1
|
Muneretto G, Plazzi F, Passamonti M. Mitochondrion-to-nucleus communication mediated by RNA export: a survey of potential mechanisms and players across eukaryotes. Biol Lett 2024; 20:20240147. [PMID: 38982851 PMCID: PMC11283861 DOI: 10.1098/rsbl.2024.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
The nucleus interacts with the other organelles to perform essential functions of the eukaryotic cell. Mitochondria have their own genome and communicate back to the nucleus in what is known as mitochondrial retrograde response. Information is transferred to the nucleus in many ways, leading to wide-ranging changes in nuclear gene expression and culminating with changes in metabolic, regulatory or stress-related pathways. RNAs are emerging molecules involved in this signalling. RNAs encode precise information and are involved in highly target-specific signalling, through a wide range of processes known as RNA interference. RNA-mediated mitochondrial retrograde response requires these molecules to exit the mitochondrion, a process that is still mostly unknown. We suggest that the proteins/complexes translocases of the inner membrane, polynucleotide phosphorylase, mitochondrial permeability transition pore, and the subunits of oxidative phosphorylation complexes may be responsible for RNA export.
Collapse
Affiliation(s)
- Giorgio Muneretto
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Tassé M, Choquette T, Angers A, Stewart DT, Pante E, Breton S. The longest mitochondrial protein in metazoans is encoded by the male-transmitted mitogenome of the bivalve Scrobicularia plana. Biol Lett 2022; 18:20220122. [PMID: 35673874 PMCID: PMC9174706 DOI: 10.1098/rsbl.2022.0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cytochrome c oxidase subunit II (COX2) is one of the three mitochondrially encoded proteins of the complex IV of the respiratory chain that catalyses the reduction of oxygen to water. The cox2 gene spans about 690 base pairs in most animal species and produces a protein composed of approximately 230 amino acids. We discovered an extreme departure from this pattern in the male-transmitted mitogenome of the bivalve Scrobicularia plana with doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA), which possesses an important in-frame insertion of approximately 4.8 kb in its cox2 gene. This feature—an enlarged male cox2 gene—is found in many species with DUI; the COX2 protein can be up to 420 amino acids long. Through RT-PCRs, immunoassays and comparative genetics, the evolution and functionality of this insertion in S. plana were characterized. The in-frame insertion is conserved among individuals from different populations and bears the signature of purifying selection seemingly indicating maintenance of functionality. Its transcription and translation were confirmed: this gene produces a polypeptide of 1892 amino acids, making it the largest metazoan COX2 protein known to date. We hypothesize that these extreme modifications in the COX2 protein affect the metabolism of mitochondria containing the male-transmitted mtDNA in Scrobicularia plana.
Collapse
Affiliation(s)
- Mélanie Tassé
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | - Thierry Choquette
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | - Annie Angers
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | | | - Eric Pante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Breton S, Stewart DT, Brémaud J, Havird JC, Smith CH, Hoeh WR. Did doubly uniparental inheritance (DUI) of mtDNA originate as a cytoplasmic male sterility (CMS) system? Bioessays 2022; 44:e2100283. [PMID: 35170770 PMCID: PMC9083018 DOI: 10.1002/bies.202100283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023]
Abstract
Animal and plant species exhibit an astonishing diversity of sexual systems, including environmental and genetic determinants of sex, with the latter including genetic material in the mitochondrial genome. In several hermaphroditic plants for example, sex is determined by an interaction between mitochondrial cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Specifically, CMS involves aberrant mitochondrial genes that prevent pollen development and specific nuclear genes that restore it, leading to a mixture of female (male-sterile) and hermaphroditic individuals in the population (gynodioecy). Such a mitochondrial-nuclear sex determination system is thought to be rare outside plants. Here, we present one possible case of CMS in animals. We hypothesize that the only exception to the strict maternal mtDNA inheritance in animals, the doubly uniparental inheritance (DUI) system in bivalves, might have originated as a mitochondrial-nuclear sex-determination system. We document and explore similarities that exist between DUI and CMS, and we propose various ways to test our hypothesis.
Collapse
Affiliation(s)
- Sophie Breton
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Julie Brémaud
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Chase H Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Walter R Hoeh
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
4
|
The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa. Genes (Basel) 2021; 12:genes12122030. [PMID: 34946978 PMCID: PMC8700879 DOI: 10.3390/genes12122030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome’s size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions.
Collapse
|
5
|
Zieritz A, Froufe E, Bolotov I, Gonçalves DV, Aldridge DC, Bogan AE, Gan HM, Gomes-Dos-Santos A, Sousa R, Teixeira A, Varandas S, Zanatta D, Lopes-Lima M. Mitogenomic phylogeny and fossil-calibrated mutation rates for all F- and M-type mtDNA genes of the largest freshwater mussel family, the Unionidae (Bivalvia). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Unionidae represent an excellent model taxon for unravelling the drivers of freshwater diversity, but, phylogeographic studies on Southeast Asian taxa are hampered by lack of a comprehensive phylogeny and mutation rates for this fauna. We present complete female- (F) and male-type (M) mitogenomes of four genera of the Southeast Asian clade Contradentini+Rectidentini. We calculate substitution rates for the mitogenome, the 13 protein-coding genes, the two ribosomal units and three commonly used fragments (co1, nd1 and 16S) of both F- and M-mtDNA, based on a fossil-calibrated, mitogenomic phylogeny of the Unionidae. Phylogenetic analyses, including an M+F concatenated dataset, consistently recovers a monophyletic Gonideinae. Subfamily-level topology is congruent with that of a previous nuclear genomic study and with patterns in mitochondrial gene order, suggesting Unionidae F-type 2 as a synapomorphy of the Gonideinae. Our phylogeny indicates that the clades Contradentini+Rectidentini and Lamprotulini+Pseudodontini+Gonideini split in the early Cretaceous (~125 Mya), and that the crown group of Contradentini+Rectidentini originated in the late Cretaceous (~79 Mya). Most gonideine tribes originated during the early Palaeogene. Substitution rates were comparable to those previously published for F-type co1 and 16S for certain Unionidae and Margaritiferidae species (pairs).
