1
|
Estrada-Valencia R, de Lima ME, Colonnello A, Rangel-López E, Saraiva NR, de Ávila DS, Aschner M, Santamaría A. The Endocannabinoid System in Caenorhabditis elegans. Rev Physiol Biochem Pharmacol 2023; 184:1-31. [PMID: 34401955 PMCID: PMC8850531 DOI: 10.1007/112_2021_64] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The existence of a formal Endocannabinoid System in C. elegans has been questioned due to data showing the absence of typical cannabinoid receptors in the worm; however, the presence of a full metabolism for endocannabinoids, alternative ligands, and receptors for these agents and a considerable number of orthologous and homologous genes regulating physiological cannabinoid-like signals and responses - several of which are similar to those of mammals - demonstrates a well-structured and functional complex system in nematodes. In this review, we describe and compare similarities and differences between the Endocannabinoid System in mammals and nematodes, highlighting the basis for the integral study of this novel system in the worm.
Collapse
Affiliation(s)
| | - María Eduarda de Lima
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Aline Colonnello
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Nariani Rocha Saraiva
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, UNIPAMPA, Uruguaiana, Brazil
| | - Daiana Silva de Ávila
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, UNIPAMPA, Uruguaiana, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| |
Collapse
|
2
|
Abstract
Experimentally tractable organisms like C. elegans, Drosophila, zebrafish, and mouse are popular models for addressing diverse questions in biology. In 1997, two of the most valuable invertebrate model organisms to date-C. elegans and Drosophila-were found to be much more closely related to each other than expected. C. elegans and Drosophila belong to the nematodes and arthropods, respectively, and these two phyla and six other phyla make up a clade of molting animals referred to as the Ecdysozoa. The other ecdysozoan phyla could be valuable models for comparative biology, taking advantage of the rich and continual sources of research findings as well as tools from both C. elegans and Drosophila. But when the Ecdysozoa was first recognized, few tools were available for laboratory studies in any of these six other ecdysozoan phyla. In 1999 I began an effort to develop tools for studying one such phylum, the tardigrades. Here, I describe how the tardigrade species Hypsibius exemplaris and tardigrades more generally have emerged over the past two decades as valuable new models for answering diverse questions. To date, these questions have included how animal body plans evolve and how biological materials can survive some remarkably extreme conditions.
Collapse
Affiliation(s)
- Bob Goldstein
- Department of Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.
| |
Collapse
|
3
|
Györi J, Kohn AB, Romanova DY, Moroz LL. ATP signaling in the integrative neural center of Aplysia californica. Sci Rep 2021; 11:5478. [PMID: 33750901 PMCID: PMC7943599 DOI: 10.1038/s41598-021-84981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022] Open
Abstract
ATP and its ionotropic P2X receptors are components of the most ancient signaling system. However, little is known about the distribution and function of purinergic transmission in invertebrates. Here, we cloned, expressed, and pharmacologically characterized the P2X receptors in the sea slug Aplysia californica—a prominent neuroscience model. AcP2X receptors were successfully expressed in Xenopus oocytes and displayed activation by ATP with two-phased kinetics and Na+-dependence. Pharmacologically, they were different from other P2X receptors. The ATP analog, Bz-ATP, was a less effective agonist than ATP, and PPADS was a more potent inhibitor of the AcP2X receptors than the suramin. AcP2X were uniquely expressed within the cerebral F-cluster, the multifunctional integrative neurosecretory center. AcP2X receptors were also detected in the chemosensory structures and the early cleavage stages. Therefore, in molluscs, rapid ATP-dependent signaling can be implicated both in development and diverse homeostatic functions. Furthermore, this study illuminates novel cellular and systemic features of P2X-type ligand-gated ion channels for deciphering the evolution of neurotransmitters.
Collapse
Affiliation(s)
- János Györi
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary.,Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, 117485, Russia
| | - Leonid L Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA. .,Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
4
|
Verkhratsky A. Early evolutionary history (from bacteria to hemichordata) of the omnipresent purinergic signalling: A tribute to Geoff Burnstock inquisitive mind. Biochem Pharmacol 2020; 187:114261. [PMID: 33011161 DOI: 10.1016/j.bcp.2020.114261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Purines and pyrimidines are indispensable molecules of life; they are fundamental for genetic code and bioenergetics. From the very early evolution of life purines have acquired the meaning of damage-associated extracellular signaller and purinergic receptors emerged in unicellular organisms. Ancestral purinoceptors are P2X-like ionotropic ligand-gated cationic channels showing 20-40% of homology with vertebrate P2X receptors; genes encoding ancestral P2X receptors have been detected in Protozoa, Algae, Fungi and Sponges; they are also present in some invertebrates, but are absent from the genome of insects, nematodes, and higher plants. Plants nevertheless evolved a sophisticated and widespread purinergic signalling system relying on the idiosyncratic purinoceptor P2K1/DORN1 linked to intracellular Ca2+ signalling. The advance of metabotropic purinoceptors starts later in evolution with adenosine receptors preceding the emergence of P2Y nucleotide and P0 adenine receptors. In vertebrates and mammals the purinergic signalling system reaches the summit and operates throughout all tissues and systems without anatomical or functional segregation.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain.
