1
|
Ginés-Rivas JJ, Carr M. Slowly evolving proteins support the monophyly of Craspedida (Choanoflagellatea) and a marine origin of choanoflagellates. Protist 2025; 176:126085. [PMID: 39847813 DOI: 10.1016/j.protis.2025.126085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/26/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Choanoflagellate species have been taxonomically divided upon the morphological and developmental basis of their extracellular coat (periplast). Species within the order Craspedida possess a purely organic periplast, whereas taxa of the order Acanthoecida have an additional silica based periplast termed the lorica. Whilst small-scale phylogenetic studies have recovered the two orders as monophyletic, recent phylogenomic analyses have rejected the monophyly of the craspedids. These analyses suggest that the freshwater craspedid Codosiga hollandica falls within the earliest branching choanoflagellate lineage; however, it has also been noted that phylogenomic studies result in inconsistent phylogenies, with unstable long-branched species being recovered as basal choanoflagellates. Presented here are phylogenetic analyses, based upon slowly evolving ribosomal proteins, which consistently recover both craspedid monophyly and a derived placement of C. hollandica. The addition of further, long-branched, ribosomal proteins to phylogenetic analyses are shown to generate longer terminal branches and a weakening of the support for Craspedida. The analyses highlight the requirement for an increase in data, in terms of both taxa and gene coverage, to successfully resolve the earliest craspedid branches. In addition, phylogenetically unstable species are identified that are recommended to be omitted from phylogenomic studies as they have the potential to disrupt recovered relationships.
Collapse
Affiliation(s)
- Juan J Ginés-Rivas
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Martin Carr
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom.
| |
Collapse
|
2
|
Liang Y, Luan YX. The functional evolution of collembolan Ubx on the regulation of abdominal appendage formation. Dev Genes Evol 2024; 234:135-151. [PMID: 38980376 PMCID: PMC7616481 DOI: 10.1007/s00427-024-00718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Folsomia candida is a tiny soil-living arthropod belonging to the Collembola, which is an outgroup to Insecta. It resembles insects as having a pair of antennae and three pairs of thorax legs, while it also possesses three abdominal appendages: a ventral tube located in the first abdominal segment (A1), a retinaculum in A3, and a furca in A4. Collembolan Ubx and AbdA specify abdominal appendages, but they are unable to repress appendage marker gene Dll. The genetic basis of collembolan appendage formation and the mechanisms by which Ubx and AbdA regulate Dll transcription and appendage development remains unknown. In this study, we analysed the developmental transcriptomes of F. candida and identified candidate appendage formation genes, including Ubx (FcUbx). The expression data revealed the dominance of Dll over Ubx during the embryonic 3.5 and 4.5 days, suggesting that Ubx is deficient in suppressing Dll at early appendage formation stages. Furthermore, via electrophoretic mobility shift assays and dual luciferase assays, we found that the binding and repression capacity of FcUbx on Drosophila Dll resembles those of the longest isoform of Drosophila Ubx (DmUbx_Ib), while the regulatory mechanism of the C-terminus of FcUbx on Dll repression is similar to that of the crustacean Artemia franciscana Ubx (AfUbx), demonstrating that the function of collembolan Ubx is intermediate between that of Insecta and Crustacea. In summary, our study provides novel insights into collembolan appendage formation and sheds light on the functional evolution of Ubx. Additionally, we propose a model that collembolan Ubx regulates abdominal segments in a context-specific manner.
Collapse
Affiliation(s)
- Yan Liang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Yun-Xia Luan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
3
|
Mitogenome selection in the evolution of key ecological strategies in the ancient hexapod class Collembola. Sci Rep 2022; 12:14810. [PMID: 36045215 PMCID: PMC9433435 DOI: 10.1038/s41598-022-18407-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
A longstanding question in evolutionary biology is how natural selection and environmental pressures shape the mitochondrial genomic architectures of organisms. Mitochondria play a pivotal role in cellular respiration and aerobic metabolism, making their genomes functionally highly constrained. Evaluating selective pressures on mitochondrial genes can provide functional and ecological insights into the evolution of organisms. Collembola (springtails) are an ancient hexapod group that includes the oldest terrestrial arthropods in the fossil record, and that are closely associated with soil environments. Of interest is the diversity of habitat stratification preferences (life forms) exhibited by different species within the group. To understand whether signals of positive selection are linked to the evolution of life forms, we analysed 32 published Collembola mitogenomes in a phylomitogenomic framework. We found no evidence that signatures of selection are correlated with the evolution of novel life forms, but rather that mutations have accumulated as a function of time. Our results highlight the importance of nuclear-mitochondrial interactions in the evolution of collembolan life forms and that mitochondrial genomic data should be interpreted with caution, as complex selection signals may complicate evolutionary inferences.