Collapse
Affiliation(s)
- Alexandra Zieritz
- School of Geography, Sir Clive Granger Building, University of Nottingham, University Park, Nottingham, UK
| | - Elsa Froufe
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Ivan Bolotov
- Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Severnaya Dvina Emb. 23, Arkhangelsk, Russian Federation
- Northern Arctic Federal University, Northern Dvina Emb. 17, Arkhangelsk, Russian Federation
- Saint-Petersburg State University, Universitetskaya Emb. 7/9, Saint Petersburg, Russian Federation
| | - Duarte V Gonçalves
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - David C Aldridge
- Aquatic Ecology Group, The David Attenborough Building, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Arthur E Bogan
- Research Laboratory, North Carolina State Museum of Natural Sciences, Raleigh, NC, USA
| | - Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong,, VIC, Australia
| | - André Gomes-Dos-Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campos de Gualtar, Braga, Portugal
| | - Amilcar Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Simone Varandas
- CITAB-UTAD – Centre for Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes and Alto Douro, Apartado 1013, Vila Real, Portugal
| | - David Zanatta
- Biology Department, Institute for Great Lakes Research, Central Michigan University, Biosciences, Mount Pleasant, MI, USA
| | - Manuel Lopes-Lima
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, Matosinhos, Portugal
- CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairão, Portugal
| |
Collapse
|
6
|
Capt C, Bouvet K, Guerra D, Robicheau BM, Stewart DT, Pante E, Breton S. Unorthodox features in two venerid bivalves with doubly uniparental inheritance of mitochondria. Sci Rep 2020; 10:1087. [PMID: 31974502 PMCID: PMC6978325 DOI: 10.1038/s41598-020-57975-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/09/2020] [Indexed: 12/02/2022] Open
Abstract
In animals, strictly maternal inheritance (SMI) of mitochondria is the rule, but one exception (doubly uniparental inheritance or DUI), marked by the transmission of sex-specific mitogenomes, has been reported in bivalves. Associated with DUI is a frequent modification of the mitochondrial cox2 gene, as well as additional sex-specific mitochondrial genes not involved in oxidative phosphorylation. With the exception of freshwater mussels (for 3 families of the order Unionida), these DUI-associated features have only been shown in few species [within Mytilidae (order Mytilida) and Veneridae (order Venerida)] because of the few complete sex-specific mitogenomes published for these orders. Here, we present the complete sex-specific mtDNAs of two recently-discovered DUI species in two families of the order Venerida, Scrobicularia plana (Semelidae) and Limecola balthica (Tellinidae). These species display the largest differences in genome size between sex-specific mitotypes in DUI species (>10 kb), as well as the highest mtDNA divergences (sometimes reaching >50%). An important in-frame insertion (>3.5 kb) in the male cox2 gene is partly responsible for the differences in genome size. The S. plana cox2 gene is the largest reported so far in the Kingdom Animalia. The mitogenomes may be carrying sex-specific genes, indicating that general mitochondrial features are shared among DUI species.
Collapse
Affiliation(s)
- Charlotte Capt
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
| | - Karim Bouvet
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | - Davide Guerra
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | | | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Eric Pante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
7
|
Lubośny M, Śmietanka B, Przyłucka A, Burzyński A. Highly divergent mitogenomes ofGeukensia demissa(Bivalvia, Mytilidae) with extreme AT content. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marek Lubośny
- Department of Genetics and Marine Biotechnology Institute of Oceanology Polish Academy of Sciences Sopot Poland
| | - Beata Śmietanka
- Department of Genetics and Marine Biotechnology Institute of Oceanology Polish Academy of Sciences Sopot Poland
| | - Aleksandra Przyłucka
- Department of Genetics and Marine Biotechnology Institute of Oceanology Polish Academy of Sciences Sopot Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology Institute of Oceanology Polish Academy of Sciences Sopot Poland
| |
Collapse
|
8
|
Keogh SM, Simons AM. Molecules and morphology reveal 'new' widespread North American freshwater mussel species (Bivalvia: Unionidae). Mol Phylogenet Evol 2019; 138:182-192. [PMID: 31129350 DOI: 10.1016/j.ympev.2019.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
In the Family Unionidae, the greatest radiation of freshwater mussels, malacologists have been misled by extreme intraspecific shell variation and conversely interspecific conchological stasis or convergence. We characterized the genetic and morphological diversity of two phenotypes of Lampsilis teres from specimens (n = 108) collected across its distribution using geometric and traditional morphometrics and multilocus molecular phylogenetics to test the hypothesis that phenotypes represent separate species. Results from our morphometric and molecular phylogenetic analyses unanimously indicate that L. teres sensu lato is made up of two divergent, widespread species with overlapping distributions. We describe a new species and provide a revised description of L. teres sensu stricto. We use morphometrics and machine-learning classification algorithms to test if shell morphology alone can be used to discriminate between these species. Classification percentages of 97.02% and 93.86% demonstrate that shell morphology is highly informative for species identification. This study highlights our lack of understanding of species diversity of freshwater mussels and the importance of multiple characters and quantitative approaches to species delimitation.