| |
Collapse
|
5
|
Duan H, Ni S, Yang S, Zhou Y, Zhang Y, Zhang S. Conservation of eATP perception throughout multicellular animal evolution: Identification and functional characterization of coral and amphioxus P2X7-like receptors and flounder P2X7 receptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103641. [PMID: 32045589 DOI: 10.1016/j.dci.2020.103641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Perception of extracellular ATP (eATP), a common endogenous damage-associated molecular pattern, is through its receptor P2X7R. If eATP/P2X7R signaling is conserved throughout animal evolution is unknown. Moreover, little information is currently available regarding P2X7R in invertebrates. Here we demonstrated that the coral P2X7-like receptor, AdP2X7RL, the amphioxus P2X7-like receptor, BjP2X7RL and the flounder P2X7 receptor, PoP2X7R, shared common features characteristic of mammalian P2X7R, and their 3D structures displayed high resemblance to that of human P2X7R. Expression of Adp2x7rl, Bjp2x7rl and Pop2x7r was all subjected to the regulation by LPS and ATP. We also showed that AdP2X7RL, BjP2X7RL and PoP2X7R were distributed on the plasma membrane in AdP2X7RL-, BjP2X7RL- and PoP2X7R-expressing HEK cells, and had strong affinity to eATP. Importantly, the binding of AdP2X7RL, BjP2X7RL and PoP2X7R to eATP all induced similar downstream responses, including induction of cytokines (IL-1β, IL-6, IL-8 and CCL-2), enhancement of phagocytosis and activation of AKT/ERK-associated signaling pathway observed for mammalian P2X7R. Collectively, our results indicate for the first time that both coral and amphioxus P2X7RL as well as flounder P2X7R can interact with eATP, and induce events that trigger mammalian mechanisms, suggesting the high conservation of eATP perception throughout multicellular animal evolution.
Collapse
Affiliation(s)
- Huimin Duan
- Institute of Evolution and Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Shousheng Ni
- Institute of Evolution and Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Shuaiqi Yang
- Institute of Evolution and Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Yang Zhou
- Institute of Evolution and Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Yu Zhang
- Institute of Evolution and Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao, 266003, China.
| | - Shicui Zhang
- Institute of Evolution and Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
6
|
Vijayamahantesh, Vijayalaxmi. Tinkering with targeting nucleotide signaling for control of intracellular Leishmania parasites. Cytokine 2019; 119:129-143. [PMID: 30909149 DOI: 10.1016/j.cyto.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
Nucleotides are one of the most primitive extracellular signalling molecules across all phyla and regulate a multitude of responses. The biological effects of extracellular nucleotides/sides are mediated via the specific purinergic receptors present on the cell surface. In mammalian system, adenine nucleotides are the predominant nucleotides found in the extracellular milieu and mediate a constellation of physiological functions. In the context of host-pathogen interaction, extracellular ATP is recognized as a danger signal and potentiates the release of pro-inflammatory mediators from activated immune cells, on the other hand, its breakdown product adenosine exerts potential anti-inflammatory and immunosuppressive actions. Therefore, it is increasingly apparent that the interplay between extracellular ATP/adenosine ratios has a significant role in coordinating the regulation of the immune system in health and diseases. Several pathogens express ectonucleotidases on their surface and exploit the purinergic signalling as one of the mechanisms to modulate the host immune response. Leishmania pathogens are one of the most successful intracellular pathogens which survive within host macrophages and manipulate protective Th1 response into disease promoting Th2 response. In this review, we discuss the regulation of extracellular ATP and adenosine levels, the role of ATP/adenosine counter signalling in regulating the inflammation and immune responses during infection and how Leishmania parasites exploit the purinergic signalling to manipulate host response. We also discuss the challenges and opportunities in targeting purinergic signalling and the future prospects.
Collapse
Affiliation(s)
- Vijayamahantesh
- Department of Biochemistry, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| | - Vijayalaxmi
- Department of Zoology, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
7
|
Goldstein B. The Emergence of the Tardigrade Hypsibius exemplaris as a Model System. Cold Spring Harb Protoc 2018; 2018:2018/11/pdb.emo102301. [PMID: 30385668 DOI: 10.1101/pdb.emo102301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The success of scientists in revealing biological mechanisms has depended in large part on choosing tractable model systems. In 1997, molecular phylogenetics revealed that two of biology's most tractable models-Caenorhabditis elegans and Drosophila-are much more closely related to each other than had been thought previously. I began to explore whether any of the little-studied members of this branch of the tree of life might serve as a new model for comparative biology that could make use of the rich and ongoing sources of information flowing from C. elegans and Drosophila research. Tardigrades, also known as water bears, make up a phylum of microscopic animals. The tardigrade Hypsibius exemplaris (recently disambiguated from a closely related species, Hypsibius dujardini) can be maintained in laboratories and has a generation time of <2 wk at room temperature. Stocks of animals can be stored frozen and revived. The animals and their embryos are optically clear, and embryos are laid in groups, with each synchronous clutch of embryos laid in a clear molt. We have developed techniques for laboratory study of this system, including methods for microinjection of animals, immunolocalization, in situ hybridization, RNA interference, transcriptomics, and methods for identifying proteins that mediate tolerance to extreme environments. Here, I review the development of this animal as an emerging model system, as well as recent molecular studies aimed at understanding the evolution of developmental mechanisms that underpin the evolution of animal form and at understanding how biological materials can survive extreme environments.