Collapse
|
4
|
Swart E, de Boer TE, Chen G, Vooijs R, van Gestel CAM, van Straalen NM, Roelofs D. Species-specific transcriptomic responses in Daphnia magna exposed to a bio-plastic production intermediate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:399-408. [PMID: 31158668 DOI: 10.1016/j.envpol.2019.05.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/10/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Hydroxymethylfurfural (HMF) is a plant-based chemical building block that could potentially substitute petroleum-based equivalents, yet ecotoxicological data of this compound is currently limited. In this study, the effects of HMF on the reproduction and survival of Daphnia magna were assessed through validated ecotoxicological tests. The mechanism of toxicity was determined by analysis of transcriptomic responses induced by exposure to different concentrations of HMF using RNA sequencing. HMF exerted toxicity to D. magna with an EC50 for effects on reproduction of 17.2 mg/l. HMF exposure affected molecular pathways including sugar and polysaccharide metabolism, lipid metabolism, general stress metabolism and red blood cell metabolism, although most molecular pathways affected by HMF exposure were dose specific. Hemoglobin genes, however, responded in a sensitive and dose-related manner. No induction of genes involved in the xenobiotic metabolism or oxidative stress metabolism pathway could be observed, which contrasted earlier observations on transcriptional responses of the terrestrial model Folsomia candida exposed to the same compound in a similar dose. We found 4189 orthologue genes between D. magna and F. candida, yet only twenty-one genes of those orthologues were co-regulated in both species. The contrasting transcriptional responses to the same compound exposed at a similar dose between D. magna and F. candida indicates limited overlap in stress responses among soil and aquatic invertebrates. The dose-related expression of hemoglobin provides further support for using hemoglobin expression as a biomarker for general stress responses in daphnids.
Collapse
Affiliation(s)
- Elmer Swart
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| | - Tjalf E de Boer
- MicroLife Solutions B.V., Science Park 406, 1098, XH, Amsterdam, the Netherlands
| | - Guangquan Chen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Riet Vooijs
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Nico M van Straalen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Dick Roelofs
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Sharanowski BJ, Peixoto L, Dal Molin A, Deans AR. Multi-gene phylogeny and divergence estimations for Evaniidae (Hymenoptera). PeerJ 2019; 7:e6689. [PMID: 30976469 PMCID: PMC6451838 DOI: 10.7717/peerj.6689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 02/24/2019] [Indexed: 11/20/2022] Open
Abstract
Ensign wasps (Hymenoptera: Evaniidae) develop as predators of cockroach eggs (Blattodea), have a wide distribution and exhibit numerous interesting biological phenomena. The taxonomy of this lineage has been the subject of several recent, intensive efforts, but the lineage lacked a robust phylogeny. In this paper we present a new phylogeny, based on increased taxonomic sampling and data from six molecular markers (mitochondrial 16S and COI, and nuclear markers 28S, RPS23, CAD, and AM2), the latter used for the first time in phylogenetic reconstruction. Our intent is to provide a robust phylogeny that will stabilize and facilitate revision of the higher-level classification. We also show the continued utility of molecular motifs, especially the presence of an intron in the RPS23 fragments of certain taxa, to diagnose evaniid clades and assist with taxonomic classification. Furthermore, we estimate divergence times among evaniid lineages for the first time, using multiple fossil calibrations. Evaniidae radiated primarily in the Early Cretaceous (134.1-141.1 Mya), with and most extant genera diverging near the K-T boundary. The estimated phylogeny reveals a more robust topology than previous efforts, with the recovery of more monophyletic taxa and better higher-level resolution. The results facilitate a change in ensign wasp taxonomy, with Parevania, and Papatuka, syn. nov. becoming junior synonyms of Zeuxevania, and Acanthinevania, syn. nov. being designated as junior synonym of Szepligetella. We transfer 30 species to Zeuxevania, either reestablishing past combinations or as new combinations. We also transfer 20 species from Acanthinevania to Szepligetella as new combinations.
Collapse
Affiliation(s)
- Barbara J. Sharanowski
- Department of Biology, University of Central Florida, Orlando, FL, United States of America
| | - Leanne Peixoto
- Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Anamaria Dal Molin
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Andrew R. Deans
- Frost Entomological Museum, Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
6
|
Abstract
Background Classical cadherins are a metazoan-specific family of homophilic cell-cell adhesion molecules that regulate morphogenesis. Type I and type IV cadherins in this family function at adherens junctions in the major epithelial tissues of vertebrates and insects, respectively, but they have distinct, relatively simple domain organizations that are thought to have evolved by independent reductive changes from an ancestral type III cadherin, which is larger than derived paralogs and has a complicated domain organization. Although both type III and type IV cadherins have been identified in hexapods and branchiopods, the process by which the type IV cadherin evolved is still largely unclear. Results Through an analysis of arthropod genome sequences, we found that the only classical cadherin encoded in chelicerate genomes was the type III cadherin and that the two type III cadherin genes found in the spider Parasteatoda tepidariorum genome exhibited a complex yet ancestral exon-intron organization in arthropods. Genomic and transcriptomic data from branchiopod, copepod, isopod, amphipod, and decapod crustaceans led us to redefine the type IV cadherin category, which we separated into type IVa and type IVb, which displayed a similar domain organization, except type IVb cadherins have a larger number of extracellular cadherin (EC) domains than do type IVa cadherins (nine versus seven). We also showed that type IVa cadherin genes occurred in the hexapod, branchiopod, and copepod genomes whereas only type IVb cadherin genes were present in malacostracans. Furthermore, comparative characterization of the type IVb cadherins suggested that the presence of two extra EC domains in their N-terminal regions represented primitive characteristics. In addition, we identified an evolutionary loss of two highly conserved cysteine residues among the type IVa cadherins of insects. Conclusions We provide a genomic perspective of the evolution of classical cadherins among bilaterians, with a focus on the Arthropoda, and suggest that following the divergence of early arthropods, the precursor of the insect type IV cadherin evolved through stepwise reductive changes from the ancestral type III state. In addition, the complementary distributions of polarized genomic characters related to type IVa/IVb cadherins may have implications for our interpretations of pancrustacean phylogeny. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0991-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mizuki Sasaki
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, 569-1125, Osaka, Japan.,Current address: Department of Parasitology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa, 078-8510, Hokkaido, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, 569-1125, Osaka, Japan.,Department of Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, 569-1125, Osaka, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
7
|
Cheong SPS, Huang J, Bendena WG, Tobe SS, Hui JHL. Evolution of Ecdysis and Metamorphosis in Arthropods: The Rise of Regulation of Juvenile Hormone. Integr Comp Biol 2015; 55:878-90. [DOI: 10.1093/icb/icv066] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life. PLoS One 2015; 10:e0130600. [PMID: 26075903 PMCID: PMC4468109 DOI: 10.1371/journal.pone.0130600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background Collembola (springtails) represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor. Method We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade. Results Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response), ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development). Conclusions We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land.