Collapse
Affiliation(s)
- Sean M Keogh
- Conservation Sciences Graduate Program, University of Minnesota, 135B Skok Hall, 2003 Upper Buford Circle, St Paul, MN 55108, USA; Bell Museum of Natural History, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.
| | - Andrew M Simons
- Bell Museum of Natural History, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St. Paul, MN 55108, USA; Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 135B Skok Hall, 2003 Upper Buford Circle, St Paul, MN 55108, USA
| |
Collapse
|
9
|
Śmietanka B, Lubośny M, Przyłucka A, Gérard K, Burzyński A. Mitogenomics of Perumytilus purpuratus (Bivalvia: Mytilidae) and its implications for doubly uniparental inheritance of mitochondria. PeerJ 2018; 6:e5593. [PMID: 30245933 PMCID: PMC6149501 DOI: 10.7717/peerj.5593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022] Open
Abstract
Animal mitochondria are usually inherited through the maternal lineage. The exceptional system allowing fathers to transmit their mitochondria to the offspring exists in some bivalves. Its taxonomic spread is poorly understood and new mitogenomic data are needed to fill the gap. Here, we present for the first time the two divergent mitogenomes from Chilean mussel Perumytilus purpuratus. The existence of these sex-specific mitogenomes confirms that this species has the doubly uniparental inheritance (DUI) of mitochondria. The genetic distance between the two mitochondrial lineages in P. purpuratus is not only much bigger than in the Mytilus edulis species complex but also greater than the distance observed in Musculista senhousia, the only other DUI-positive member of the Mytilidae family for which both complete mitochondrial genomes were published to date. One additional, long ORF (open reading frame) is present exclusively in the maternal mitogenome of P. purpuratus. This ORF evolves under purifying selection, and will likely be a target for future DUI research.
Collapse
Affiliation(s)
- Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Marek Lubośny
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Aleksandra Przyłucka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Karin Gérard
- Centro de Investigacion Gaia-Antartica, Departamento de Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile.,Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas, Chile
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
10
|
Burzyński A, Soroka M. Complete paternally inherited mitogenomes of two freshwater mussels Unio pictorum and Sinanodonta woodiana (Bivalvia: Unionidae). PeerJ 2018; 6:e5573. [PMID: 30221094 PMCID: PMC6138038 DOI: 10.7717/peerj.5573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
Freshwater bivalves from the family Unionidae usually have two very divergent mitogenomes, inherited according to the doubly uniparental model. The early divergence of these two mitogenomic lineages gives a unique opportunity to use two mitogenomic data sets in a single phylogenetic context. However, the number of complete sequences of the maternally inherited mitogenomes of these animals available in GenBank greatly exceeds that of the paternally inherited mitogenomes. This is a problem for phylogenetic reconstruction because it limits the use of both mitogenomic data sets. Moreover, since long branch attraction phenomenon can bias reconstructions if only a few but highly divergent taxa are considered, the shortage of the faster evolving paternally inherited mitogenome sequences is a real problem. Here we provide, for the first time, complete sequences of the M mitogenomes sampled from Polish populations of two species: native Unio pictorum and invasive Sinanodonta woodiana. It increases the available set of mitogenomic pairs to 18 species per family, and allows unambiguous reconstruction of phylogenetic relationships among them. The reconstructions based on M and F mitogenomes which were separated for many millions of years, and subject to differing evolutionary dynamics, are fully congruent.
Collapse
Affiliation(s)
- Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Marianna Soroka
- University of Szczecin, Faculty of Biology, Department of Genetics, Szczecin, Poland
| |
Collapse
|
11
|
Wu RW, Liu YT, Wang S, Liu XJ, Zanatta DT, Roe KJ, Song XL, An CT, Wu XP. Testing the utility of DNA barcodes and a preliminary phylogenetic framework for Chinese freshwater mussels (Bivalvia: Unionidae) from the middle and lower Yangtze River. PLoS One 2018; 13:e0200956. [PMID: 30089124 PMCID: PMC6082535 DOI: 10.1371/journal.pone.0200956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/04/2018] [Indexed: 11/19/2022] Open
Abstract
The middle and lower portions of the Yangtze River basin is the most species-rich region for freshwater mussels in Asia. The management and conservation of the taxa in this region has been greatly hampered by the lack of a well-developed phylogeny and species-level taxonomic framework. In this study, we tested the utility of two mitochondrial genes commonly used as DNA barcodes: the first subunit of the cytochrome oxidase c gene (COI) and the first subunit of the NADH dehydrogenase gene (ND1) for 34 putative species representing 15 genera, and also generated phylogenetic hypotheses for Chinese unionids based on the combined dataset of the two mitochondrial genes. The results showed that both loci performed well as barcodes for species identification, but the ND1 sequences provided better resolution when compared to COI. Based on the two-locus dataset, Bayesian Inference (BI) and Maximum Likelihood (ML) phylogenetic analyses indicated 3 of the 15 genera of Chinese freshwater mussels examined were polyphyletic. Additionally, the analyses placed the 15 genera into 3 subfamilies: Unioninae (Aculamprotula, Cuneopsis, Nodularia and Schistodesmus), Gonideninae (Lamprotula, Solenaia and Ptychorhychus) and Anodontinae (Cristaria, Arconaia, Acuticosta, Lanceolaria, Anemina and Sinoanodonta). Our results contradict previous taxonomic classification that placed the genera Arconaia, Acuticosta and Lanceolaria in the Unioninae. This study represents one of the first attempts to develop a molecular phylogenetic framework for the Chinese members of the Unionidae and will provide a basis for future research on the evolution, ecology, and conservation of Chinese freshwater mussels.
Collapse
Affiliation(s)
- Rui-Wen Wu
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yi-Tong Liu
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Sa Wang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Xiong-Jun Liu
- School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - David T. Zanatta
- Biology Department, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Kevin J. Roe
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa, United States of America
| | - Xue-Lin Song
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
| | - Chang-Ting An
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
| | - Xiao-Ping Wu
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
12
|
Robicheau BM, Chase EE, Hoeh WR, Harris JL, Stewart DT, Breton S. Evaluating the utility of the female-specific mitochondrial f-orf gene for population genetic, phylogeographic and systematic studies in freshwater mussels (Bivalvia: Unionida). PeerJ 2018; 6:e5007. [PMID: 29915706 PMCID: PMC6004104 DOI: 10.7717/peerj.5007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
Freshwater mussels (order: Unionida) represent one of the most critically imperilled groups of animals; consequently, there exists a need to establish a variety of molecular markers for population genetics and systematic studies in this group. Recently, two novel mitochondrial protein-coding genes were described in unionoids with doubly uniparental inheritance of mtDNA. These genes are the f-orf in female-transmitted mtDNA and the m-orf in male-transmitted mtDNA. In this study, whole F-type mitochondrial genome sequences of two morphologically similar Lampsilis spp. were compared to identify the most divergent protein-coding regions, including the f-orf gene, and evaluate its utility for population genetic and phylogeographic studies in the subfamily Ambleminae. We also tested whether the f-orf gene is phylogenetically informative at the species level. Our preliminary results indicated that the f-orf gene could represent a viable molecular marker for population- and species-level studies in freshwater mussels.
