeloperoxidase. An insight into the evolution of vertebrate peroxidases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103993. [PMID: 33412231 DOI: 10.1016/j.dci.2021.103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
We have completed the characterization of the turbot (Scophthalmus maximus) myeloperoxidase (mpx) gene and protein, which we partially described in a previous study. The turbot mpx gene has 15 exons that encode a protein of 767 aa, with a signal peptide, propeptide and light and heavy chains, and also with haem cavities, a Ca+2-binding motif and several N- and O-glycosylation sites. The mature protein forms homodimers of about 150 kDa and is very abundant in turbot neutrophils. In addition to the mpx (epx2a) gene, another three peroxidase genes, named epx1, epx2b1 and epx2b2, were identified in the turbot genome. Epx1, Epx2b1 and Epx2b2 proteins also have signal peptides and many structural characteristics of mammalian MPO and eosinophil peroxidase (EPX). Mpx was strongly expressed in head kidney, while epx2b1 and epx2b2 were strongly expressed in the gills, and epx1 was not expressed in any of the tissues or organs analysed. In vitro stimulation of head kidney leucocytes with the parasite Philasterides dicentrarchi caused a decrease in mpx expression and an increase in epx2b1 expression over time. In turbot infected experimentally with P. dicentrarchi a significant increase in mpx expression in the head kidney was observed on day 7 postinfection, while the other genes were not regulated. However, mpx, epx2b1 and epx2b2 were downregulated in the gills of infected fish, and epx1 expression was not affected. These results suggest that the four genes responded differently to the same stimuli. Interestingly, BLAST analysis revealed that Epx1 and Mpx showed greater similarity to mammalian EPX than to MPO. Considering the phylogenetic and synteny data obtained, we concluded that the epx/mpx genes of Gnathostomes can be divided into three main clades: EPX1, which contains turbot epx1, EPX2, which contains turbot mpx (epx2a) and epx2b1 and epx2b2 genes, and a clade containing mammalian EPX and MPO (EPX/MPO). EPX/MPO and EPX2 clades share a common ancestor with the chondrichthyan elephant shark (Callorhinchus milii) and the coelacanth (Latimeria chalumnae) peroxidases. EPX2 was only found in fish and includes two sister groups. One of the groups includes turbot mpx and was only found in teleosts. Finally, the other group contains epx2b1 and epx2b2 genes, and epx2b1-2b2 loci share orthologous genes with other teleosts and also with holosteans, suggesting that these genes appeared earlier on than the mpx gene.
Collapse
Affiliation(s)
- Manuel Noia
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Francisco Fontenla-Iglesias
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Alejandra Valle
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Verónica Blanco-Abad
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - José Manuel Leiro
- Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Jesús Lamas
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
7
|
Nguyen WNT, Jacobsen EA, Finney CAM, Colarusso P, Patel KD. Intravital imaging of eosinophils: Unwrapping the enigma. J Leukoc Biol 2020; 108:83-91. [PMID: 32170880 DOI: 10.1002/jlb.3hr0220-396r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Eosinophils are traditionally associated with allergic and parasitic inflammation. More recently, eosinophils have also been shown to have roles in diverse processes including development, intestinal health, thymic selection, and B-cell survival with the majority of these insights being derived from murine models and in vitro assays. Despite this, tools to measure the dynamic activity of eosinophils in situ have been lacking. Intravital microscopy is a powerful tool that enables direct visualization of leukocytes and their dynamic behavior in real-time in a wide range of processes in both health and disease. Until recently eosinophil researchers have not been able to take full advantage of this technology due to a lack of tools such as genetically encoded reporter mice. This mini-review examines the history of intravital microscopy with a focus on eosinophils. The development and use of eosinophil-specific Cre (EoCre) mice to create GFP and tdTomato fluorescent reporter animals is also described. Genetically encoded eosinophil reporter mice combined with intravital microscopy provide a powerful tool to add to the toolbox of technologies that will help us unravel the mysteries still surrounding this cell.