Collapse
Affiliation(s)
- Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
8
|
Pasqualetto G, Brancale A, Young MT. The Molecular Determinants of Small-Molecule Ligand Binding at P2X Receptors. Front Pharmacol 2018; 9:58. [PMID: 29456508 PMCID: PMC5801290 DOI: 10.3389/fphar.2018.00058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/17/2018] [Indexed: 12/30/2022] Open
Abstract
P2X receptors are trimeric eukaryotic ATP-gated cation channels. Extracellular ATP—their physiological ligand—is released as a neurotransmitter and in conditions of cell damage such as inflammation, and substantial evidence implicates P2X receptors in diseases including neuropathic pain, cancer, and arthritis. In 2009, the first P2X crystal structure, Danio rerio P2X4 in the apo- state, was published, and this was followed in 2012 by the ATP-bound structure. These structures transformed our understanding of the conformational changes induced by ATP binding and the mechanism of ligand specificity, and enabled homology modeling of mammalian P2X receptors for ligand docking and rational design of receptor modulators. P2X receptors are attractive drug targets, and a wide array of potent, subtype-selective modulators (mostly antagonists) have been developed. In 2016, crystal structures of human P2X3 in complex with the competitive antagonists TNP-ATP and A-317491, and Ailuropoda melanoleuca P2X7 in complex with a series of allosteric antagonists were published, giving fascinating insights into the mechanism of channel antagonism. In this article we not only summarize current understanding of small-molecule modulator binding at P2X receptors, but also use this information in combination with previously published structure-function data and molecular docking experiments, to hypothesize a role for the dorsal fin loop region in differential ATP potency, and describe novel, testable binding conformations for both the semi-selective synthetic P2X7 agonist 2′-(3′)-O-(4-benzoyl)benzoyl ATP (BzATP), and the P2X4-selective positive allosteric modulator ivermectin. We find that the distal benzoyl group of BzATP lies in close proximity to Lys-127, a residue previously implicated in BzATP binding to P2X7, potentially explaining the increased potency of BzATP at rat P2X7 receptors. We also present molecular docking of ivermectin to rat P2X4 receptors, illustrating a plausible binding conformation between the first and second transmembrane domains which not only tallies with previous mutagenesis studies, but would also likely have the effect of stabilizing the open channel structure, consistent with the mode of action of this positive allosteric modulator. From our docking simulations and analysis of sequence homology we propose a series of mutations likely to confer ivermectin sensitivity to human P2X1.
Collapse
Affiliation(s)
- Gaia Pasqualetto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mark T Young
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Plattner H, Verkhratsky A. Inseparable tandem: evolution chooses ATP and Ca2+ to control life, death and cellular signalling. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0419. [PMID: 27377729 DOI: 10.1098/rstb.2015.0419] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
From the very dawn of biological evolution, ATP was selected as a multipurpose energy-storing molecule. Metabolism of ATP required intracellular free Ca(2+) to be set at exceedingly low concentrations, which in turn provided the background for the role of Ca(2+) as a universal signalling molecule. The early-eukaryote life forms also evolved functional compartmentalization and vesicle trafficking, which used Ca(2+) as a universal signalling ion; similarly, Ca(2+) is needed for regulation of ciliary and flagellar beat, amoeboid movement, intracellular transport, as well as of numerous metabolic processes. Thus, during evolution, exploitation of atmospheric oxygen and increasingly efficient ATP production via oxidative phosphorylation by bacterial endosymbionts were a first step for the emergence of complex eukaryotic cells. Simultaneously, Ca(2+) started to be exploited for short-range signalling, despite restrictions by the preset phosphate-based energy metabolism, when both phosphates and Ca(2+) interfere with each other because of the low solubility of calcium phosphates. The need to keep cytosolic Ca(2+) low forced cells to restrict Ca(2+) signals in space and time and to develop energetically favourable Ca(2+) signalling and Ca(2+) microdomains. These steps in tandem dominated further evolution. The ATP molecule (often released by Ca(2+)-regulated exocytosis) rapidly grew to be the universal chemical messenger for intercellular communication; ATP effects are mediated by an extended family of purinoceptors often linked to Ca(2+) signalling. Similar to atmospheric oxygen, Ca(2+) must have been reverted from a deleterious agent to a most useful (intra- and extracellular) signalling molecule. Invention of intracellular trafficking further increased the role for Ca(2+) homeostasis that became critical for regulation of cell survival and cell death. Several mutually interdependent effects of Ca(2+) and ATP have been exploited in evolution, thus turning an originally unholy alliance into a fascinating success story.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Alexei Verkhratsky
- Faculty of Biological Sciences, University of Manchester, Manchester M13 9PT, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| |
Collapse
|
10
|
Suurväli J, Boudinot P, Kanellopoulos J, Rüütel Boudinot S. P2X4: A fast and sensitive purinergic receptor. Biomed J 2017; 40:245-256. [PMID: 29179879 PMCID: PMC6138603 DOI: 10.1016/j.bj.2017.06.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/31/2023] Open
Abstract
Extracellular nucleotides have been recognized as important mediators of activation, triggering multiple responses via plasma membrane receptors known as P2 receptors. P2 receptors comprise P2X ionotropic receptors and G protein-coupled P2Y receptors. P2X receptors are expressed in many tissues, where they are involved in a number of functions including synaptic transmission, muscle contraction, platelet aggregation, inflammation, macrophage activation, differentiation and proliferation, neuropathic and inflammatory pain. P2X4 is one of the most sensitive purinergic receptors (at nanomolar ATP concentrations), about one thousand times more than the archetypal P2X7. P2X4 is widely expressed in central and peripheral neurons, in microglia, and also found in various epithelial tissues and endothelial cells. It localizes on the plasma membrane, but also in intracellular compartments. P2X4 is preferentially localized in lysosomes, where it is protected from proteolysis by its glycosylation. High ATP concentration in the lysosomes does not activate P2X4 at low pH; P2X4 gets activated by intra-lysosomal ATP only in its fully dissociated tetra-anionic form, when the pH increases to 7.4. Thus, P2X4 is functioning as a Ca2+-channel after the fusion of late endosomes and lysosomes. P2X4 modulates major neurotransmitter systems and regulates alcohol-induced responses in microglia. P2X4 is one of the key receptors mediating neuropathic pain. However, injury-induced upregulation of P2X4 expression is gender dependent and plays a key role in pain difference between males and females. P2X4 is also involved in inflammation. Extracellular ATP being a pro-inflammatory molecule, P2X4 can trigger inflammation in response to high ATP release. It is therefore involved in multiple pathologies, like post-ischemic inflammation, rheumatoid arthritis, airways inflammation in asthma, neurodegenerative diseases and even metabolic syndrome. Although P2X4 remains poorly characterized, more studies are needed as it is likely to be a potential therapeutic target in these multiple pathologies.