Collapse
Affiliation(s)
- Brent M Robicheau
- Department of Biology, Acadia University, Wolfville, Canada.,Current affiliation: Department of Biology, Life Science Centre, Dalhousie University, Halifax, Canada
| | - Emily E Chase
- Department of Biology, Acadia University, Wolfville, Canada
| | - Walter R Hoeh
- Department of Biological Sciences, Kent State University, Kent, United States of America
| | - John L Harris
- Department of Biological Sciences, Arkansas State University, Jonesboro, United States of America
| | | | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| |
Collapse
|
13
|
Skibinski DOF, Ghiselli F, Diz AP, Milani L, Mullins JGL. Structure-Related Differences between Cytochrome Oxidase I Proteins in a Stable Heteroplasmic Mitochondrial System. Genome Biol Evol 2018; 9:3265-3281. [PMID: 29149282 PMCID: PMC5726481 DOI: 10.1093/gbe/evx235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 12/27/2022] Open
Abstract
Many bivalve species have two types of mitochondrial DNA passed independently through the female line (F genome) and male line (M genome). Here we study the cytochrome oxidase I protein in such bivalve species and provide evidence for differences between the F and M proteins in amino acid property values, particularly relating to hydrophobicity and helicity. The magnitude of these differences varies between different regions of the protein and the change from the ancestor is most marked in the M protein. The observed changes occur in parallel and in the same direction in the different species studied. Two possible causes are considered, first relaxation of purifying selection with drift and second positive selection. These may operate in different ways in different regions of the protein. Many different amino acid substitutions contribute in a small way to the observed variation, but substitutions involving alanine and serine have a quantitatively large effect. Some of these substitutions are potential targets for phosphorylation and some are close to residues of functional importance in the catalytic mechanism. We propose that the observed changes in the F and M proteins might contribute to functional differences between them relating to ATP production and mitochondrial membrane potential with implications for sperm function.
Collapse
Affiliation(s)
- David O F Skibinski
- Institute of Life Science, Swansea University Medical School, United Kingdom
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Angel P Diz
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Spain
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | | |
Collapse
|
14
|
Gusman A, Lecomte S, Stewart DT, Passamonti M, Breton S. Pursuing the quest for better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA. PeerJ 2016; 4:e2760. [PMID: 27994972 PMCID: PMC5157197 DOI: 10.7717/peerj.2760] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/05/2016] [Indexed: 11/20/2022] Open
Abstract
There is only one exception to strict maternal inheritance of mitochondrial DNA (mtDNA) in the animal kingdom: a system named doubly uniparental inheritance (DUI), which is found in several bivalve species. Why and how such a radically different system of mitochondrial transmission evolved in bivalve remains obscure. Obtaining a more complete taxonomic distribution of DUI in the Bivalvia may help to better understand its origin and function. In this study we provide evidence for the presence of sex-linked heteroplasmy (thus the possible presence of DUI) in two bivalve species, i.e., the nuculanoid Yoldia hyperborea(Gould, 1841)and the veneroid Scrobicularia plana(Da Costa,1778), increasing the number of families in which DUI has been found by two. An update on the taxonomic distribution of DUI in the Bivalvia is also presented.
Collapse
Affiliation(s)
- Arthur Gusman
- Department of Biological Sciences, Université de Montréal , Montréal , Québec , Canada
| | - Sophia Lecomte
- Department of Biological Sciences, Université de Strasbourg , Strasbourg , France
| | - Donald T Stewart
- Department of Biology, Acadia University , Wolfville , Nova Scotia , Canada
| | - Marco Passamonti
- Department of Biological Geological and Environmental Sciences, University of Bologna , Bologna , Italy
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal , Montréal , Québec , Canada
| |
Collapse
|
15
|
Bettinazzi S, Plazzi F, Passamonti M. The Complete Female- and Male-Transmitted Mitochondrial Genome of Meretrix lamarckii. PLoS One 2016; 11:e0153631. [PMID: 27083010 PMCID: PMC4833323 DOI: 10.1371/journal.pone.0153631] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/02/2016] [Indexed: 11/17/2022] Open
Abstract
Bivalve mitochondrial genomes show many uncommon features, like additional genes, high rates of gene rearrangement, high A-T content. Moreover, Doubly Uniparental Inheritance (DUI) is a distinctive inheritance mechanism allowing some bivalves to maintain and transmit two separate sex-linked mitochondrial genomes. Many bivalve mitochondrial features, such as gene extensions or additional ORFs, have been proposed to be related to DUI but, up to now, this topic is far from being understood. Several species are known to show this unusual organelle inheritance but, being widespread only among Unionidae and Mytilidae, DUI distribution is unclear. We sequenced and characterized the complete female- (F) and male-transmitted (M) mitochondrial genomes of Meretrix lamarckii, which, in fact, is the second species of the family Veneridae where DUI has been demonstrated so far. The two mitochondrial genomes are comparable in length and show roughly the same gene content and order, except for three additional tRNAs found in the M one. The two sex-linked genomes show an average nucleotide divergence of 16%. A 100-aminoacid insertion in M. lamarckii M-cox2 gene was found; moreover, additional ORFs have been found in both F and M Long Unassigned Regions of M. lamarckii. Even if no direct involvement in DUI process has been demonstrated so far, the finding of cox2 insertions and supernumerary ORFs in M. lamarckii both strengthens this hypothesis and widens the taxonomical distribution of such unusual features. Finally, the analysis of inter-sex genetic variability shows that DUI species form two separate clusters, namely Unionidae and Mytilidae+Veneridae; this dichotomy is probably due to different DUI regimes acting on separate taxa.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, BO, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, BO, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, BO, Italy