Collapse
Affiliation(s)
- William N T Nguyen
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth A Jacobsen
- Division of Allergy and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Constance A M Finney
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Pina Colarusso
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Kamala D Patel
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Abstract
Eosinophils are important immune cells that have been implicated in resistance to gastrointestinal nematode (GIN) infections in both naturally and experimentally infected sheep. Proteins of particular importance appear to be IgA-Fc alpha receptor (FcαRI), C-C chemokine receptor type 3 (CCR3), proteoglycan 3 (PRG3, major basic protein 2) and EPX (eosinophil peroxidase). We used known human nucleotide sequences to search the ruminant genomes, followed by translation to protein and sequence alignments to visualize differences between sequences and species. Where a sequence was retrieved for cow, but not for sheep and goat, this was used additionally as a reference sequence. In this review, we show that eosinophil function varies among host species. Consequently, investigations into the mechanisms of ruminant immune responses to GIN should be conducted using the natural host. Specifically, we address differences in protein sequence and structure for eosinophil proteins.
Collapse
|
9
|
Flemmig J, Zámocký M, Alia A. Amyloid β and free heme: bloody new insights into the pathogenesis of Alzheimer's disease. Neural Regen Res 2018; 13:1170-1174. [PMID: 30028317 PMCID: PMC6065240 DOI: 10.4103/1673-5374.235021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cerebral formation of Amyloid β (Aβ) is a critical pathological feature of Alzheimer's disease (AD). An accumulation of this peptide as senile plaques (SP) was already reported by Alois Alzheimer, the discoverer of the disease. Yet the exact contribution of Aβ to AD development remains elusive. Moreover, while extensive cerebral Aβ formation leads to fibril formation in many species, AD-like symptoms apparently depend on the highly conserved N-terminal residues R5, Y10 and H13. The amino acids were also shown to lead to the formation of Aβ-heme complexes, which exhibit peroxidase activity in the presence of H2O2. Taking together these observations we propose that the formation and enzymatic activity of the named complexes may represent an essential aspect of AD pathology. Furthermore, Aβ is also known to lead to cerebral micro-vessel destruction (CAA) as well as to hemolytic events. Thus we suggest that the Aβ-derived cerebral accumulation of blood-derived free heme represents a likely precondition for the subsequent formation of Aβ-heme complexes.
Collapse
Affiliation(s)
- Jörg Flemmig
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marcel Zámocký
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Chemical, Environmental and Biological Engineering, Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Austria
| | - A Alia
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany; Leiden Institute of Chemistry, Faculty of Science, Leiden University, Leiden, The Netherlands
| |
Collapse
|
10
|
Flemmig J, Schwarz P, Bäcker I, Leichsenring A, Lange F, Arnhold J. Fast and Specific Assessment of the Halogenating Peroxidase Activity in Leukocyte-enriched Blood Samples. J Vis Exp 2016. [PMID: 27501318 DOI: 10.3791/54484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this paper a protocol for the quick and standardized enrichment of leukocytes from small whole blood samples is described. This procedure is based on the hypotonic lysis of erythrocytes and can be applied to human samples as well as to blood of non-human origin. The small initial sample volume of about 50 to 100 µl makes this method applicable to recurrent blood sampling from small laboratory animals. Moreover, leukocyte enrichment is achieved within minutes and with low material efforts regarding chemicals and instrumentation, making this method applicable in multiple laboratory environments. Standardized purification of leukocytes is combined with a highly selective staining method to evaluate halogenating peroxidase activity of the heme peroxidases, myeloperoxidase (MPO) and eosinophil peroxidase (EPO), i.e., the formation of hypochlorous and hypobromous acid (HOCl and HOBr). While MPO is strongly expressed in neutrophils, the most abundant immune cell type in human blood as well as in monocytes, the related enzyme EPO is exclusively expressed in eosinophils. The halogenating activity of these enzymes is addressed by using the almost HOCl- and HOBr-specific dye aminophenyl fluorescein (APF) and the primary peroxidase substrate hydrogen peroxide. Upon subsequent flow cytometry analysis all peroxidase-positive cells (neutrophils, monocytes, eosinophils) are distinguishable and their halogenating peroxidase activity can be quantified. Since APF staining may be combined with the application of cell surface markers, this protocol can be extended to specifically address leukocyte sub-fractions. The method is applicable to detect HOCl and HOBr production both in human and in rodent leukocytes. Given the widely and diversely discussed immunological role of these enzymatic products in chronic inflammatory diseases, this protocol may contribute to a better understanding of the immunological relevance of leukocyte-derived heme peroxidases.