Collapse
Affiliation(s)
- Jaanus Suurväli
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Sirje Rüütel Boudinot
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
11
|
Hou Z, Cao J. Comparative study of the P2X gene family in animals and plants. Purinergic Signal 2016; 12:269-81. [PMID: 26874702 PMCID: PMC4854843 DOI: 10.1007/s11302-016-9501-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/05/2016] [Indexed: 12/22/2022] Open
Abstract
P2X receptors are ligand-gated ion channels that can bind with the adenosine triphosphate (ATP) and have diverse functional roles in neuropathic pain, inflammation, special sense, and so on. In this study, 180 putative P2X genes, including 176 members in 32 animal species and 4 members in 3 species of lower plants, were identified. These genes were divided into 13 groups, including 7 groups in vertebrates and 6 groups in invertebrates and lower plants, through phylogenetic analysis. Their gene organization and motif composition are conserved in most predicted P2X members, while group-specific features were also found. Moreover, synteny relationships of the putative P2X genes in vertebrates are conserved while simultaneously experiencing a series of gene insertion, inversion, and transposition. Recombination signals were detected in almost all of the vertebrates and invertebrates, suggesting that intragenic recombination may play a significant role in the evolution of P2X genes. Selection analysis also identified some positively selected sites that acted on the evolution of most of the predicted P2X proteins. The phenomenon of alternative splicing occurred commonly in the putative P2X genes of vertebrates. This article explored in depth the evolutional relationship among different subtypes of P2X genes in animal and plants and might serve as a solid foundation for deciphering their functions in further studies.
Collapse
Affiliation(s)
- Zhuoran Hou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Cao
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci U S A 2016; 113:5053-5058. [PMID: 27035985 DOI: 10.1101/033464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination.
Collapse
Affiliation(s)
- Georgios Koutsovoulos
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sujai Kumar
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Lewis Stevens
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Jennifer Daub
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Claire Conlon
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Habib Maroon
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Fran Thomas
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Aziz A Aboobaker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
13
|
Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci U S A 2016; 113:5053-8. [PMID: 27035985 PMCID: PMC4983863 DOI: 10.1073/pnas.1600338113] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination.
Collapse
Affiliation(s)
- Georgios Koutsovoulos
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sujai Kumar
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Lewis Stevens
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Jennifer Daub
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Claire Conlon
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Habib Maroon
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Fran Thomas
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Aziz A Aboobaker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
14
|
Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels. Cell Rep 2016; 14:932-944. [PMID: 26804916 DOI: 10.1016/j.celrep.2015.12.087] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/03/2015] [Accepted: 12/18/2015] [Indexed: 02/03/2023] Open
Abstract
P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn(2+) ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn(2+) potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg(2+). Overall, our work provides structural insights into the divalent cation modulations of P2X receptors.
Collapse
|
15
|
Evidence for Extracellular ATP as a Stress Signal in a Single-Celled Organism. EUKARYOTIC CELL 2015; 14:775-82. [PMID: 26048010 DOI: 10.1128/ec.00066-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/28/2015] [Indexed: 01/18/2023]
Abstract
ATP is omnipresent in biology and acts as an extracellular signaling molecule in mammals. Information regarding the signaling function of extracellular ATP in single-celled eukaryotes is lacking. Here, we explore the role of extracellular ATP in cell volume recovery during osmotic swelling in the amoeba Dictyostelium. Release of micromolar ATP could be detected during cell swelling and regulatory cell volume decrease (RVD) phases during hypotonic challenge. Scavenging ATP with apyrase caused profound cell swelling and loss of RVD. Apyrase-induced swelling could be rescued by 100 μM βγ-imidoATP. N-Ethylmalemide (NEM), an inhibitor of vesicular exocytosis, caused heightened cell swelling, loss of RVD, and inhibition of ATP release. Amoebas with impaired contractile vacuole (CV) fusion (drainin knockout [KO] cells) displayed increased swelling but intact ATP release. One hundred micromolar Gd(3+) caused cell swelling while blocking any recovery by βγ-imidoATP. ATP release was 4-fold higher in the presence of Gd(3+). Cell swelling was associated with an increase in intracellular nitric oxide (NO), with NO-scavenging agents causing cell swelling. Swelling-induced NO production was inhibited by both apyrase and Gd(3+), while NO donors rescued apyrase- and Gd(3+)-induced swelling. These data suggest extracellular ATP released during cell swelling is an important signal that elicits RVD. Though the cell surface receptor for ATP in Dictyostelium remains elusive, we suggest ATP operates through a Gd(3+)-sensitive receptor that is coupled with intracellular NO production.