Collapse
|
9
|
Jaglarz MK, Kubrakiewicz J, Bilinski SM. The ovary structure and oogenesis in the basal crustaceans and hexapods. Possible phylogenetic significance. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:349-360. [PMID: 24858464 DOI: 10.1016/j.asd.2014.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Recent large-scale phylogenetic analyses of exclusively molecular or combined molecular and morphological characters support a close relationship between Crustacea and Hexapoda. The growing consensus on this phylogenetic link is reflected in uniting both taxa under the name Pancrustacea or Tetraconata. Several recent molecular phylogenies have also indicated that the monophyletic hexapods should be nested within paraphyletic crustaceans. However, it is still contentious exactly which crustacean taxon is the sister group to Hexapoda. Among the favored candidates are Branchiopoda, Malacostraca, Remipedia and Xenocarida (Remipedia + Cephalocarida). In this context, we review morphological and ultrastructural features of the ovary architecture and oogenesis in these crustacean groups in search of traits potentially suitable for phylogenetic considerations. We have identified a suite of morphological characters which may prove useful in further comparative studies.
Collapse
Affiliation(s)
- Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Janusz Kubrakiewicz
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
10
|
Sasaki G, Ishiwata K, Machida R, Miyata T, Su ZH. Molecular phylogenetic analyses support the monophyly of Hexapoda and suggest the paraphyly of Entognatha. BMC Evol Biol 2013; 13:236. [PMID: 24176097 PMCID: PMC4228403 DOI: 10.1186/1471-2148-13-236] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 10/29/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Molecular phylogenetic analyses have revealed that Hexapoda and Crustacea form a common clade (the Pancrustacea), which is now widely accepted among zoologists; however, the origin of Hexapoda remains unresolved. The main problems are the unclear relationships among the basal hexapod lineages, Protura (proturans), Collembola (springtails), Diplura (diplurans), and Ectognatha (bristletails, silverfishes, and all winged insects). Mitogenomic analyses have challenged hexapod monophyly and suggested the reciprocal paraphyly of Hexapoda and Crustacea, whereas studies based on nuclear molecular data support the monophyletic origin of hexapods. Additionally, there are significant discrepancies with respect to these issues between the results of morphological and molecular studies. To investigate these problems, we performed phylogenetic analyses of Pancrustacea based on the protein sequences of three orthologous nuclear genes encoding the catalytic subunit of DNA polymerase delta and the largest and second largest subunits of RNA polymerase II from 64 species of arthropods, including representatives of all hexapod orders. RESULTS Phylogenetic analyses were conducted based on the inferred amino acid (aa) sequences (~3400 aa in total) of the three genes using the maximum likelihood (ML) method and Bayesian inference. Analyses were also performed with additional datasets generated by excluding long-branch taxa or by using different outgroups. These analyses all yielded essentially the same results. All hexapods were clustered into a common clade, with Branchiopoda as its sister lineage, whereas Crustacea was paraphyletic. Within Hexapoda, the lineages Ectognatha, Palaeoptera, Neoptera, Polyneoptera, and Holometabola were each confirmed to be monophyletic with robust support, but monophyly was not supported for Entognatha (Protura + Collembola + Diplura), Ellipura (Protura + Collembola), or Nonoculata (Protura + Diplura). Instead, our results showed that Protura is the sister lineage to all other hexapods and that Diplura or Diplura + Collembola is closely related to Ectognatha. CONCLUSION This is the first study to include all hexapod orders in a phylogenetic analysis using multiple nuclear protein-coding genes to investigate the phylogeny of Hexapoda, with an emphasis on Entognatha. The results strongly support the monophyletic origin of hexapods but reject the monophyly of Entognatha, Ellipura, and Nonoculata. Our results provided the first molecular evidence in support of Protura as the sister group to other hexapods. These findings are expected to provide additional insights into the origin of hexapods and the processes involved in the adaptation of insects to life on land.
