1
|
Shenton M, Kobayashi M, Terashima S, Ohyanagi H, Copetti D, Hernández-Hernández T, Zhang J, Ohmido N, Fujita M, Toyoda A, Ikawa H, Fujiyama A, Furuumi H, Miyabayashi T, Kubo T, Kudrna D, Wing R, Yano K, Nonomura KI, Sato Y, Kurata N. Evolution and Diversity of the Wild Rice Oryza officinalis Complex, across Continents, Genome Types, and Ploidy Levels. Genome Biol Evol 2021; 12:413-428. [PMID: 32125373 PMCID: PMC7531200 DOI: 10.1093/gbe/evaa037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
The Oryza officinalis complex is the largest species group in
Oryza, with more than nine species from four continents, and is a
tertiary gene pool that can be exploited in breeding programs for the improvement of
cultivated rice. Most diploid and tetraploid members of this group have a C genome. Using
a new reference C genome for the diploid species O. officinalis, and
draft genomes for two other C genome diploid species Oryza eichingeri and
Oryza rhizomatis, we examine the influence of transposable elements on
genome structure and provide a detailed phylogeny and evolutionary history of the
Oryza C genomes. The O. officinalis genome is 1.6
times larger than the A genome of cultivated Oryza sativa, mostly due to
proliferation of Gypsy type long-terminal repeat transposable elements,
but overall syntenic relationships are maintained with other Oryza
genomes (A, B, and F). Draft genome assemblies of the two other C genome diploid species,
Oryza eichingeri and Oryza rhizomatis, and short-read
resequencing of a series of other C genome species and accessions reveal that after the
divergence of the C genome progenitor, there was still a substantial degree of variation
within the C genome species through proliferation and loss of both DNA and long-terminal
repeat transposable elements. We provide a detailed phylogeny and evolutionary history of
the Oryza C genomes and a genomic resource for the exploitation of the
Oryza tertiary gene pool.
Collapse
Affiliation(s)
| | | | | | - Hajime Ohyanagi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Dario Copetti
- Arizona Genomics Institute, BIO5 Institute and School of Plant Sciences, University of Arizona.,T.T. Chang Genetic Resources Center, International Rice Research Institute, Los Baños, Philippines
| | | | - Jianwei Zhang
- Arizona Genomics Institute, BIO5 Institute and School of Plant Sciences, University of Arizona
| | - Nobuko Ohmido
- Division of the Living Environment, Kobe University, Japan
| | | | | | | | | | | | | | - Takahiko Kubo
- National Institute of Genetics, Mishima, Japan.,Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - David Kudrna
- Arizona Genomics Institute, BIO5 Institute and School of Plant Sciences, University of Arizona
| | - Rod Wing
- Arizona Genomics Institute, BIO5 Institute and School of Plant Sciences, University of Arizona.,T.T. Chang Genetic Resources Center, International Rice Research Institute, Los Baños, Philippines.,Biological and Environment Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Kentaro Yano
- School of Agriculture, Meiji University, Tokyo, Japan
| | | | - Yutaka Sato
- National Institute of Genetics, Mishima, Japan
| | - Nori Kurata
- National Institute of Genetics, Mishima, Japan
| |
Collapse
|
2
|
Kaur A, Neelam K, Kaur K, Kitazumi A, de Los Reyes BG, Singh K. Novel allelic variation in the Phospholipase D alpha1 gene (OsPLDα1) of wild Oryza species implies to its low expression in rice bran. Sci Rep 2020; 10:6571. [PMID: 32313086 PMCID: PMC7170842 DOI: 10.1038/s41598-020-62649-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/16/2020] [Indexed: 11/25/2022] Open
Abstract
Rice bran, a by-product after milling, is a rich source of phytonutrients like oryzanols, tocopherols, tocotrienols, phytosterols, and dietary fibers. Moreover, exceptional properties of the rice bran oil make it unparalleled to other vegetable oils. However, a lipolytic enzyme Phospholipase D alpha1 (OsPLDα1) causes rancidity and ‘stale flavor’ in the oil, and thus limits the rice bran usage for human consumption. To improve the rice bran quality, sequence based allele mining at OsPLDα1 locus (3.6 Kb) was performed across 48 accessions representing 11 wild Oryza species, 8 accessions of African cultivated rice, and 7 Oryza sativa cultivars. From comparative sequence analysis, 216 SNPs and 30 InDels were detected at the OsPLDα1 locus. Phylogenetic analysis revealed 20 OsPLDα1 cDNA variants which further translated into 12 protein variants. The O. officinalis protein variant, when compared to Nipponbare, showed maximum variability comprising 22 amino acid substitutions and absence of two peptides and two β-sheets. Further, expression profiling indicated significant differences in transcript abundance within as well as between the OsPLDα1 variants. Also, a new OsPLDα1 transcript variant having third exon missing in it, Os01t0172400-06, has been revealed. An O. officinalis accession (IRGC101152) had lowest gene expression which suggests the presence of novel allele, named as OsPLDα1-1a (GenBank accession no. MF966931). The identified novel allele could be further deployed in the breeding programs to overcome rice bran rancidity in elite cultivars.