Collapse
|
16
|
Verkhratsky A, Burnstock G. Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. Bioessays 2014; 36:697-705. [PMID: 24782352 DOI: 10.1002/bies.201400024] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purinergic signalling system, which utilises ATP, related nucleotides and adenosine as transmitter molecules, appeared very early in evolution: release mechanisms and ATP-degrading enzymes are operative in bacteria, and the first specific receptors are present in single cell eukaryotic protozoa and algae. Further evolution of the purinergic signalling system resulted in the development of multiple classes of purinoceptors, several pathways for release of nucleotides and adenosine, and a system of ectonucleotidases controlling extracellular levels of purinergic transmitters. The purinergic signalling system is expressed in virtually all types of tissues and cells, where it mediates numerous physiological reactions and contributes to pathological responses in a variety of diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- School of Biological Sciences, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | |
Collapse
|
17
|
Fountain SJ. Primitive ATP-activated P2X receptors: discovery, function and pharmacology. Front Cell Neurosci 2013; 7:247. [PMID: 24367292 PMCID: PMC3853471 DOI: 10.3389/fncel.2013.00247] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/19/2013] [Indexed: 12/02/2022] Open
Abstract
Adenosine 5-triphosphate (ATP) is omnipresent in biology. It is therefore no surprise that organisms have evolved multifaceted roles for ATP, exploiting its abundance and restriction of passive diffusion across biological membranes. A striking role is the emergence of ATP as a bona fide transmitter molecule, whereby the movement of ATP across membranes serves as a chemical message through a direct ligand-receptor interaction. P2X receptors are ligand-gated ion channels that mediate fast responses to the transmitter ATP in mammalian cells including central and sensory neurons, vascular smooth muscle, endothelium, and leukocytes. Molecular cloning of P2X receptors and our understanding of structure-function relationships has provided sequence information with which to query an exponentially expanding wealth of genome sequence information including protist, early animal and human pathogen genomes. P2X receptors have now been cloned and characterized from a number of simple organisms. Such work has led to surprising new cellular roles for the P2X receptors family and an unusual phylogeny, with organisms such as Drosophila and C. elegans notably lacking P2X receptors despite retaining ionotropic receptors for other common transmitters that are present in mammals. This review will summarize current work on the evolutionary biology of P2X receptors and ATP as a signaling molecule, discuss what can be drawn from such studies when considering the action of ATP in higher animals and plants, and outline how simple organisms may be exploited experimentally to inform P2X receptor function in a wider context.
Collapse
Affiliation(s)
- Samuel J Fountain
- School of Biological Sciences, University of East Anglia Norwich, UK
| |
Collapse
|
18
|
Nörenberg W, Sobottka H, Hempel C, Plötz T, Fischer W, Schmalzing G, Schaefer M. Positive allosteric modulation by ivermectin of human but not murine P2X7 receptors. Br J Pharmacol 2013; 167:48-66. [PMID: 22506590 DOI: 10.1111/j.1476-5381.2012.01987.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE In mammalian cells, the anti-parasitic drug ivermectin is known as a positive allosteric modulator of the ATP-activated ion channel P2X4 and is used to discriminate between P2X4- and P2X7-mediated cellular responses. In this paper we provide evidence that the reported isoform selectivity of ivermectin is a species-specific phenomenon. EXPERIMENTAL APPROACH Complementary electrophysiological and fluorometric methods were applied to evaluate the effect of ivermectin on recombinantly expressed and on native P2X7 receptors. A biophysical characterization of ionic currents and of the pore dilation properties is provided. KEY RESULTS Unexpectedly, ivermectin potentiated currents in human monocyte-derived macrophages that endogenously express hP2X7 receptors. Likewise, currents and [Ca(2+) ](i) influx through recombinant human (hP2X7) receptors were potently enhanced by ivermectin at submaximal or saturating ATP concentrations. Since intracellular ivermectin did not mimic or prevent its activity when applied to the bath solution, the binding site of ivermectin on hP2X7 receptors appears to be accessible from the extracellular side. In contrast to currents through P2X4 receptors, ivermectin did not cause a delay in hP2X7 current decay upon ATP removal. Interestingly, NMDG(+) permeability and Yo-Pro-1 uptake were not affected by ivermectin. On rat or mouse P2X7 receptors, ivermectin was only poorly effective, suggesting a species-specific mode of action. CONCLUSIONS AND IMPLICATIONS The data indicate a previously unrecognized species-specific modulation of human P2X7 receptors by ivermectin that should be considered when using this cell-biological tool in human cells and tissues.
Collapse
Affiliation(s)
- W Nörenberg
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Cloning and characterization of a P2X receptor expressed in the central nervous system of Lymnaea stagnalis. PLoS One 2012; 7:e50487. [PMID: 23209755 PMCID: PMC3510196 DOI: 10.1371/journal.pone.0050487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/22/2012] [Indexed: 02/07/2023] Open
Abstract
P2X receptors are membrane ion channels gated by extracellular ATP. Mammals possess seven distinct P2X subtypes (P2X1-7) that have important functions in a wide array of physiological processes including roles in the central nervous system (CNS) where they have been linked to modulation of neurotransmitter release. We report here the cloning and functional characterization of a P2X receptor from the mollusc Lymnaea stagnalis. This model organism has a relatively simple CNS consisting of large readily identifiable neurones, a feature which together with a well characterized neuronal circuitry for important physiological processes such as feeding and respiration makes it an attractive potential model to examine P2X function. Using CODEHOP PCR we identified a single P2X receptor (LymP2X) in Lymnaea CNS which was subsequently cloned by RT-PCR. When heterologously expressed in Xenopus oocytes, LymP2X exhibited ATP evoked inward currents (EC(50) 6.2 µM) which decayed during the continued presence of agonist. UTP and ADP did not activate the receptor whereas αβmeATP was a weak agonist. BzATP was a partial agonist with an EC(50) of 2.4 µM and a maximal response 33% smaller than that of ATP. The general P2 receptor antagonists PPADS and suramin both inhibited LymP2X currents with IC(50) values of 8.1 and 27.4 µM respectively. LymP2X is inhibited by acidic pH whereas Zn(2+) and Cu(2+) ions exhibited a biphasic effect, potentiating currents up to 100 µM and inhibiting at higher concentrations. Quantitative RT-PCR and in situ hybridization detected expression of LymP2X mRNA in neurones of all CNS ganglia suggesting this ion channel may have widespread roles in Lymnaea CNS function.