Collapse
Affiliation(s)
- Go Sasaki
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569–1125, Japan
- Present address: School of Medicine, Kumamoto University, Kumamoto 860-8556, Japan
| | - Keisuke Ishiwata
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569–1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
- Present address: Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
| | - Ryuichiro Machida
- Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen, Ueda, Nagano 386-2204, Japan
| | - Takashi Miyata
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569–1125, Japan
| | - Zhi-Hui Su
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569–1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
11
|
Thomas JA, Trueman JWH, Rambaut A, Welch JJ. Relaxed Phylogenetics and the Palaeoptera Problem: Resolving Deep Ancestral Splits in the Insect Phylogeny. Syst Biol 2013; 62:285-97. [DOI: 10.1093/sysbio/sys093] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jessica A. Thomas
- Department of Biology, University of York, York YO10 5DD, UK; 2Research School of Biology, Australian National University, Canberra ACT 0200, Australia; 3Institute for Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK; and 4Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
- Department of Biology, University of York, York YO10 5DD, UK; 2Research School of Biology, Australian National University, Canberra ACT 0200, Australia; 3Institute for Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK; and 4Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - John W. H. Trueman
- Department of Biology, University of York, York YO10 5DD, UK; 2Research School of Biology, Australian National University, Canberra ACT 0200, Australia; 3Institute for Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK; and 4Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Andrew Rambaut
- Department of Biology, University of York, York YO10 5DD, UK; 2Research School of Biology, Australian National University, Canberra ACT 0200, Australia; 3Institute for Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK; and 4Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - John J. Welch
- Department of Biology, University of York, York YO10 5DD, UK; 2Research School of Biology, Australian National University, Canberra ACT 0200, Australia; 3Institute for Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK; and 4Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
12
|
Roelofs D, Timmermans MJ, Hensbergen P, van Leeuwen H, Koopman J, Faddeeva A, Suring W, de Boer TE, Mariën J, Boer R, Bovenberg R, van Straalen NM. A Functional Isopenicillin N Synthase in an Animal Genome. Mol Biol Evol 2012. [DOI: 10.1093/molbev/mss269] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Wheat CW, Wahlberg N. Phylogenomic Insights into the Cambrian Explosion, the Colonization of Land and the Evolution of Flight in Arthropoda. Syst Biol 2012; 62:93-109. [DOI: 10.1093/sysbio/sys074] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christopher W. Wheat
- Department of Biosciences, PL 65, Viikinkaari 1, 00014 University of Helsinki, Finland; 2 Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden; 3 Laboratory of Genetics, Department of Biology, University of Turku, FI-20014 Turku, Finland
- Department of Biosciences, PL 65, Viikinkaari 1, 00014 University of Helsinki, Finland; 2 Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden; 3 Laboratory of Genetics, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Niklas Wahlberg
- Department of Biosciences, PL 65, Viikinkaari 1, 00014 University of Helsinki, Finland; 2 Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden; 3 Laboratory of Genetics, Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
14
|
Jondeung A, Karinthanyakit W, Kaewkhumsan J. The complete mitochondrial genome of the black mud crab, Scylla serrata (Crustacea: Brachyura: Portunidae) and its phylogenetic position among (pan)crustaceans. Mol Biol Rep 2012; 39:10921-37. [PMID: 23053985 DOI: 10.1007/s11033-012-1992-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
The black mud crab, Scylla serrata (Forskål 1775), is the most economically important edible crab in South-East Asia. In the present study, the complete mitochondrial genome of black mud crab, S. serrata, was determined with the sequential polymerase chain reaction and primer walking sequencing. The complete mitochondrial genome was 15,721 bp in length with an A+T content of 69.2 % and contained 37 mitochondrial genes (13 protein coding genes (PCGs), 2 ribosomal RNA genes and 22 transfer RNA genes) and a control region (CR). The analysis of the CR sequence shows that it contains a multitude of repetitive fragments which can fold into hairpin-like or secondary structures and conserved elements as in other arthropods. The gene order of S. serrata mainly retains as the pancrustacean ground pattern, except for a single translocation of trnH. The gene arrangement of S. serrata appears to be a typical feature of portunid crabs. Phylogenetic analyses with concatenated amino acid sequences of 12 PCGs establishes that S. serrata in a well-supported monophyletic Portunidae and is consistent with previous morphological classification. Moreover, the phylogenomic results strongly support monophyletic Pancrustacea (Hexapoda plus "Crustaceans"). Within Pancrustacea, this study identifies Malacostraca + Entomostraca and Branchiopoda as the sister group to Hexapoda, which confirms that "Crustacea" is not monophyletic. Cirripedia + Remipedia appear to be a basal lineage of Pancrustacea. The present study also provides considerable data for the application of both population and phylogenetic studies of other crab species.
Collapse
Affiliation(s)
- Amnuay Jondeung
- Department of Genetics, Kasetsart University, Bangkok, 10900, Thailand.
| | | | | |
Collapse
|
15
|
Oakley TH, Wolfe JM, Lindgren AR, Zaharoff AK. Phylotranscriptomics to Bring the Understudied into the Fold: Monophyletic Ostracoda, Fossil Placement, and Pancrustacean Phylogeny. Mol Biol Evol 2012; 30:215-33. [DOI: 10.1093/molbev/mss216] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
16
|
Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK. Advances in insect phylogeny at the dawn of the postgenomic era. ANNUAL REVIEW OF ENTOMOLOGY 2012; 57:449-468. [PMID: 22149269 DOI: 10.1146/annurev-ento-120710-100538] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Most species on Earth are insects and thus, understanding their evolutionary relationships is key to understanding the evolution of life. Insect relationships are increasingly well supported, due largely to technological advances in molecular sequencing and phylogenetic computational analysis. In this postgenomic era, insect systematics will be furthered best by integrative methods aimed at hypothesis corroboration from molecular, morphological, and paleontological evidence. This review of the current consensus of insect relationships provides a foundation for comparative study and offers a framework to evaluate incoming genomic evidence. Notable recent phylogenetic successes include the resolution of Holometabola, including the identification of the enigmatic Strepsiptera as a beetle relative and the early divergence of Hymenoptera; the recognition of hexapods as a crustacean lineage within Pancrustacea; and the elucidation of Dictyoptera orders, with termites placed as social cockroaches. Regions of the tree that require further investigation include the earliest winged insects (Palaeoptera) and Polyneoptera (orthopteroid lineages).