Collapse
Affiliation(s)
- Jörg Flemmig
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig;
| | - Pauline Schwarz
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig
| | - Ingo Bäcker
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Leipzig
| | | | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Leipzig
| | - Jürgen Arnhold
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig
| |
Collapse
|
11
|
Xu G, Wang BG. Independent Evolution of Six Families of Halogenating Enzymes. PLoS One 2016; 11:e0154619. [PMID: 27153321 PMCID: PMC4859513 DOI: 10.1371/journal.pone.0154619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/17/2016] [Indexed: 11/18/2022] Open
Abstract
Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People’s Republic of China
- * E-mail:
| | - Bin-Gui Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People’s Republic of China
| |
Collapse
|
12
|
Gau J, Furtmüller PG, Obinger C, Arnhold J, Flemmig J. Enhancing hypothiocyanite production by lactoperoxidase - mechanism and chemical properties of promotors. Biochem Biophys Rep 2015; 4:257-267. [PMID: 29124212 PMCID: PMC5669353 DOI: 10.1016/j.bbrep.2015.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/25/2015] [Accepted: 10/05/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The heme enzyme lactoperoxidase is found in body secretions where it significantly contributes to the humoral immune response against pathogens. After activation the peroxidase oxidizes thiocyanate to hypothiocyanite which is known for its microbicidal properties. Yet several pathologies are accompanied by a disturbed hypothiocyanite production which results in a reduced immune defense. METHODS The results were obtained by measuring enzyme-kinetic parameters using UV-vis spectroscopy and a standardized enzyme-kinetic test system as well as by the determination of second order rate constants using stopped-flow spectroscopy. RESULTS In this study we systematically tested thirty aromatic substrates for their efficiency to promote the lactoperoxidase-mediated hypothiocyanite production by restoring the native ferric enzyme state. Thereby hydrophobic compounds with a 3,4-dihydroxyphenyl partial structure such as hydroxytyrosol and selected flavonoids emerged as highly efficient promotors of the (pseudo-)halogenating lactoperoxidase activity. CONCLUSIONS This study discusses important structure-function relationships of efficient aromatic LPO substrates and may contribute to the development of new agents to promote lactoperoxidase activity in secretory fluids of patients. SIGNIFICANCE This study may contribute to a better understanding of the (patho-)physiological importance of the (pseudo-)halogenating lactoperoxidase activity. The presented results may in future lead to the development of new therapeutic strategies which, by reactivating lactoperoxidase-derived hypothiocyanite production, promote the immunological activity of this enzyme.
Collapse
Key Words
- 3,4-dihydroxylated compounds
- ABTS, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)
- Aromatic compounds
- DB, double bond
- DTNB, 5,5′-dithiobis-(2-nitrobenzoic acid)
- EPO, eosinophil peroxidase
- Hypothiocyanite
- Inflammation
- LPO, lactoperoxidase
- Lactoperoxidase
- MPO, myeloperoxidase
- Peroxidases
- SB, single bond
- TNB, 5-thio-2-nitrobenzoic acid.