Collapse
Affiliation(s)
- Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.,School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karminderbir Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ai Kitazumi
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America.,Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Benildo G de Los Reyes
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America.,Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India. .,ICAR- National Bureau of Plant Genetic Resources, New Delhi, India.
| |
Collapse
|
3
|
Kim H, Lee KK, Jeon J, Harris WA, Lee YH. Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed. MICROBIOME 2020; 8:20. [PMID: 32059747 PMCID: PMC7023700 DOI: 10.1186/s40168-020-00805-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/10/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Plant-associated microbiomes, which are shaped by host and environmental factors, support their hosts by providing nutrients and attenuating abiotic and biotic stresses. Although host genetic factors involved in plant growth and immunity are known to shape compositions of microbial communities, the effects of host evolution on microbial communities are not well understood. RESULTS We show evidence that both host speciation and domestication shape seed bacterial and fungal community structures. Genome types of rice contributed to compositional variations of both communities, showing a significant phylosymbiosis with microbial composition. Following the domestication, abundance inequality of bacterial and fungal communities also commonly increased. However, composition of bacterial community was relatively conserved, whereas fungal membership was dramatically changed. These domestication effects were further corroborated when analyzed by a random forest model. With these changes, hub taxa of inter-kingdom networks were also shifted from fungi to bacteria by domestication. Furthermore, maternal inheritance of microbiota was revealed as a major path of microbial transmission across generations. CONCLUSIONS Our findings show that evolutionary processes stochastically affect overall composition of microbial communities, whereas dramatic changes in environments during domestication contribute to assembly of microbiotas in deterministic ways in rice seed. This study further provides new insights on host evolution and microbiome, the starting point of the holobiome of plants, microbial communities, and surrounding environments.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Kiseok Keith Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, Korea
| | - William Anthony Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, Korea.
- Center for Fungal Genetic Resources, Seoul National University, Seoul, 08826, Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
4
|
Potential of Oryza officinalis to augment the cold tolerance genetic mechanisms of Oryza sativa by network complementation. Sci Rep 2018; 8:16346. [PMID: 30397229 PMCID: PMC6218501 DOI: 10.1038/s41598-018-34608-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
Oryza officinalis is an accessible alien donor for genetic improvement of rice. Comparison across a representative panel of Oryza species showed that the wild O. officinalis and cultivated O. sativa ssp. japonica have similar cold tolerance potentials. The possibility that either distinct or similar genetic mechanisms are involved in the low temperature responses of each species was addressed by comparing their transcriptional networks. General similarities were supported by shared transcriptomic signatures indicative of equivalent metabolic, hormonal, and defense status. However, O. officinalis has maintained an elaborate cold-responsive brassinosteroid-regulated BES1-network that appeared to have been fragmented in O. sativa. BES1-network is potentially important for integrating growth-related responses with physiological adjustments and defenses through the protection of photosynthetic machinery and maintenance of stomatal aperture, oxidative defenses, and osmotic adjustment. Equivalent physiological processes are functional in O. sativa but their genetic mechanisms are under the direct control of ABA-dependent, DREB-dependent and/or oxidative-mediated networks uncoupled to BES1. While O. officinalis and O. sativa represent long periods of speciation and domestication, their comparable cold tolerance potentials involve equivalent physiological processes but distinct genetic networks. BES1-network represents a novel attribute of O. officinalis with potential applications in diversifying or complementing other mechanisms in the cultivated germplasm.