Collapse
Affiliation(s)
- Michelle D Trautwein
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | | | |
Collapse
|
17
|
Talavera G, Vila R. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evol Biol 2011; 11:315. [PMID: 22032248 PMCID: PMC3213125 DOI: 10.1186/1471-2148-11-315] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera, Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have been shown to have negative consequences in phylogenetic inference. In this study, we tested several methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola dataset, and we studied the contribution of individual genes. RESULTS Long-branch attraction (LBA) artefacts were detected in all the datasets. Methods using Bayesian inference outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera, the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the limits of the phylogenetic signal that can be extracted from Insecta mitogenomes. Based on the combined use of the five best topology-performing genes we obtained comparable results to whole mitogenomes, highlighting the important role of data quality. CONCLUSION We show for the first time that mitogenomic data agrees with nuclear and morphological data for several of the most controversial insect evolutionary relationships, adding a new independent source of evidence to study relationships among insect orders. We propose that deeper divergences cannot be inferred with the current available methods due to sequence saturation and compositional bias inconsistencies. Our exploratory analysis indicates that the CAT model is the best dealing with LBA and it could be useful for other groups and datasets with similar phylogenetic difficulties.
Collapse
Affiliation(s)
- Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-UPF), Pg. Marítim de la Barceloneta 37, 08003 Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Pg. Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| |
Collapse
|
18
|
Abstract
Arthropods are the most diverse group of animals and have been so since the Cambrian radiation. They belong to the protostome clade Ecdysozoa, with Onychophora (velvet worms) as their most likely sister group and tardigrades (water bears) the next closest relative. The arthropod tree of life can be interpreted as a five-taxon network, containing Pycnogonida, Euchelicerata, Myriapoda, Crustacea, and Hexapoda, the last two forming the clade Tetraconata or Pancrustacea. The unrooted relationship of Tetraconata to the three other lineages is well established, but of three possible rooting positions the Mandibulata hypothesis receives the most support. Novel approaches to studying anatomy with noninvasive three-dimensional reconstruction techniques, the application of these techniques to new and old fossils, and the so-called next-generation sequencing techniques are at the forefront of understanding arthropod relationships. Cambrian fossils assigned to the arthropod stem group inform on the origin of arthropod characters from a lobopodian ancestry. Monophyly of Pycnogonida, Euchelicerata, Myriapoda, Tetraconata, and Hexapoda is well supported, but the interrelationships of arachnid orders and the details of crustacean paraphyly with respect to Hexapoda remain the major unsolved phylogenetic problems.
Collapse
Affiliation(s)
- Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
19
|
Xin Y, Ren J, Liu X. Mitogenome of the small abalone Haliotis diversicolor Reeve and phylogenetic analysis within Gastropoda. Mar Genomics 2011; 4:253-62. [PMID: 22118637 DOI: 10.1016/j.margen.2011.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/18/2011] [Accepted: 06/22/2011] [Indexed: 10/17/2022]
Abstract
The complete mitochondrial coding regions of three small abalones Haliotis diversicolor Reeve, two collected from Vietnam and one from southern China, were successfully sequenced. The molecular feature of the mitochondrial genome is identical with the general description of the family Haliotidae mtDNAs that have been sequenced so far. The sequenced nucleotides are 16,186-16,266bp in length. The mitogenome encodes 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. Between adjacent genes trnH and nad5 there is an overlapping region. Comparison of the ratios of Ka and Ks among four species of Haliotis (H. diversicolor, H. discus hannai, H. rubra and H. tuberculata tuberculata) reveals that values of Ka/Ks in some NADH dehydrogenase and ATPase genes such as nad2, nad6 and atp8 are higher than those in other mitochondrial genes. Genome-wide gene arrangement among four species of Haliotis has been compared. Although all gene arrangement is the same in H. diversicolor, H. discus hannai and H. rubra, the location of trnS₂ and trnF in H. tuberculata tuberculata are inter-exchanged. Both gene arrangement and phylogenetic analysis support that the family Haliotidae is at a relatively primordial phylogenetic position in Gastropoda. Through alignment between Vietnam and southern China individuals, 111 SNPs are detected, most SNPs are synonymous mutations, and 7, 94 and 10 SNPs are observed at NCR, protein-coding region and RNA region, respectively. The result of SNP analysis also demonstrates that the difference is mainly in some NADH dehydrogenase genes between the Vietnam and southern China individuals.
Collapse
Affiliation(s)
- Yi Xin
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | |
Collapse
|
20
|
Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kück P, Ebersberger I, Walzl M, Pass G, Breuers S, Achter V, von Haeseler A, Burmester T, Hadrys H, Wägele JW, Misof B. A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol 2010; 27:2451-64. [PMID: 20534705 DOI: 10.1093/molbev/msq130] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Arthropods were the first animals to conquer land and air. They encompass more than three quarters of all described living species. This extraordinary evolutionary success is based on an astoundingly wide array of highly adaptive body organizations. A lack of robustly resolved phylogenetic relationships, however, currently impedes the reliable reconstruction of the underlying evolutionary processes. Here, we show that phylogenomic data can substantially advance our understanding of arthropod evolution and resolve several conflicts among existing hypotheses. We assembled a data set of 233 taxa and 775 genes from which an optimally informative data set of 117 taxa and 129 genes was finally selected using new heuristics and compared with the unreduced data set. We included novel expressed sequence tag (EST) data for 11 species and all published phylogenomic data augmented by recently published EST data on taxonomically important arthropod taxa. This thorough sampling reduces the chance of obtaining spurious results due to stochastic effects of undersampling taxa and genes. Orthology prediction of genes, alignment masking tools, and selection of most informative genes due to a balanced taxa-gene ratio using new heuristics were established. Our optimized data set robustly resolves major arthropod relationships. We received strong support for a sister group relationship of onychophorans and euarthropods and strong support for a close association of tardigrades and cycloneuralia. Within pancrustaceans, our analyses yielded paraphyletic crustaceans and monophyletic hexapods and robustly resolved monophyletic endopterygote insects. However, our analyses also showed for few deep splits that were recently thought to be resolved, for example, the position of myriapods, a remarkable sensitivity to methods of analyses.