Collapse
|
20
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
21
|
|
22
|
Jindrichova M, Khafizov K, Skorinkin A, Fayuk D, Bart G, Zemkova H, Giniatullin R. Highly conserved tyrosine 37 stabilizes desensitized states and restricts calcium permeability of ATP-gated P2X3 receptor. J Neurochem 2011; 119:676-85. [PMID: 21883226 DOI: 10.1111/j.1471-4159.2011.07463.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tyrosine 37 in the first transmembrane (TM1) domain is highly conserved in ATP-gated P2X receptors suggesting its fundamental role. We tested whether Y37 contributes to the desensitization of P2X3 receptors, which is currently not well understood. By combining electrophysiological, imaging and modeling approaches, we studied desensitization of various Y37 P2X3 mutants and potential partners of Y37. Unlike the membrane current of the WT receptor, which desensitized in seconds, Y37A mutant current did not fully desensitize even after minutes-long applications of β,γ-meATP, α,β-meATP, ATP or 2MeS-ATP. The fractional calcium current was enhanced in the Y37A mutant. Y37F did not rescue the native P2X3 phenotype indicating a role for the hydroxyl group of Y37 for the WT receptor. Homology modeling indicated I318 or I319 in TM2 as potential partners for Y37 in the receptor closed state. We tested this hypothesis by creating a permanent interaction between the two residues via disulfide bond. Whereas single Y37C, I318C and I319C mutants were functional, the double mutants Y37C-I318C and Y37C-I319C were non-functional. Using a cyclic model of receptor operation, we suggest that the conserved tyrosine 37 links TM1 to TM2 of adjacent subunit to stabilize desensitized states and restricts calcium permeability through the ion channel.
Collapse
Affiliation(s)
- Marie Jindrichova
- Department of Neurobiology, AI Virtanen Institute, University of Eastern Finland, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
Investigating the effect of emetic compounds on chemotaxis in Dictyostelium identifies a non-sentient model for bitter and hot tastant research. PLoS One 2011; 6:e24439. [PMID: 21931717 PMCID: PMC3169598 DOI: 10.1371/journal.pone.0024439] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 08/10/2011] [Indexed: 01/05/2023] Open
Abstract
Novel chemical entities (NCEs) may be investigated for emetic liability in a range of unpleasant experiments involving retching, vomiting or conditioned taste aversion/food avoidance in sentient animals. We have used a range of compounds with known emetic /aversive properties to examine the possibility of using the social amoeba, Dictyostelium discoideum, for research into identifying and understanding emetic liability, and hence reduce adverse animal experimentation in this area. Twenty eight emetic or taste aversive compounds were employed to investigate the acute (10 min) effect of compounds on Dictyostelium cell behaviour (shape, speed and direction of movement) in a shallow chemotaxic gradient (Dunn chamber). Compound concentrations were chosen based on those previously reported to be emetic or aversive in in vivo studies and results were recorded and quantified by automated image analysis. Dictyostelium cell motility was rapidly and strongly inhibited by four structurally distinct tastants (three bitter tasting compounds--denatonium benzoate, quinine hydrochloride, phenylthiourea, and the pungent constituent of chilli peppers--capsaicin). In addition, stomach irritants (copper chloride and copper sulphate), and a phosphodiesterase IV inhibitor also rapidly blocked movement. A concentration-dependant relationship was established for five of these compounds, showing potency of inhibition as capsaicin (IC(50) = 11.9 ± 4.0 µM) > quinine hydrochloride (IC(50) = 44.3 ± 6.8 µM) > denatonium benzoate (IC(50) = 129 ± 4 µM) > phenylthiourea (IC(50) = 366 ± 5 µM) > copper sulphate (IC(50) = 1433 ± 3 µM). In contrast, 21 compounds within the cytotoxic and receptor agonist/antagonist classes did not affect cell behaviour. Further analysis of bitter and pungent compounds showed that the effect on cell behaviour was reversible and not cytotoxic, suggesting an uncharacterised molecular mechanism of action for these compounds. These results therefore demonstrate that Dictyostelium has potential as a non-sentient model in the analysis of the molecular effects of tastants, although it has limited utility in identification of emetic agents in general.
Collapse
|
24
|
Cai X. P2X receptor homologs in basal fungi. Purinergic Signal 2011; 8:11-3. [PMID: 21887491 DOI: 10.1007/s11302-011-9261-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 08/23/2011] [Indexed: 01/26/2023] Open
Affiliation(s)
- Xinjiang Cai
- Molecular Pathogenesis Program, The Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, 540 First Avenue, New York, NY, 10016, USA,
| |
Collapse
|
25
|
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63:641-83. [PMID: 21737531 DOI: 10.1124/pr.110.003129] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Developmant, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
26
|
Møbjerg N, Halberg KA, Jørgensen A, Persson D, Bjørn M, Ramløv H, Kristensen RM. Survival in extreme environments - on the current knowledge of adaptations in tardigrades. Acta Physiol (Oxf) 2011; 202:409-20. [PMID: 21251237 DOI: 10.1111/j.1748-1716.2011.02252.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tardigrades are microscopic animals found worldwide in aquatic as well as terrestrial ecosystems. They belong to the invertebrate superclade Ecdysozoa, as do the two major invertebrate model organisms: Caenorhabditis elegans and Drosophila melanogaster. We present a brief description of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially among limno-terrestrial species. It has been shown that the entry and exit of cryptobiosis may involve synthesis of bioprotectants in the form of selective carbohydrates and proteins as well as high levels of antioxidant enzymes and other free radical scavengers. However, at present a general scheme of mechanisms explaining this phenomenon is lacking. Importantly, recent research has shown that tardigrades even in their active states may be extremely tolerant to environmental stress, handling extreme levels of ionizing radiation, large fluctuation in external salinity and avoiding freezing by supercooling to below -20 °C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation.