Collapse
|
5
|
|
6
|
Sui Y, Li B, Shi J, Chen M. Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta. BMC Genomics 2014; 15:11. [PMID: 24393121 PMCID: PMC3890553 DOI: 10.1186/1471-2164-15-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/30/2013] [Indexed: 11/27/2022] Open
Abstract
Background Polyploid species contribute to Oryza diversity. However, the mechanisms underlying gene and genome evolution in Oryza polyploids remain largely unknown. The allotetraploid Oryza minuta, which is estimated to have formed less than one million years ago, along with its putative diploid progenitors (O. punctata and O. officinalis), are quite suitable for the study of polyploid genome evolution using a comparative genomics approach. Results Here, we performed a comparative study of a large genomic region surrounding the Shattering4 locus in O. minuta, as well as in O. punctata and O. officinalis. Duplicated genomes in O. minuta have maintained the diploid genome organization, except for several structural variations mediated by transposon movement. Tandem duplicated gene clusters are prevalent in the Sh4 region, and segmental duplication followed by random deletion is illustrated to explain the gene gain-and-loss process. Both copies of most duplicated genes still persist in O. minuta. Molecular evolution analysis suggested that these duplicated genes are equally evolved and mostly manipulated by purifying selection. However, cDNA-SSCP analysis revealed that the expression patterns were dramatically altered between duplicated genes: nine of 29 duplicated genes exhibited expression divergence in O. minuta. We further detected one gene silencing event that was attributed to gene structural variation, but most gene silencing could not be related to sequence changes. We identified one case in which DNA methylation differences within promoter regions that were associated with the insertion of one hAT element were probably responsible for gene silencing, suggesting a potential epigenetic gene silencing pathway triggered by TE movement. Conclusions Our study revealed both genetic and epigenetic mechanisms involved in duplicated gene silencing in the allotetraploid O. minuta.
Collapse
Affiliation(s)
| | | | | | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Abstract
BACKGROUND Our understanding of the processes and dynamics of allopolyploid speciation, the long-term consequences of ploidal change, and the genetic and chromosomal changes in new emerged allopolyploids has substantially increased during the past few decades. Yet we remain uncertain about the time since lineage divergence when two taxa are capable of spawning such entities. Indeed, the matter has seemed intractable. Knowledge of the window of opportunity for allopolyploid production is very important because it provides temporal insight into a key evolutionary process, and a temporal reference against which other modes of speciation may be measured. SCOPE This Viewpoint paper reviews and integrates published information on the crossability of herbaceous species and the fertility of their hybrids in relation to species' divergence times. Despite limitations in methodology and sampling, the estimated times to hybrid sterility are somewhat congruent across disparate lineages. Whereas the waiting time for hybrid sterility is roughly 4-5 million years, the waiting time for cross-incompatibility is roughly 8-10 million years, sometimes considerably more. Strict allopolyploids may be formed in the intervening time window. The progenitors of several allopolyploids diverged between 4 and 6 million years before allopolyploid synthesis, as expected. This is the first study to propose a general temporal framework for strict allopolyploidy. This Viewpoint paper hopefully will stimulate interest in studying the tempo of speciation and the tempo of reproductive isolation in general.