Collapse
Affiliation(s)
- Karen Meusemann
- Zoologisches Forschungsmuseum Alexander Koenig, Molecular Biology Unit, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Visser B, Le Lann C, den Blanken FJ, Harvey JA, van Alphen JJM, Ellers J. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc Natl Acad Sci U S A 2010; 107:8677-82. [PMID: 20421492 PMCID: PMC2889307 DOI: 10.1073/pnas.1001744107] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Evolutionary loss of traits can result from negative selection on a specific phenotype, or if the trait is selectively neutral, because the phenotype associated with the trait has become redundant. Even essential traits may be lost, however, if the resulting phenotypic deficiencies can be compensated for by the environment or a symbiotic partner. Here we demonstrate that loss of an essential me-tabolic trait in parasitic wasps has evolved through environmental compensation. We tested 24 species for the ability to synthesize lipids de novo and collected additional data from the literature. We found the majority of adult parasitoid species to be incapable of synthesizing lipids, and phylogenetic analyses showed that the evolution of lack of lipogenesis is concurrent with that of parasitism in insects. Exploitive host manipulation, in which the host is forced to synthesize lipids to the benefit of the parasitoid, presumably facilitates loss of lipogenesis through environmental compensation. Lipogenesis re-evolved in a small number of parasitoid species, particularly host generalists. The wide range of host species in which generalists are able to develop may impede effective host manipulation and could have resulted in regaining of lipogenic ability in generalist parasitoids. As trait loss through environmental compensation is unnoticed at the phenotypic level, it may be more common than currently anticipated, especially in species involved in intricate symbiotic relationships with other species.
Collapse
Affiliation(s)
- Bertanne Visser
- Department of Animal Ecology, Institute of Ecological Science, VU University, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Kück P, Meusemann K, Dambach J, Thormann B, von Reumont BM, Wägele JW, Misof B. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees. Front Zool 2010; 7:10. [PMID: 20356385 PMCID: PMC2867768 DOI: 10.1186/1742-9994-7-10] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/31/2010] [Indexed: 12/16/2022] Open
Abstract
Background Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. Results ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Conclusions Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.
Collapse
Affiliation(s)
- Patrick Kück
- Zoologisches Forschungsmuseum A, Koenig, Adenauerallee 160, 53113 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Grimaldi DA. 400 million years on six legs: on the origin and early evolution of Hexapoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:191-203. [PMID: 19883792 DOI: 10.1016/j.asd.2009.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 10/24/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
Identifying the unambiguous sister group to the hexapods has been elusive. Traditional concepts include the Myriapoda (the Tracheata/Atelocerata hypothesis), but recent molecular studies consistently indicate it is the Crustacea, either in part or entirety (the Pancrustacea/Tetraconata hypothesis). The morphological evidence in support of Tracheata is reviewed, and most features are found to be ambiguous (i.e., losses, poorly known and surveyed structures, and probable convergences), though some appear to be synapomorphic, such as tentorial structure and the presence of styli and eversible vesicles. Other morphological features, particularly the structure of the eyes and nervous system, support Pancrustacea, as does consistent molecular evidence (which is reviewed and critiqued). Suggestions are made regarding hexapod-crustacean limb homologies. Relationships among basal (apterygote) hexapods are reviewed, and critical Paleozoic fossils are discussed. Despite the scarceness of Devonian hexapods, major lineages like Collembola and even dicondylic Insecta appeared in the Early Devonian; stem-group and putative Archaeognatha are known from the Carboniferous through Permian and the Late Devonian, respectively. Thus, the earliest divergences of hexapods were perhaps Late Silurian, which is considerably younger than several estimates made using molecular data.
Collapse
Affiliation(s)
- David A Grimaldi
- American Museum of Natural History, Division of Invertebrate Zoology, Central Park West, 79th Street, New York, NY 10024-5192, USA.
| |
Collapse
|
24
|
Edgecombe GD. Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:74-87. [PMID: 19854297 DOI: 10.1016/j.asd.2009.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 05/03/2023]
Abstract
Monophyly of Arthropoda is emphatically supported from both morphological and molecular perspectives. Recent work finds Onychophora rather than Tardigrada to be the closest relatives of arthropods. The status of tardigrades as panarthropods (rather than cycloneuralians) is contentious from the perspective of phylogenomic data. A grade of Cambrian taxa in the arthropod stem group includes gilled lobopodians, dinocaridids (e.g., anomalocaridids), fuxianhuiids and canadaspidids that inform on character acquisition between Onychophora and the arthropod crown group. A sister group relationship between Crustacea (itself likely paraphyletic) and Hexapoda is retrieved by diverse kinds of molecular data and is well supported by neuroanatomy. This clade, Tetraconata, can be dated to the early Cambrian by crown group-type mandibles. The rival Atelocerata hypothesis (Myriapoda+Hexapoda) has no molecular support. The basal node in the arthropod crown group is embroiled in a controversy over whether myriapods unite with chelicerates (Paradoxopoda or Myriochelata) or with crustaceans and hexapods (Mandibulata). Both groups find some molecular and morphological support, though Mandibulata is presently the stronger morphological hypothesis. Either hypothesis forces an unsampled ghost lineage for Myriapoda from the Cambrian to the mid Silurian.