- ssp., subspecies
Collapse
Affiliation(s)
- Jana Gau
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Paul-Georg Furtmüller
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Jürgen Arnhold
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| | - Jörg Flemmig
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Zámocký M, Hofbauer S, Schaffner I, Gasselhuber B, Nicolussi A, Soudi M, Pirker KF, Furtmüller PG, Obinger C. Independent evolution of four heme peroxidase superfamilies. Arch Biochem Biophys 2015; 574:108-19. [PMID: 25575902 PMCID: PMC4420034 DOI: 10.1016/j.abb.2014.12.025] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/19/2023]
Abstract
Four heme peroxidase superfamilies (peroxidase-catalase, peroxidase-cyclooxygenase, peroxidase-chlorite dismutase and peroxidase-peroxygenase superfamily) arose independently during evolution, which differ in overall fold, active site architecture and enzymatic activities. The redox cofactor is heme b or posttranslationally modified heme that is ligated by either histidine or cysteine. Heme peroxidases are found in all kingdoms of life and typically catalyze the one- and two-electron oxidation of a myriad of organic and inorganic substrates. In addition to this peroxidatic activity distinct (sub)families show pronounced catalase, cyclooxygenase, chlorite dismutase or peroxygenase activities. Here we describe the phylogeny of these four superfamilies and present the most important sequence signatures and active site architectures. The classification of families is described as well as important turning points in evolution. We show that at least three heme peroxidase superfamilies have ancient prokaryotic roots with several alternative ways of divergent evolution. In later evolutionary steps, they almost always produced highly evolved and specialized clades of peroxidases in eukaryotic kingdoms with a significant portion of such genes involved in coding various fusion proteins with novel physiological functions.
Collapse
Affiliation(s)
- Marcel Zámocký
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia.
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Irene Schaffner
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Bernhard Gasselhuber
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Andrea Nicolussi
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Monika Soudi
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Katharina F Pirker
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
14
|
Baldwin MW, Toda Y, Nakagita T, O'Connell MJ, Klasing KC, Misaka T, Edwards SV, Liberles SD. Sensory biology. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor. Science 2014; 345:929-33. [PMID: 25146290 DOI: 10.1126/science.1255097] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species.
Collapse
Affiliation(s)
- Maude W Baldwin
- Department of Organismic and Evolutionary Biology, Harvard University, and Museum of Comparative Zoology, Cambridge, MA 02138, USA.
| | - Yasuka Toda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Tomoya Nakagita
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Kirk C Klasing
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, and Museum of Comparative Zoology, Cambridge, MA 02138, USA
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Ríos-González BB, Román-Morales EM, Pietri R, López-Garriga J. Hydrogen sulfide activation in hemeproteins: the sulfheme scenario. J Inorg Biochem 2014; 133:78-86. [PMID: 24513534 DOI: 10.1016/j.jinorgbio.2014.01.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 12/24/2022]
Abstract
Traditionally known as a toxic gas, hydrogen sulfide (H2S) is now recognized as an important biological molecule involved in numerous physiological functions. Like nitric oxide (NO) and carbon monoxide (CO), H2S is produced endogenously in tissues and cells and can modulate biological processes by acting on target proteins. For example, interaction of H2S with the oxygenated form of human hemoglobin and myoglobin produces a sulfheme protein complex that has been implicated in H2S degradation. The presence of this sulfheme derivative has also been used as a marker for endogenous H2S synthesis and metabolism. Remarkably, human catalases and peroxidases also generate this sulfheme product. In this review, we describe the structural and functional aspects of the sulfheme derivative in these proteins and postulate a generalized mechanism for sulfheme protein formation. We also evaluate the possible physiological function of this complex and highlight the issues that remain to be assessed to determine the role of sulfheme proteins in H2S metabolism, detection and physiology.
Collapse
Affiliation(s)
- Bessie B Ríos-González
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, PO Box 9019, Mayagüez 00681-9019, Puerto Rico
| | - Elddie M Román-Morales
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, PO Box 9019, Mayagüez 00681-9019, Puerto Rico
| | - Ruth Pietri
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, PO Box 9019, Mayagüez 00681-9019, Puerto Rico
| | - Juan López-Garriga
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, PO Box 9019, Mayagüez 00681-9019, Puerto Rico.