Collapse
Affiliation(s)
- N Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
27
|
Förster F, Beisser D, Frohme M, Schill RO, Dandekar T. Bioinformatics identifies tardigrade molecular adaptations including the DNA‐j family and first steps towards dynamical modelling. J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2010.00609.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frank Förster
- Department of Bioinformatics, Biocenter University of Würzburg, Würzburg, Germany
| | - Daniela Beisser
- Department of Bioinformatics, Biocenter University of Würzburg, Würzburg, Germany
| | | | - Ralph O. Schill
- Department of Zoology, Institute for Biology, Universität Stuttgart, Stuttgart, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Bavan S, Farmer L, Singh SK, Straub VA, Guerrero FD, Ennion SJ. The penultimate arginine of the carboxyl terminus determines slow desensitization in a P2X receptor from the cattle tick Boophilus microplus. Mol Pharmacol 2011; 79:776-85. [PMID: 21212138 DOI: 10.1124/mol.110.070037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
P2X ion channels have been functionally characterized from a range of eukaryotes. Although these receptors can be broadly classified into fast and slow desensitizing, the molecular mechanisms underlying current desensitization are not fully understood. Here, we describe the characterization of a P2X receptor from the cattle tick Boophilus microplus (BmP2X) displaying extremely slow current kinetics, little desensitization during ATP application, and marked rundown in current amplitude between sequential responses. ATP (EC(50), 67.1 μM) evoked concentration-dependent currents at BmP2X that were antagonized by suramin (IC(50), 4.8 μM) and potentiated by the antiparasitic drug amitraz. Ivermectin did not potentiate BmP2X currents, but the mutation M362L conferred ivermectin sensitivity. To investigate the mechanisms underlying slow desensitization we generated intracellular domain chimeras between BmP2X and the rapidly desensitizing P2X receptor from Hypsibius dujardini. Exchange of N or C termini between these fast- and slow-desensitizing receptors altered the rate of current desensitization toward that of the donor channel. Truncation of the BmP2X C terminus identified the penultimate residue (Arg413) as important for slow desensitization. Removal of positive charge at this position in the mutant R413A resulted in significantly faster desensitization, which was further accentuated by the negatively charged substitution R413D. R413A and R413D, however, still displayed current rundown to sequential ATP application. Mutation to a positive charge (R413K) reconstituted the wild-type phenotype. This study identifies a new determinant of P2X desensitization where positive charge at the end of the C terminal regulates current flow and further demonstrates that rundown and desensitization are governed by distinct mechanisms.
Collapse
Affiliation(s)
- Selvan Bavan
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The pharmacological concept of specifically targeting purinoceptors (receptors for ATP and related nucleotides) has emerged over the last two decades in the quest for novel, differentiated therapeutics. Investigations from many laboratories have established a prominent role for ATP in the functional regulation of most tissue and organ systems, including the urinary tract, under normal and pathophysiological conditions. In the particular case of the urinary tract, ATP signaling via P2X1 receptors participates in the efferent control of detrusor smooth muscle excitability, and this function may be heightened in disease and aging. Perhaps of greater interest, ATP also appears to be involved in bladder sensation, operating via activation of P2X3-containing receptors on sensory afferent neurones, both on peripheral terminals within the urinary tract tissues (e.g., ureters, bladder) and on central synapses in the dorsal horn of the spinal cord. Such findings are based on results from classical pharmacological and localization studies in nonhuman and human tissues, gene knockout mice, and studies using recently identified pharmacological antagonists - some of which have progressed as candidate drug molecules. Based on recent advances in this field, it is apparent that the development of selective antagonists for these receptors will occur that could lead to therapies offering better relief of storage, voiding, and sensory symptoms for patients, while minimizing the systemic side effects that curb the clinical effectiveness of current urologic medicines.
Collapse
|
30
|
Levano-Garcia J, Dluzewski AR, Markus RP, Garcia CRS. Purinergic signalling is involved in the malaria parasite Plasmodium falciparum invasion to red blood cells. Purinergic Signal 2010; 6:365-72. [PMID: 21437007 DOI: 10.1007/s11302-010-9202-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022] Open
Abstract
UNLABELLED Plasmodium falciparum, the most important etiological agent of human malaria, is endowed with a highly complex cell cycle that is essential for its successful replication within the host. A number of evidence suggest that changes in parasite Ca(2+) levels occur during the intracellular cycle of the parasites and play a role in modulating its functions within the RBC. However, the molecular identification of Plasmodium receptors linked with calcium signalling and the causal relationship between Ca(2+) increases and parasite functions are still largely mysterious. We here describe that increases in P. falciparum Ca(2+) levels, induced by extracellular ATP, modulate parasite invasion. In particular, we show that addition of ATP leads to an increase of cytosolic Ca(2+) in trophozoites and segmented schizonts. Addition of the compounds KN62 and Ip5I on parasites blocked the ATP-induced rise in [Ca(2+)](c). Besides, the compounds or hydrolysis of ATP with apyrase added in culture drastically reduce RBC infection by parasites, suggesting strongly a role of extracellular ATP during RBC invasion. The use of purinoceptor antagonists Ip5I and KN62 in this study suggests the presence of putative purinoceptor in P. falciparum. In conclusion, we have demonstrated that increases in [Ca(2+)](c) in the malarial parasite P. falciparum by ATP leads to the modulation of its invasion of red blood cells. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11302-010-9202-y) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Mali B, Grohme MA, Förster F, Dandekar T, Schnölzer M, Reuter D, Wełnicz W, Schill RO, Frohme M. Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer. BMC Genomics 2010; 11:168. [PMID: 20226016 PMCID: PMC2848246 DOI: 10.1186/1471-2164-11-168] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 03/12/2010] [Indexed: 12/17/2022] Open
Abstract
Background The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms. Results We sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade M. tardigradum in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof ~50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of M. tardigradum with ESTs from two other eutardigrade species that are available from public sequence databases, namely Richtersius coronifer and Hypsibius dujardini. The processed sequences of the three tardigrade species revealed similar functional content and the M. tardigradum dataset contained additional sequences from tardigrades not present in the other two. Conclusions This study describes novel sequence data from the tardigrade M. tardigradum, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response.