| |
Collapse
|
16
|
Immobilization of Cyclooxygenase-2 on Silica Gel Microspheres: Optimization and Characterization. Molecules 2015; 20:19971-83. [PMID: 26556331 PMCID: PMC6332325 DOI: 10.3390/molecules201119670] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/28/2015] [Indexed: 01/05/2023] Open
Abstract
In this study, immobilized COX-2 was successfully constructed through glutaraldehyde-mediated covalent coupling on functional silica gel microspheres. The optimum conditions, properties, and morphological characteristics of the immobilized COX-2 were investigated. The optimal immobilization process was as follows: about 0.02 g of aminated silica gel microspheres was activated by 0.25% GA solution for 6 h and mixed with 5 U of free recombinant COX-2 solution. Then, the mixture was shaken for 8 h at 20 °C. Results showed that the immobilized COX-2 produced by this method exhibited excellent biocatalytic activity, equivalent to that of free COX-2 under the test conditions employed. The best biocatalytic activity of immobilized COX-2 appeared at pH 8.0 and still maintained at about 84% (RSD < 7.39%, n = 3) at pH 10.0. For temperature tolerance, immobilized COX-2 exhibited its maximum biocatalytic activity at 40 °C and about 68% (RSD < 6.99%, n = 3) of the activity was maintained at 60 °C. The immobilized COX-2 retained over 85% (RSD < 7.26%, n = 3) of its initial biocatalytic activity after five cycles, and after 10 days storage, the catalytic activity of immobilized COX-2 still maintained at about 95% (RSD < 3.08%, n = 3). These characteristics ensured the convenient use of the immobilized COX-2 and reduced its production cost.
Collapse
|
17
|
Breton S, Milani L, Ghiselli F, Guerra D, Stewart DT, Passamonti M. A resourceful genome: updating the functional repertoire and evolutionary role of animal mitochondrial DNAs. Trends Genet 2014; 30:555-64. [PMID: 25263762 DOI: 10.1016/j.tig.2014.09.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 11/24/2022]
Abstract
Recent data from mitochondrial genomics and proteomics research demonstrate the existence of several atypical mitochondrial protein-coding genes (other than the standard set of 13) and the involvement of mtDNA-encoded proteins in functions other than energy production in several animal species including humans. These results are of considerable importance for evolutionary and cellular biology because they indicate that animal mtDNAs have a larger functional repertoire than previously believed. This review summarizes recent studies on animal species with a non-standard mitochondrial functional repertoire and discusses how these genetic novelties represent promising candidates for studying the role of the mitochondrial genome in speciation.
Collapse
Affiliation(s)
- Sophie Breton
- Département de Sciences Biologiques, Université de Montréal, 90 Avenue Vincent d'Indy, Montréal, Québec H2V 2S9, Canada.
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Davide Guerra
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Donald T Stewart
- Department of Biology, Acadia University, 24 University Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Marco Passamonti
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
18
|
Huang XC, Rong J, Liu Y, Zhang MH, Wan Y, Ouyang S, Zhou CH, Wu XP. The complete maternally and paternally inherited mitochondrial genomes of the endangered freshwater mussel Solenaia carinatus (Bivalvia: Unionidae) and implications for Unionidae taxonomy. PLoS One 2013; 8:e84352. [PMID: 24358356 PMCID: PMC3866145 DOI: 10.1371/journal.pone.0084352] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022] Open
Abstract
Doubly uniparental inheritance (DUI) is an exception to the typical maternal inheritance of mitochondrial (mt) DNA in Metazoa, and found only in some bivalves. In species with DUI, there are two highly divergent gender-associated mt genomes: maternal (F) and paternal (M), which transmit independently and show different tissue localization. Solenaia carinatus is an endangered freshwater mussel species exclusive to Poyang Lake basin, China. Anthropogenic events in the watershed greatly threaten the survival of this species. Nevertheless, the taxonomy of S. carinatus based on shell morphology is confusing, and the subfamilial placement of the genus Solenaia remains unclear. In order to clarify the taxonomic status and discuss the phylogenetic implications of family Unionidae, the entire F and M mt genomes of S. carinatus were sequenced and compared with the mt genomes of diverse freshwater mussel species. The complete F and M mt genomes of S. carinatus are 16716 bp and 17102 bp in size, respectively. The F and M mt genomes of S. carinatus diverge by about 40% in nucleotide sequence and 48% in amino acid sequence. Compared to F counterparts, the M genome shows a more compact structure. Different gene arrangements are found in these two gender-associated mt genomes. Among these, the F genome cox2-rrnS gene order is considered to be a genome-level synapomorphy for female lineage of the subfamily Gonideinae. From maternal and paternal mtDNA perspectives, the phylogenetic analyses of Unionoida indicate that S. carinatus belongs to Gonideinae. The F and M clades in freshwater mussels are reciprocal monophyly. The phylogenetic trees advocate the classification of sampled Unionidae species into four subfamilies: Gonideinae, Ambleminae, Anodontinae, and Unioninae, which is supported by the morphological characteristics of glochidia.