| |
Collapse
|
16
|
Flemmig J, Zschaler J, Remmler J, Arnhold J. The fluorescein-derived dye aminophenyl fluorescein is a suitable tool to detect hypobromous acid (HOBr)-producing activity in eosinophils. J Biol Chem 2012; 287:27913-23. [PMID: 22718769 PMCID: PMC3431693 DOI: 10.1074/jbc.m112.364299] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/18/2012] [Indexed: 12/22/2022] Open
Abstract
The specific detection of peroxidase activity in human granulocytes is essential to elucidate their role in innate immune responses, immune regulation, and inflammatory diseases. The halogenating activity of myeloperoxidase in neutrophils can be determined by the novel fluorescent probe aminophenyl fluorescein (APF). Thereby non-fluorescent APF is oxidized by HOCl to form fluorescein. We successfully verified that APF equally detects the hypobromous acid (HOBr)-producing activity of eosinophil granulocytes. This was revealed by three different approaches. First, we investigated the conversion of non-fluorescent APF into fluorescein by HOCl and HOBr by means of fluorescence and mass spectrometry approaches. Thereby comparable chemical mechanisms were observed for both acids. Furthermore in vitro kinetic studies were used to detect the halogenating activity of myeloperoxidase and eosinophil peroxidase by using APF. Here the dye well reflected the different substrate specificities of myeloperoxidase and eosinophil peroxidase regarding chloride and bromide. Finally, peroxidase activities were successfully detected in phorbol ester-stimulated neutrophils and eosinophils using flow cytometry. Thereby inhibitory studies confirmed the peroxidase-dependent oxidation of APF. To sum up, APF is a promising tool for further evaluation of the halogenating activity of peroxidases in both neutrophils and eosinophils.
Collapse
Affiliation(s)
- Jörg Flemmig
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| | | | | | | |
Collapse
|
17
|
Morgan CC, Shakya K, Webb A, Walsh TA, Lynch M, Loscher CE, Ruskin HJ, O'Connell MJ. Colon cancer associated genes exhibit signatures of positive selection at functionally significant positions. BMC Evol Biol 2012; 12:114. [PMID: 22788692 PMCID: PMC3563467 DOI: 10.1186/1471-2148-12-114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/22/2012] [Indexed: 12/17/2022] Open
Abstract
Background Cancer, much like most human disease, is routinely studied by utilizing model organisms. Of these model organisms, mice are often dominant. However, our assumptions of functional equivalence fail to consider the opportunity for divergence conferred by ~180 Million Years (MY) of independent evolution between these species. For a given set of human disease related genes, it is therefore important to determine if functional equivalency has been retained between species. In this study we test the hypothesis that cancer associated genes have different patterns of substitution akin to adaptive evolution in different mammal lineages. Results Our analysis of the current literature and colon cancer databases identified 22 genes exhibiting colon cancer associated germline mutations. We identified orthologs for these 22 genes across a set of high coverage (>6X) vertebrate genomes. Analysis of these orthologous datasets revealed significant levels of positive selection. Evidence of lineage-specific positive selection was identified in 14 genes in both ancestral and extant lineages. Lineage-specific positive selection was detected in the ancestral Euarchontoglires and Hominidae lineages for STK11, in the ancestral primate lineage for CDH1, in the ancestral Murinae lineage for both SDHC and MSH6 genes and the ancestral Muridae lineage for TSC1. Conclusion Identifying positive selection in the Primate, Hominidae, Muridae and Murinae lineages suggests an ancestral functional shift in these genes between the rodent and primate lineages. Analyses such as this, combining evolutionary theory and predictions - along with medically relevant data, can thus provide us with important clues for modeling human diseases.