Collapse
Affiliation(s)
- Gregory D Edgecombe
- Department of Palaeontology, Natural History Museum, Cromwell Road, London, UK.
| |
Collapse
|
25
|
Koenemann S, Jenner RA, Hoenemann M, Stemme T, von Reumont BM. Arthropod phylogeny revisited, with a focus on crustacean relationships. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:88-110. [PMID: 19854296 DOI: 10.1016/j.asd.2009.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/06/2009] [Accepted: 10/14/2009] [Indexed: 05/28/2023]
Abstract
Higher-level arthropod phylogenetics is an intensely active field of research, not least as a result of the hegemony of molecular data. However, not all areas of arthropod phylogenetics have so far received equal attention. The application of molecular data to infer a comprehensive phylogeny of Crustacea is still in its infancy, and several emerging results are conspicuously at odds with morphology-based studies. In this study, we present a series of molecular phylogenetic analyses of 88 arthropods, including 57 crustaceans, representing all the major lineages, with Onychophora and Tardigrada as outgroups. Our analyses are based on published and new sequences for two mitochondrial markers, 16S rDNA and cytochrome c oxidase subunit I (COI), and the nuclear ribosomal gene 18S rDNA. We designed our phylogenetic analyses to assess the effects of different strategies of sequence alignment, alignment masking, nucleotide coding, and model settings. Our comparisons show that alignment optimization of ribosomal markers based on secondary structure information can have a radical impact on phylogenetic reconstruction. Trees based on optimized alignments recover monophyletic Arthropoda (excluding Onychophora), Pancrustacea, Malacostraca, Insecta, Myriapoda and Chelicerata, while Maxillopoda and Hexapoda emerge as paraphyletic groups. Our results are unable to resolve the highest-level relationships within Arthropoda, and none of our trees supports the monophyly of Myriochelata or Mandibulata. We discuss our results in the context of both the methodological variations between different analyses, and of recently proposed phylogenetic hypotheses. This article offers a preliminary attempt to incorporate the large diversity of crustaceans into a single molecular phylogenetic analysis, assessing the robustness of phylogenetic relationships under varying analysis parameters. It throws into sharp relief the relative strengths and shortcomings of the combined molecular data for assessing this challenging phylogenetic problem, and thereby provides useful pointers for future studies.
Collapse
Affiliation(s)
- Stefan Koenemann
- Institute for Animal Ecology and Cell Biology, University of Veterinary Medicine Hannover, Bünteweg 17d, Hannover, Germany.
| | | | | | | | | |
Collapse
|
26
|
Jenner RA. Higher-level crustacean phylogeny: consensus and conflicting hypotheses. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:143-153. [PMID: 19944189 DOI: 10.1016/j.asd.2009.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 05/28/2023]
Abstract
This paper presents an overview of current hypotheses of higher-level crustacean phylogeny in order to assist and help focus further research. It concentrates on hypotheses proposed or debated in the recent literature based on morphological, molecular and combined evidence phylogenetic analyses. It can be concluded that crustacean phylogeny remains essentially unresolved. Conflict is rife, irrespective of whether one compares different morphological studies, molecular studies, or both. Using the number of recently proposed alternative sister group hypotheses for each of the major tetraconatan taxa as a rough estimate of phylogenetic uncertainty, it can be concluded that the phylogenetic position of Malacostraca remains the most problematic, closely followed by Branchiopoda, Cephalocarida, Remipedia, Ostracoda, Branchiura, Copepoda and Hexapoda. Future progress will depend upon a broader taxon sampling in molecular analyses, and the further exploration of new molecular phylogenetic markers. However, the need for continued revision and expansion of morphological datasets remains undiminished given the conspicuous lack of agreement between molecules and morphology for positioning several taxa. In view of the unparalleled morphological diversity of Crustacea, and the likely nesting of Hexapoda somewhere within Crustacea, working out a detailed phylogeny of Tetraconata is a crucial step towards understanding arthropod body plan evolution.
Collapse
Affiliation(s)
- Ronald A Jenner
- Department of Zoology, The Natural History Museum, Cromwell Road, London, UK.
| |
Collapse
|
27
|
Montagné N, Desdevises Y, Soyez D, Toullec JY. Molecular evolution of the crustacean hyperglycemic hormone family in ecdysozoans. BMC Evol Biol 2010; 10:62. [PMID: 20184761 PMCID: PMC2841656 DOI: 10.1186/1471-2148-10-62] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/25/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Crustacean Hyperglycemic Hormone (CHH) family peptides are neurohormones known to regulate several important functions in decapod crustaceans such as ionic and energetic metabolism, molting and reproduction. The structural conservation of these peptides, together with the variety of functions they display, led us to investigate their evolutionary history. CHH family peptides exist in insects (Ion Transport Peptides) and may be present in all ecdysozoans as well. In order to extend the evolutionary study to the entire family, CHH family peptides were thus searched in taxa outside decapods, where they have been, to date, poorly investigated. RESULTS CHH family peptides were characterized by molecular cloning in a branchiopod crustacean, Daphnia magna, and in a collembolan, Folsomia candida. Genes encoding such peptides were also rebuilt in silico from genomic sequences of another branchiopod, a chelicerate and two nematodes. These sequences were included in updated datasets to build phylogenies of the CHH family in pancrustaceans. These phylogenies suggest that peptides found in Branchiopoda and Collembola are more closely related to insect ITPs than to crustacean CHHs. Datasets were also used to support a phylogenetic hypothesis about pancrustacean relationships, which, in addition to gene structures, allowed us to propose two evolutionary scenarios of this multigenic family in ecdysozoans. CONCLUSIONS Evolutionary scenarios suggest that CHH family genes of ecdysozoans originate from an ancestral two-exon gene, and genes of arthropods from a three-exon one. In malacostracans, the evolution of the CHH family has involved several duplication, insertion or deletion events, leading to neuropeptides with a wide variety of functions, as observed in decapods. This family could thus constitute a promising model to investigate the links between gene duplications and functional divergence.