Collapse
Affiliation(s)
- Xiao-Chen Huang
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, P. R. China
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| | - Jun Rong
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, P. R. China
| | - Yong Liu
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| | - Ming-Hua Zhang
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| | - Yuan Wan
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, P. R. China
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| | - Shan Ouyang
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| | - Chun-Hua Zhou
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, P. R. China
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| | - Xiao-Ping Wu
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, P. R. China
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
19
|
Abstract
Background Molecular evolution is a very active field of research, with several complementary approaches, including dN/dS, HON90, MM01, and others. Each has documented strengths and weaknesses, and no one approach provides a clear picture of how natural selection works at the molecular level. The purpose of this work is to present a simple new method that uses quantitative amino acid properties to identify and characterize directional selection in proteins. Methods Inferred amino acid replacements are viewed through the prism of a single physicochemical property to determine the amount and direction of change caused by each replacement. This allows the calculation of the probability that the mean change in the single property associated with the amino acid replacements is equal to zero (H0: μ = 0; i.e., no net change) using a simple two-tailed t-test. Results Example data from calanoid and cyclopoid copepod cytochrome oxidase subunit I sequence pairs are presented to demonstrate how directional selection may be linked to major shifts in adaptive zones, and that convergent evolution at the whole organism level may be the result of convergent protein adaptations. Conclusions Rather than replace previous methods, this new method further complements existing methods to provide a holistic glimpse of how natural selection shapes protein structure and function over evolutionary time.
Collapse
|
20
|
Gangloff MM, Hamstead BA, Abernethy EF, Hartfield PD. Genetic distinctiveness of Ligumia recta, the black sandshell, in the Mobile River Basin and implications for its conservation. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Biparental Inheritance Through Uniparental Transmission: The Doubly Uniparental Inheritance (DUI) of Mitochondrial DNA. Evol Biol 2012. [DOI: 10.1007/s11692-012-9195-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Burlakova LE, Campbell D, Karatayev AY, Barclay D. Distribution, genetic analysis and conservation priorities for rare Texas freshwater molluscs in the genera Fusconaia and Pleurobema (Bivalvia: Unionidae). AQUATIC BIOSYSTEMS 2012; 8:12. [PMID: 22731520 PMCID: PMC3422191 DOI: 10.1186/2046-9063-8-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Freshwater bivalves in the order Unionoida are considered to be one of the most endangered groups of animals in North America. In Texas, where over 60% of unionids are rare or very rare, 15 species have been recently added to the state's list of threatened species, and 11 are under consideration for federal listing. Due to insufficient survey efforts in the past decades, however, primary data on current distribution and habitat requirement for most of these rare species are lacking, thus challenging their protection and management. Taxonomic identification of endemic species based on shell morphology is challenging and complicates conservation efforts. In this paper we present historic and current distributional data for three rare Texas species, Fusconaia askewi, F. lananensis, and Pleurobema riddellii, collected during our 2003-2011 state-wide surveys and suggest appropriate conservation measures. In addition, we tested the genetic affinities of Fusconaia and similar species collected from eastern Texas and western Louisiana using cox1 and nad1 sequences. RESULTS We found that F. askewi still inhabits four river basins in eastern and northeastern Texas and can be locally abundant, while P. riddellii was found only in one river basin. Pleurobema riddellii was well-separated from F. askewi and grouped with the P. sintoxia clade. The sequences for F. lananensis were very similar to those for F. askewi, with a maximum difference of just over 1% for nad1 and only 0.7% for cox1, similar to the variation between F. askewi alleles. Except for one low difference (1.55%) with the partial cox1 sequence for F. burkei, all other Fusconaia populations, including those from the Calcasieu drainage, differed by over 2.3% for both genes. CONCLUSIONS Our study suggested that F. lananensis is not a valid species, and it is likely that only one Fusconaia species (F. askewi or its probable senior synonym F. chunii) is currently present in East Texas, thus simplifying conservation efforts. Distribution range of both these regional endemics (F. askewi and P. riddellii) has been reduced in the last 80 years.
Collapse
Affiliation(s)
- Lyubov E Burlakova
- Great Lakes Center, Buffalo State College, 1300 Elmwood Ave, Buffalo, NY, 14222, USA
- The Research Foundation of The State University of New York, Buffalo State College, Office of Sponsored Programs, Buffalo, NY, 14222, USA
| | - David Campbell
- The Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, NY, 14850, USA
| | - Alexander Y Karatayev
- Great Lakes Center, Buffalo State College, 1300 Elmwood Ave, Buffalo, NY, 14222, USA
| | | |
Collapse
|
23
|
Batista MV, Ferreira TA, Freitas AC, Balbino VQ. An entropy-based approach for the identification of phylogenetically informative genomic regions of Papillomavirus. INFECTION GENETICS AND EVOLUTION 2011; 11:2026-33. [DOI: 10.1016/j.meegid.2011.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 11/17/2022]
|
24
|
Passamonti M, Ricci A, Milani L, Ghiselli F. Mitochondrial genomes and Doubly Uniparental Inheritance: new insights from Musculista senhousia sex-linked mitochondrial DNAs (Bivalvia Mytilidae). BMC Genomics 2011; 12:442. [PMID: 21896183 PMCID: PMC3176263 DOI: 10.1186/1471-2164-12-442] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doubly Uniparental Inheritance (DUI) is a fascinating exception to matrilinear inheritance of mitochondrial DNA (mtDNA). Species with DUI are characterized by two distinct mtDNAs that are inherited either through females (F-mtDNA) or through males (M-mtDNA). DUI sex-linked mitochondrial genomes share several unusual features, such as additional protein coding genes and unusual gene duplications/structures, which have been related to the functionality of DUI. Recently, new evidence for DUI was found in the mytilid bivalve Musculista senhousia. This paper describes the complete sex-linked mitochondrial genomes of this species. RESULTS Our analysis highlights that both M and F mtDNAs share roughly the same gene content and order, but with some remarkable differences. The Musculista sex-linked mtDNAs have differently organized putative control regions (CR), which include repeats and palindromic motifs, thought to provide sites for DNA-binding proteins involved in the transcriptional machinery. Moreover, in male mtDNA, two cox2 genes were found, one (M-cox2b) 123bp longer. CONCLUSIONS The complete mtDNA genome characterization of DUI bivalves is the first step to unravel the complex genetic signals allowing Doubly Uniparental Inheritance, and the evolutionary implications of such an unusual transmission route in mitochondrial genome evolution in Bivalvia. The observed redundancy of the palindromic motifs in Musculista M-mtDNA may have a role on the process by which sperm mtDNA becomes dominant or exclusive of the male germline of DUI species. Moreover, the duplicated M-COX2b gene may have a different, still unknown, function related to DUI, in accordance to what has been already proposed for other DUI species in which a similar cox2 extension has been hypothesized to be a tag for male mitochondria.