Collapse
Affiliation(s)
- Claire C Morgan
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
In Vitro Production of Plant Peroxidases—A Review. Appl Biochem Biotechnol 2012; 166:1644-60. [DOI: 10.1007/s12010-012-9558-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 01/13/2012] [Indexed: 10/28/2022]
|
19
|
Loughran NB, Hinde S, McCormick-Hill S, Leidal KG, Bloomberg S, Loughran ST, O'Connor B, O'Fágáin C, Nauseef WM, O'Connell MJ. Functional consequence of positive selection revealed through rational mutagenesis of human myeloperoxidase. Mol Biol Evol 2012; 29:2039-46. [PMID: 22355012 DOI: 10.1093/molbev/mss073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Myeloperoxidase (MPO) is a member of the mammalian heme peroxidase (MHP) multigene family. Whereas all MHPs oxidize specific halides to generate the corresponding hypohalous acid, MPO is unique in its capacity to oxidize chloride at physiologic pH to produce hypochlorous acid (HOCl), a potent microbicide that contributes to neutrophil-mediated host defense against infection. We have previously resolved the evolutionary relationships in this functionally diverse multigene family and predicted in silico that positive Darwinian selection played a major role in the observed functional diversities (Loughran NB, O'Connor B, O'Fagain C, O'Connell MJ. 2008. The phylogeny of the mammalian heme peroxidases and the evolution of their diverse functions. BMC Evol Biol. 8:101). In this work, we have replaced positively selected residues asparagine 496 (N496), tyrosine 500 (Y500), and leucine 504 (L504) with the amino acids present in the ancestral MHP and have examined the effects on the structure, biosynthesis, and activity of MPO. Analysis in silico predicted that N496F, Y500F, or L504T would perturb hydrogen bonding in the heme pocket of MPO and thus disrupt the structural integrity of the enzyme. Biosynthesis of the mutants stably expressed in human embryonic kidney 293 cells yielded apoproMPO, the heme-free, enzymatically inactive precursor of MPO, that failed to undergo normal maturation or proteolytic processing. As a consequence of the maturational arrest at the apoproMPO stage of development, cells expressing MPO with mutations N496F, Y500F, L504T, individually or in combination, lacked normal peroxidase or chlorinating activity. Taken together, our data provide further support for the in silico predictions of positive selection and highlight the correlation between positive selection and functional divergence. Our data demonstrate that directly probing the functional importance of positive selection can provide important insights into understanding protein evolution.
Collapse
Affiliation(s)
- Noeleen B Loughran
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li J, Yu L, Tian Y, Zhang KQ. Molecular evolution of the deuterolysin (M35) family genes in Coccidioides. PLoS One 2012; 7:e31536. [PMID: 22363666 PMCID: PMC3282736 DOI: 10.1371/journal.pone.0031536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/09/2012] [Indexed: 11/18/2022] Open
Abstract
Coccidioides is a primary fungal pathogen of humans, causing life-threatening respiratory disease known as coccidioidomycosis (Valley fever) in immunocompromised individuals. Recently, Sharpton et al (2009) found that the deuterolysin (M35) family genes were significantly expanded in both the Coccidioides genus and in U. reesii, and that Coccidioides has acquired three more M35 family genes than U. reesii. In the present work, phylogenetic analyses based on a total of 28 M35 family genes using different alignments and tree-building methods consistently revealed five clades with high nodal supports. Interestingly, likelihood ratio tests suggested significant differences in selective pressure on the ancestral lineage of three additional duplicated M35 family genes from Coccidioides species compared to the other lineages in the phylogeny, which may be associated with novel functional adaptations of M35 family genes in the Coccidioides species, e.g., recent pathogenesis acquisition. Our study adds to the expanding view of M35 family gene evolution and functions as well as establishes a theoretical foundation for future experimental investigations.
Collapse
Affiliation(s)
- Juan Li
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
| | - Li Yu
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
| | - Yanmei Tian
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
- * E-mail:
| |
Collapse
|
21
|
Raimondi S, Barbarini N, Mangione P, Esposito G, Ricagno S, Bolognesi M, Zorzoli I, Marchese L, Soria C, Bellazzi R, Monti M, Stoppini M, Stefanelli M, Magni P, Bellotti V. The two tryptophans of β2-microglobulin have distinct roles in function and folding and might represent two independent responses to evolutionary pressure. BMC Evol Biol 2011; 11:159. [PMID: 21663612 PMCID: PMC3124429 DOI: 10.1186/1471-2148-11-159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 06/10/2011] [Indexed: 01/06/2023] Open
Abstract
Background We have recently discovered that the two tryptophans of human β2-microglobulin have distinctive roles within the structure and function of the protein. Deeply buried in the core, Trp95 is essential for folding stability, whereas Trp60, which is solvent-exposed, plays a crucial role in promoting the binding of β2-microglobulin to the heavy chain of the class I major histocompatibility complex (MHCI). We have previously shown that the thermodynamic disadvantage of having Trp60 exposed on the surface is counter-balanced by the perfect fit between it and a cavity within the MHCI heavy chain that contributes significantly to the functional stabilization of the MHCI. Therefore, based on the peculiar differences of the two tryptophans, we have analysed the evolution of β2-microglobulin with respect to these residues. Results Having defined the β2-microglobulin protein family, we performed multiple sequence alignments and analysed the residue conservation in homologous proteins to generate a phylogenetic tree. Our results indicate that Trp60 is highly conserved, whereas some species have a Leu in position 95; the replacement of Trp95 with Leu destabilizes β2-microglobulin by 1 kcal/mol and accelerates the kinetics of unfolding. Both thermodynamic and kinetic data fit with the crystallographic structure of the Trp95Leu variant, which shows how the hydrophobic cavity of the wild-type protein is completely occupied by Trp95, but is only half filled by Leu95. Conclusions We have established that the functional Trp60 has been present within the sequence of β2-microglobulin since the evolutionary appearance of proteins responsible for acquired immunity, whereas the structural Trp95 was selected and stabilized, most likely, for its capacity to fully occupy an internal cavity of the protein thereby creating a better stabilization of its folded state.