Collapse
Affiliation(s)
- Nicolas Montagné
- UPMC Univ Paris 06, UMR A 1272 INRA - Physiologie de l'Insecte: Signalisation et Communication, F-75005, Paris, France
| | - Yves Desdevises
- UPMC Univ Paris 06, FRE 3247 CNRS - Modèles en Biologie Cellulaire et Évolutive, Observatoire Océanologique, F-66651, Banyuls-sur-Mer, France
| | - Daniel Soyez
- UPMC Univ Paris 06, ER3 - Biogenèse des Signaux Peptidiques, F-75005, Paris, France
| | - Jean-Yves Toullec
- UPMC Univ Paris 06, UMR 7144 CNRS - Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, F-29682, Roscoff, France
| |
Collapse
|
28
|
Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 2010; 463:1079-83. [PMID: 20147900 DOI: 10.1038/nature08742] [Citation(s) in RCA: 625] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 12/10/2009] [Indexed: 11/09/2022]
Abstract
The remarkable antiquity, diversity and ecological significance of arthropods have inspired numerous attempts to resolve their deep phylogenetic history, but the results of two decades of intensive molecular phylogenetics have been mixed. The discovery that terrestrial insects (Hexapoda) are more closely related to aquatic Crustacea than to the terrestrial centipedes and millipedes (Myriapoda) was an early, if exceptional, success. More typically, analyses based on limited samples of taxa and genes have generated results that are inconsistent, weakly supported and highly sensitive to analytical conditions. Here we present strongly supported results from likelihood, Bayesian and parsimony analyses of over 41 kilobases of aligned DNA sequence from 62 single-copy nuclear protein-coding genes from 75 arthropod species. These species represent every major arthropod lineage, plus five species of tardigrades and onychophorans as outgroups. Our results strongly support Pancrustacea (Hexapoda plus Crustacea) but also strongly favour the traditional morphology-based Mandibulata (Myriapoda plus Pancrustacea) over the molecule-based Paradoxopoda (Myriapoda plus Chelicerata). In addition to Hexapoda, Pancrustacea includes three major extant lineages of 'crustaceans', each spanning a significant range of morphological disparity. These are Oligostraca (ostracods, mystacocarids, branchiurans and pentastomids), Vericrustacea (malacostracans, thecostracans, copepods and branchiopods) and Xenocarida (cephalocarids and remipedes). Finally, within Pancrustacea we identify Xenocarida as the long-sought sister group to the Hexapoda, a result confirming that 'crustaceans' are not monophyletic. These results provide a statistically well-supported phylogenetic framework for the largest animal phylum and represent a step towards ending the often-heated, century-long debate on arthropod relationships.
Collapse
Affiliation(s)
- Jerome C Regier
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Aleshin VV, Mikhailov KV, Konstantinova AV, Nikitin MA, Rusin LY, Buinova DA, Kedrova OS, Petrov NB. On the phylogenetic position of insects in the Pancrustacea clade. Mol Biol 2009. [DOI: 10.1134/s0026893309050124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Dell’Ampio E, Szucsich NU, Carapelli A, Frati F, Steiner G, Steinacher A, Pass G. Testing for misleading effects in the phylogenetic reconstruction of ancient lineages of hexapods: influence of character dependence and character choice in analyses of 28S rRNA sequences. ZOOL SCR 2009. [DOI: 10.1111/j.1463-6409.2008.00368.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
|
32
|
Gai Y, Song D, Sun H, Yang Q, Zhou K. The complete mitochondrial genome of Symphylella sp. (Myriapoda: Symphyla): Extensive gene order rearrangement and evidence in favor of Progoneata. Mol Phylogenet Evol 2008; 49:574-85. [PMID: 18782622 DOI: 10.1016/j.ympev.2008.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 08/15/2008] [Accepted: 08/16/2008] [Indexed: 10/21/2022]
Abstract
We determined the complete 14,667bp mitochondrial DNA sequence of Symphylella sp., the first representative of the Scolopendrellidae (Arthropoda: Myriapoda: Symphyla). With respect to the ancestral arthropod mitochondrial gene order, two protein-coding genes, the rRNAs and 10 of the tRNAs appear to be rearranged. This rearrangement is novel in the arthropods and genes with identical transcriptional polarity are clustered except for trnE, trnN and putative control region (CR), resembling two previously reported diplopod genomes. A duplication/loss (random and non-random)-recombination model was proposed to account for the generation of the gene order in Symphylella sp. All phylogenetic analysis yielded strong support for a clade of Symphyla plus Diplopoda, i.e., Progoneata. However, the phylogenetic position of Myriapoda within Arthropoda remains unclear. The amino acid dataset gives strong support for an affinity to Pancrustacea, while the nucleotide dataset weakly supports Myriapoda grouped with Chelicerata.
Collapse
Affiliation(s)
- Yonghua Gai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; Nanjing Institute of Geology and Palaeontology, Chinese Academy of Science, Nanjing 210008, China
| | | | | | | | | |
Collapse
|