Collapse
Affiliation(s)
- Marco Passamonti
- Department of Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
25
|
Breton S, Ghiselli F, Passamonti M, Milani L, Stewart DT, Hoeh WR. Evidence for a fourteenth mtDNA-encoded protein in the female-transmitted mtDNA of marine Mussels (Bivalvia: Mytilidae). PLoS One 2011; 6:e19365. [PMID: 21556327 PMCID: PMC3083442 DOI: 10.1371/journal.pone.0019365] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/02/2011] [Indexed: 11/30/2022] Open
Abstract
Background A novel feature for animal mitochondrial genomes has been recently established: i.e., the presence of additional, lineage-specific, mtDNA-encoded proteins with functional significance. This feature has been observed in freshwater mussels with doubly uniparental inheritance of mtDNA (DUI). The latter unique system of mtDNA transmission, which also exists in some marine mussels and marine clams, is characterized by one mt genome inherited from the female parent (F mtDNA) and one mt genome inherited from the male parent (M mtDNA). In freshwater mussels, the novel mtDNA-encoded proteins have been shown to be mt genome-specific (i.e., one novel protein for F genomes and one novel protein for M genomes). It has been hypothesized that these novel, F- and M-specific, mtDNA-encoded proteins (and/or other F- and/or M-specific mtDNA sequences) could be responsible for the different modes of mtDNA transmission in bivalves but this remains to be demonstrated. Methodology/Principal Findings We investigated all complete (or nearly complete) female- and male-transmitted marine mussel mtDNAs previously sequenced for the presence of ORFs that could have functional importance in these bivalves. Our results confirm the presence of a novel F genome-specific mt ORF, of significant length (>100aa) and located in the control region, that most likely has functional significance in marine mussels. The identification of this ORF in five Mytilus species suggests that it has been maintained in the mytilid lineage (subfamily Mytilinae) for ∼13 million years. Furthermore, this ORF likely has a homologue in the F mt genome of Musculista senhousia, a DUI-containing mytilid species in the subfamily Crenellinae. We present evidence supporting the functionality of this F-specific ORF at the transcriptional, amino acid and nucleotide levels. Conclusions/Significance Our results offer support for the hypothesis that “novel F genome-specific mitochondrial genes” are involved in key biological functions in bivalve species with DUI.
Collapse
Affiliation(s)
- Sophie Breton
- Kent State University, Kent, Ohio, United States of America.
| | | | | | | | | | | |
Collapse
|
26
|
Boyer SL, Howe AA, Juergens NW, Hove MC. A DNA-barcoding approach to identifying juvenile freshwater mussels (Bivalvia:Unionidae) recovered from naturally infested fishes. ACTA ACUST UNITED AC 2011. [DOI: 10.1899/10-004.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sarah L. Boyer
- Biology Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105 USA
| | - Alexander A. Howe
- Biology Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105 USA
| | - Nathan W. Juergens
- Biology Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105 USA
| | - Mark C. Hove
- Biology Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105 USA and Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, Minnesota 55108 USA
| |
Collapse
|
27
|
Breton S, Stewart DT, Shepardson S, Trdan RJ, Bogan AE, Chapman EG, Ruminas AJ, Piontkivska H, Hoeh WR. Novel protein genes in animal mtDNA: a new sex determination system in freshwater mussels (Bivalvia: Unionoida)? Mol Biol Evol 2010; 28:1645-59. [PMID: 21172831 DOI: 10.1093/molbev/msq345] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial (mt) function depends critically on optimal interactions between components encoded by mt and nuclear DNAs. mitochondrial DNA (mtDNA) inheritance (SMI) is thought to have evolved in animal species to maintain mito-nuclear complementarity by preventing the spread of selfish mt elements thus typically rendering mtDNA heteroplasmy evolutionarily ephemeral. Here, we show that mtDNA intraorganismal heteroplasmy can have deterministic underpinnings and persist for hundreds of millions of years. We demonstrate that the only exception to SMI in the animal kingdom, that is, the doubly uniparental mtDNA inheritance system in bivalves, with its three-way interactions among egg mt-, sperm mt- and nucleus-encoded gene products, is tightly associated with the maintenance of separate male and female sexes (dioecy) in freshwater mussels. Specifically, this mother-through-daughter and father-through-son mtDNA inheritance system, containing highly differentiated mt genomes, is found in all dioecious freshwater mussel species. Conversely, all hermaphroditic species lack the paternally transmitted mtDNA (=possess SMI) and have heterogeneous macromutations in the recently discovered, novel protein-coding gene (F-orf) in their maternally transmitted mt genomes. Using immunoelectron microscopy, we have localized the F-open reading frame (ORF) protein, likely involved in specifying separate sexes, in mitochondria and in the nucleus. Our results support the hypothesis that proteins coded by the highly divergent maternally and paternally transmitted mt genomes could be directly involved in sex determination in freshwater mussels. Concomitantly, our study demonstrates novel features for animal mt genomes: the existence of additional, lineage-specific, mtDNA-encoded proteins with functional significance and the involvement of mtDNA-encoded proteins in extra-mt functions. Our results open new avenues for the identification, characterization, and functional analyses of ORFs in the intergenic regions, previously defined as "noncoding," found in a large proportion of animal mt genomes.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Śmietanka B, Burzyński A, Wenne R. Comparative Genomics of Marine Mussels (Mytilus spp.) Gender Associated mtDNA: Rapidly Evolving atp8. J Mol Evol 2010; 71:385-400. [DOI: 10.1007/s00239-010-9393-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 09/17/2010] [Indexed: 01/07/2023]
|
29
|