Collapse
Affiliation(s)
- Sara Raimondi
- Department of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bryant DH, Moll M, Chen BY, Fofanov VY, Kavraki LE. Analysis of substructural variation in families of enzymatic proteins with applications to protein function prediction. BMC Bioinformatics 2010; 11:242. [PMID: 20459833 PMCID: PMC2885373 DOI: 10.1186/1471-2105-11-242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 05/11/2010] [Indexed: 12/02/2022] Open
Abstract
Background Structural variations caused by a wide range of physico-chemical and biological sources directly influence the function of a protein. For enzymatic proteins, the structure and chemistry of the catalytic binding site residues can be loosely defined as a substructure of the protein. Comparative analysis of drug-receptor substructures across and within species has been used for lead evaluation. Substructure-level similarity between the binding sites of functionally similar proteins has also been used to identify instances of convergent evolution among proteins. In functionally homologous protein families, shared chemistry and geometry at catalytic sites provide a common, local point of comparison among proteins that may differ significantly at the sequence, fold, or domain topology levels. Results This paper describes two key results that can be used separately or in combination for protein function analysis. The Family-wise Analysis of SubStructural Templates (FASST) method uses all-against-all substructure comparison to determine Substructural Clusters (SCs). SCs characterize the binding site substructural variation within a protein family. In this paper we focus on examples of automatically determined SCs that can be linked to phylogenetic distance between family members, segregation by conformation, and organization by homology among convergent protein lineages. The Motif Ensemble Statistical Hypothesis (MESH) framework constructs a representative motif for each protein cluster among the SCs determined by FASST to build motif ensembles that are shown through a series of function prediction experiments to improve the function prediction power of existing motifs. Conclusions FASST contributes a critical feedback and assessment step to existing binding site substructure identification methods and can be used for the thorough investigation of structure-function relationships. The application of MESH allows for an automated, statistically rigorous procedure for incorporating structural variation data into protein function prediction pipelines. Our work provides an unbiased, automated assessment of the structural variability of identified binding site substructures among protein structure families and a technique for exploring the relation of substructural variation to protein function. As available proteomic data continues to expand, the techniques proposed will be indispensable for the large-scale analysis and interpretation of structural data.
Collapse
Affiliation(s)
- Drew H Bryant
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | | | | | | |
Collapse
|
23
|
Morgan CC, Loughran NB, Walsh TA, Harrison AJ, O'Connell MJ. Positive selection neighboring functionally essential sites and disease-implicated regions of mammalian reproductive proteins. BMC Evol Biol 2010; 10:39. [PMID: 20149245 PMCID: PMC2830953 DOI: 10.1186/1471-2148-10-39] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 02/11/2010] [Indexed: 11/16/2022] Open
Abstract
Background Reproductive proteins are central to the continuation of all mammalian species. The evolution of these proteins has been greatly influenced by environmental pressures induced by pathogens, rival sperm, sexual selection and sexual conflict. Positive selection has been demonstrated in many of these proteins with particular focus on primate lineages. However, the mammalia are a diverse group in terms of mating habits, population sizes and germ line generation times. We have examined the selective pressures at work on a number of novel reproductive proteins across a wide variety of mammalia. Results We show that selective pressures on reproductive proteins are highly varied. Of the 10 genes analyzed in detail, all contain signatures of positive selection either across specific sites or in specific lineages or a combination of both. Our analysis of SP56 and Col1a1 are entirely novel and the results show positively selected sites present in each gene. Our findings for the Col1a1 gene are suggestive of a link between positive selection and severe disease type. We find evidence in our dataset to suggest that interacting proteins are evolving in symphony: most likely to maintain interacting functionality. Conclusion Our in silico analyses show positively selected sites are occurring near catalytically important regions suggesting selective pressure to maximize efficient fertilization. In those cases where a mechanism of protein function is not fully understood, the sites presented here represent ideal candidates for mutational study. This work has highlighted the widespread rate heterogeneity in mutational rates across the mammalia and specifically has shown that the evolution of reproductive proteins is highly varied depending on the species and interacting partners. We have shown that positive selection and disease are closely linked in the Col1a1 gene.