Collapse
|
8
|
Affiliation(s)
- Donald A Levin
- Section of Integrative Biology, University of Texas, Austin, TX, 78713, USA
| |
Collapse
|
9
|
Li HJ, Li XH, Xiao JH, Wing RA, Wang SP. Ortholog alleles at Xa3/Xa26 locus confer conserved race-specific resistance against Xanthomonas oryzae in rice. MOLECULAR PLANT 2012; 5:281-90. [PMID: 21930802 PMCID: PMC3261417 DOI: 10.1093/mp/ssr079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/18/2011] [Indexed: 05/19/2023]
Abstract
The rice disease resistance (R) gene Xa3/Xa26 (having also been named Xa3 and Xa26) against Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight disease, belongs to a multiple gene family clustered in chromosome 11 and is from an AA genome rice cultivar (Oryza sativa L.). This family encodes leucine-rich repeat (LRR) receptor kinase-type proteins. Here, we show that the orthologs (alleles) of Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3, from wild Oryza species O. officinalis (CC genome) and O. minuta (BBCC genome), respectively, were also R genes against Xoo. Xa3/Xa26-2 and Xa3/Xa26-3 conferred resistance to 16 of the 18 Xoo strains examined. Comparative sequence analysis of the Xa3/Xa26 families in the two wild Oryza species showed that Xa3/Xa26-3 appeared to have originated from the CC genome of O. minuta. The predicted proteins encoded by Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3 share 91-99% sequence identity and 94-99% sequence similarity. Transgenic plants carrying a single copy of Xa3/Xa26, Xa3/Xa26-2, or Xa3/Xa26-3, in the same genetic background, showed a similar resistance spectrum to a set of Xoo strains, although plants carrying Xa3/Xa26-2 or Xa3/Xa26-3 showed lower resistance levels than the plants carrying Xa3/Xa26. These results suggest that the Xa3/Xa26 locus predates the speciation of A and C genome, which is approximately 7.5 million years ago. Thus, the resistance specificity of this locus has been conserved for a long time.
Collapse
Affiliation(s)
- Hong-Jing Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang-Hua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Hua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Rod A. Wing
- Arizona Genomics Institute, School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Shi-Ping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- To whom correspondence should be addressed. E-mail , tel. 86-27-8728-3009, fax 86-27-8728-7092
| |
Collapse
|
10
|
Ammiraju JSS, Fan C, Yu Y, Song X, Cranston KA, Pontaroli AC, Lu F, Sanyal A, Jiang N, Rambo T, Currie J, Collura K, Talag J, Bennetzen JL, Chen M, Jackson S, Wing RA. Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:430-42. [PMID: 20487382 DOI: 10.1111/j.1365-313x.2010.04251.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Despite knowledge that polyploidy is widespread and a major evolutionary force in flowering plant diversification, detailed comparative molecular studies on polyploidy have been confined to only a few species and families. The genus Oryza is composed of 23 species that are classified into ten distinct 'genome types' (six diploid and four polyploid), and is emerging as a powerful new model system to study polyploidy. Here we report the identification, sequence and comprehensive comparative annotation of eight homoeologous genomes from a single orthologous region (Adh1-Adh2) from four allopolyploid species representing each of the known Oryza genome types (BC, CD, HJ and KL). Detailed comparative phylogenomic analyses of these regions within and across species and ploidy levels provided several insights into the spatio-temporal dynamics of genome organization and evolution of this region in 'natural' polyploids of Oryza. The major findings of this study are that: (i) homoeologous genomic regions within the same nucleus experience both independent and parallel evolution, (ii) differential lineage-specific selection pressures do not occur between polyploids and their diploid progenitors, (iii) there have been no dramatic structural changes relative to the diploid ancestors, (iv) a variation in the molecular evolutionary rate exists between the two genomes in the BC complex species even though the BC and CD polyploid species appear to have arisen <2 million years ago, and (v) there are no clear distinctions in the patterns of genome evolution in the diploid versus polyploid species.