Doucet-Beaupré H, Breton S, Chapman EG, Blier PU, Bogan AE, Stewart DT, Hoeh WR. Mitochondrial phylogenomics of the Bivalvia (Mollusca): searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA. BMC Evol Biol 2010; 10:50. [PMID: 20167078 PMCID: PMC2834691 DOI: 10.1186/1471-2148-10-50] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
Background Doubly uniparental inheritance (DUI) is an atypical system of animal mtDNA inheritance found only in some bivalves. Under DUI, maternally (F genome) and paternally (M genome) transmitted mtDNAs yield two distinct gender-associated mtDNA lineages. The oldest distinct M and F genomes are found in freshwater mussels (order Unionoida). Comparative analyses of unionoid mitochondrial genomes and a robust phylogenetic framework are necessary to elucidate the origin, function and molecular evolutionary consequences of DUI. Herein, F and M genomes from three unionoid species, Venustaconcha ellipsiformis, Pyganodon grandis and Quadrula quadrula have been sequenced. Comparative genomic analyses were carried out on these six genomes along with two F and one M unionoid genomes from GenBank (F and M genomes of Inversidens japanensis and F genome of Lampsilis ornata). Results Compared to their unionoid F counterparts, the M genomes contain some unique features including a novel localization of the trnH gene, an inversion of the atp8-trnD genes and a unique 3'coding extension of the cytochrome c oxidase subunit II gene. One or more of these unique M genome features could be causally associated with paternal transmission. Unionoid bivalves are characterized by extreme intraspecific sequence divergences between gender-associated mtDNAs with an average of 50% for V. ellipsiformis, 50% for I. japanensis, 51% for P. grandis and 52% for Q. quadrula (uncorrected amino acid p-distances). Phylogenetic analyses of 12 protein-coding genes from 29 bivalve and five outgroup mt genomes robustly indicate bivalve monophyly and the following branching order within the autolamellibranch bivalves: ((Pteriomorphia, Veneroida) Unionoida). Conclusion The basal nature of the Unionoida within the autolamellibranch bivalves and the previously hypothesized single origin of DUI suggest that (1) DUI arose in the ancestral autolamellibranch bivalve lineage and was subsequently lost in multiple descendant lineages and (2) the mitochondrial genome characteristics observed in unionoid bivalves could more closely resemble the DUI ancestral condition. Descriptions and comparisons presented in this paper are fundamental to a more complete understanding regarding the origins and consequences of DUI.
Collapse
Affiliation(s)
- Hélène Doucet-Beaupré
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada .
| | | | | | | | | | | | | |
Collapse
|
30
|
Comparative mitochondrial genomics of freshwater mussels (Bivalvia: Unionoida) with doubly uniparental inheritance of mtDNA: gender-specific open reading frames and putative origins of replication. Genetics 2009; 183:1575-89. [PMID: 19822725 DOI: 10.1534/genetics.109.110700] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Doubly uniparental inheritance (DUI) of mitochondrial DNA in marine mussels (Mytiloida), freshwater mussels (Unionoida), and marine clams (Veneroida) is the only known exception to the general rule of strict maternal transmission of mtDNA in animals. DUI is characterized by the presence of gender-associated mitochondrial DNA lineages that are inherited through males (male-transmitted or M types) or females (female-transmitted or F types), respectively. This unusual system constitutes an excellent model for studying basic aspects of mitochondrial DNA inheritance and the evolution of mtDNA genomes in general. Here we compare published mitochondrial genomes of unionoid bivalve species with DUI, with an emphasis on characterizing unassigned regions, to identify regions of the F and M mtDNA genomes that could (i) play a role in replication or transcription of the mtDNA molecule and/or (ii) determine whether a genome will be transmitted via the female or the male gamete. Our results reveal the presence of one F-specific and one M-specific open reading frames (ORFs), and we hypothesize that they play a role in the transmission and/or gender-specific adaptive functions of the M and F mtDNA genomes in unionoid bivalves. Three major unassigned regions shared among all F and M unionoid genomes have also been identified, and our results indicate that (i) two of them are potential heavy-strand control regions (O(H)) for regulating replication and/or transcription and that (ii) multiple and potentially bidirectional light-strand origins of replication (O(L)) are present in unionoid F and M mitochondrial genomes. We propose that unassigned regions are the most promising candidate sequences in which to find regulatory and/or gender-specific sequences that could determine whether a mitochondrial genome will be maternally or paternally transmitted.
Collapse
|
31
|
Chakrabarti R, Shepardson S, Karmakar M, Trdan R, Walker J, Shandilya R, Stewart D, Vijayaraghavan S, Hoeh W. Extra-mitochondrial localization and likely reproductive function of a female-transmitted cytochrome c oxidase subunit II protein. Dev Growth Differ 2009; 51:511-9. [PMID: 19469787 DOI: 10.1111/j.1440-169x.2009.01113.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our previous study documented a reproductive function for the male-transmitted mitochondrial DNA (mtDNA)-encoded cytochrome c oxidase subunit II (MCOX2) protein in a unionoid bivalve. Here, immunoblotting, immunohistochemistry and immunoelectron microscopy analyses demonstrate that the female-transmitted protein (FCOX2) is: (i) expressed in both male and female gonads; (ii) maximally expressed in ovaries just prior to the time of the annual fertilization event; (iii) displayed in the cytoplasm and more strongly in the plasma membrane (microvilli), vitelline matrix and vitelline envelope of mature ovarian eggs; and (iv) strongly localized to the vitelline matrix of some eggs just prior to fertilization. These findings represent evidence for the extra-mitochondrial localization of an mtDNA-encoded gene product and are consistent with multifunctionality for FCOX2 in eggs.
Collapse
Affiliation(s)
- Rumela Chakrabarti
- Department of Biochemistry, State University of New York, Buffalo, New York 14214, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|