Collapse
Affiliation(s)
- Claire C Morgan
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
24
|
Comparative analysis of vertebrate PEPT1 and PEPT2 genes. Genetica 2009; 138:587-99. [PMID: 20091090 DOI: 10.1007/s10709-009-9431-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
The plasma membrane transport proteins belong to SoLute Carrier 15 (SLC15) family and two members of this family have been characterized extensively in higher vertebrates, namely PEPT1 and PEPT2. Despite many efforts have made to define a pharmacophore model for efficient binding and transporting of substrates, there is not a comprehensive study performed to elucidate the evolutionary mechanisms among the SLC15 family members and to statistically evaluate sequence conservation and functional divergence between members. In this study, we compared and contrasted the rates and patterns of molecular evolution of 2 PEPT genes. Phylogenetic tree assembly with all available vertebrate PEPTs suggests that the PEPTs originated by duplications and diverged from a common protein at the base of the eukaryotic tree. Topological structure demonstrates both members share the similar hydrophobic domains (TMDs), which have been constrained by purifying selection. Although both genes show qualitatively similar patterns, their rates of evolution differ significantly due to an increased rate of synonymous substitutions in the structural domains in one copy, suggesting substantial differences in functional constraint on each gene. Site-specific profiles were established by posterior probability analysis revealing significantly divergent regions mainly locate at the hydrophobic region between predicted transmembrane domains 9 and 10 of the proteins. Thus, these results provide the evidence that several amino acid residues with reduced selective constraints are largely responsible for functional divergence between the paralogous PEPTs. These findings may provide a starting point for further experimental verifications.
Collapse
|
25
|
van Bloois E, Torres Pazmiño DE, Winter RT, Fraaije MW. A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 2009; 86:1419-30. [PMID: 19967355 PMCID: PMC2854361 DOI: 10.1007/s00253-009-2369-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/15/2009] [Accepted: 11/15/2009] [Indexed: 11/26/2022]
Abstract
DyP-type peroxidases comprise a novel superfamily of heme-containing peroxidases which is unrelated to the superfamilies of known peroxidases and of which only a few members have been characterized in some detail. Here, we report the identification and characterization of a DyP-type peroxidase (TfuDyP) from the thermophilic actinomycete Thermobifida fusca. Biochemical characterization of the recombinant enzyme showed that it is a monomeric, heme-containing, thermostable, and Tat-dependently exported peroxidase. TfuDyP is not only active as dye-decolorizing peroxidase as it also accepts phenolic compounds and aromatic sulfides. In fact, it is able to catalyze enantioselective sulfoxidations, a type of reaction that has not been reported before for DyP-type peroxidases. Site-directed mutagenesis was used to determine the role of two conserved residues. D242 is crucial for catalysis while H338 represents the proximal heme ligand and is essential for heme incorporation. A genome database analysis revealed that DyP-type peroxidases are frequently found in bacterial genomes while they are extremely rare in other organisms. Most of the bacterial homologs are potential cytosolic enzymes, suggesting metabolic roles different from dye degradation. In conclusion, the detailed biochemical characterization reported here contributes significantly to our understanding of these enzymes and further emphasizes their biotechnological potential.
Collapse
Affiliation(s)
- Edwin van Bloois
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Daniel E. Torres Pazmiño
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Remko T. Winter
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marco W. Fraaije
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|