Collapse
Affiliation(s)
- Brahim Mali
- Molecular Biology and Functional Genomics, University of Applied Sciences Wildau, Bahnhofstrasse 1, 15745 Wildau, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sreedharan S, Shaik JHA, Olszewski PK, Levine AS, Schiöth HB, Fredriksson R. Glutamate, aspartate and nucleotide transporters in the SLC17 family form four main phylogenetic clusters: evolution and tissue expression. BMC Genomics 2010; 11:17. [PMID: 20059771 PMCID: PMC2824716 DOI: 10.1186/1471-2164-11-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 01/08/2010] [Indexed: 11/12/2022] Open
Abstract
Background The SLC17 family of transporters transports the amino acids: glutamate and aspartate, and, as shown recently, also nucleotides. Vesicular glutamate transporters are found in distinct species, such as C. elegans, but the evolutionary origin of most of the genes in this family has been obscure. Results Our phylogenetic analysis shows that the SLC17 family consists of four main phylogenetic clades which were all present before the divergence of the insect lineage. One of these clades has not been previously described and it is not found in vertebrates. The clade containing Slc17a9 had the most restricted evolutionary history with only one member in most species. We detected expression of Slc17a1-17a4 only in the peripheral tissues but not in the CNS, while Slc17a5- Slc17a9 are highly expressed in both the CNS and periphery. Conclusions The in situ hybridization studies on vesicular nucleotide transporter revealed high expression throughout the cerebral cortex, certain areas in the hippocampus and in specific nuclei of the hypothalamus and thalamus. Some of the regions with high expression, such as the medial habenula and the dentate gyrus of the hippocampus, are important sites for purinergic neurotransmission. Noteworthy, other areas relying on purine-mediated signaling, such as the molecular layer of the dentate gyrus and the periaqueductal gray, lack or have a very low expression of Slc17a9, suggesting that there could be another nucleotide transporter in these regions.
Collapse
Affiliation(s)
- Smitha Sreedharan
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Uppsala SE 75124, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
P2X receptors: dawn of the post-structure era. Trends Biochem Sci 2009; 35:83-90. [PMID: 19836961 PMCID: PMC2824114 DOI: 10.1016/j.tibs.2009.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 12/04/2022]
Abstract
P2X receptors are non-selective cation channels gated by extracellular ATP. They play key roles in various physiological processes such as nerve transmission, pain sensation and the response to inflammation, making them attractive drug targets for the treatment of inflammatory pain. The recent report of the three-dimensional (3D) crystal structure of zebrafish P2X4.1 represents a step change in our understanding of these membrane ion channels, where previously only low-resolution structural data and inferences from indirect structure–function studies were available. The purpose of this review is to place previous work within the context of the new 3D structure, and to summarize the key questions and challenges which await P2X researchers as we move into the post-structure era.
Collapse
|
34
|
Ludlow MJ, Durai L, Ennion SJ. Functional characterization of intracellular Dictyostelium discoideum P2X receptors. J Biol Chem 2009; 284:35227-39. [PMID: 19833731 PMCID: PMC2787382 DOI: 10.1074/jbc.m109.045674] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Indicative of cell surface P2X ion channel activation, extracellular ATP evokes a rapid and transient calcium influx in the model eukaryote Dictyostelium discoideum. Five P2X-like proteins (dP2XA-E) are present in this organism. However, their roles in purinergic signaling are unclear, because dP2XA proved to have an intracellular localization on the contractile vacuole where it is thought to be required for osmoregulation. To determine functional properties of the remaining four dP2X-like proteins and to assess their cellular roles, we recorded membrane currents from expressed cloned receptors and generated a quintuple knock-out Dictyostelium strain devoid of dP2X receptors. ATP evoked inward currents at dP2XB and dP2XE receptors but not at dP2XC or dP2XD. beta,gamma-Imido-ATP was more potent than ATP at dP2XB but a weak partial agonist at dP2XE. Currents in dP2XB and dP2XE were strongly inhibited by Na(+) but insensitive to copper and the P2 receptor antagonists pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid and suramin. Unusual for P2X channels, dP2XA and dP2XB were also Cl(-)-permeable. The extracellular purinergic response to ATP persisted in p2xA/B/C/D/E quintuple knock-out Dictyostelium demonstrating that dP2X channels are not responsible. dP2XB, -C, -D, and -E were found to be intracellularly localized to the contractile vacuole with the ligand binding domain facing the lumen. However, quintuple p2xA/B/C/D/E null cells were still capable of regulating cell volume in water demonstrating that, contrary to previous findings, dP2X receptors are not required for osmoregulation. Responses to the calmodulin antagonist calmidazolium, however, were reduced in p2xA/B/C/D/E null cells suggesting that dP2X receptors play a role in intracellular calcium signaling.
Collapse
Affiliation(s)
- Melanie J Ludlow
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | | | |
Collapse
|
35
|
Förster F, Liang C, Shkumatov A, Beisser D, Engelmann JC, Schnölzer M, Frohme M, Müller T, Schill RO, Dandekar T. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades. BMC Genomics 2009; 10:469. [PMID: 19821996 PMCID: PMC2768748 DOI: 10.1186/1471-2164-10-469] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 10/12/2009] [Indexed: 01/28/2023] Open
Abstract
Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.
Collapse
Affiliation(s)
- Frank Förster
- Dept of Bioinformatics, Biocenter University of Würzburg, 97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|