Collapse
Affiliation(s)
- Jetty S S Ammiraju
- Arizona Genomics Institute, School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USABiodiversity Synthesis Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USADepartment of Genetics, University of Georgia, Athens, GA 30602-7223, USAState Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, ChinaDepartment of Agronomy, Purdue University, West Lafayette, IN 47907-2054, USADepartment of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chester M, Leitch AR, Soltis PS, Soltis DE. Review of the Application of Modern Cytogenetic Methods (FISH/GISH) to the Study of Reticulation (Polyploidy/Hybridisation). Genes (Basel) 2010; 1. [PMID: 24710040 PMCID: PMC3954085 DOI: 10.3390/genes1010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The convergence of distinct lineages upon interspecific hybridisation, including when accompanied by increases in ploidy (allopolyploidy), is a driving force in the origin of many plant species. In plant breeding too, both interspecific hybridisation and allopolyploidy are important because they facilitate introgression of alien DNA into breeding lines enabling the introduction of novel characters. Here we review how fluorescence in situ hybridisation (FISH) and genomic in situ hybridisation (GISH) have been applied to: 1) studies of interspecific hybridisation and polyploidy in nature, 2) analyses of phylogenetic relationships between species, 3) genetic mapping and 4) analysis of plant breeding materials. We also review how FISH is poised to take advantage of nextgeneration sequencing (NGS) technologies, helping the rapid characterisation of the repetitive fractions of a genome in natural populations and agricultural plants.
Collapse
Affiliation(s)
- Michael Chester
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary, University of London, UK.
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
12
|
Chester M, Leitch AR, Soltis PS, Soltis DE. Review of the Application of Modern Cytogenetic Methods (FISH/GISH) to the Study of Reticulation (Polyploidy/Hybridisation). Genes (Basel) 2010; 1:166-92. [PMID: 24710040 PMCID: PMC3954085 DOI: 10.3390/genes1020166] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 11/16/2022] Open
Abstract
The convergence of distinct lineages upon interspecific hybridisation, including when accompanied by increases in ploidy (allopolyploidy), is a driving force in the origin of many plant species. In plant breeding too, both interspecific hybridisation and allopolyploidy are important because they facilitate introgression of alien DNA into breeding lines enabling the introduction of novel characters. Here we review how fluorescence in situ hybridisation (FISH) and genomic in situ hybridisation (GISH) have been applied to: 1) studies of interspecific hybridisation and polyploidy in nature, 2) analyses of phylogenetic relationships between species, 3) genetic mapping and 4) analysis of plant breeding materials. We also review how FISH is poised to take advantage of nextgeneration sequencing (NGS) technologies, helping the rapid characterisation of the repetitive fractions of a genome in natural populations and agricultural plants.
Collapse
Affiliation(s)
- Michael Chester
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary, University of London, UK.
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
13
|
Genetic diversity and evolutionary relationships in genus Oryza revealed by using highly variable regions of chloroplast DNA. Gene 2010; 462:44-51. [PMID: 20450965 DOI: 10.1016/j.gene.2010.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/26/2010] [Indexed: 01/29/2023]
Abstract
We studied the phylogeny of the genus Oryza using chloroplast DNA sequences. To identify regions containing sufficient variation for elucidating the relationship of closely related species with fine resolution and high reliability, we first compared the complete chloroplast sequences of Oryza sativa japonica, O. sativa indica, and O. nivara, and identified regions containing many variant sites. Nucleotide sequences of the variant regions were newly determined in 19 Oryza species including 58 cultivated and wild strains. An in silico pre-analysis of the whole chloroplast genome and subsequent nucleotide sequencing of the regions with the greatest number of variant sites, which were disclosed to be hot spots by the in silico pre-analysis, enabled us to examine genetic diversity in the genus Oryza with excellent resolution. Based on phylogenetic trees constructed using highly diverged regions in the chloroplast genome, we discuss the maternal relationships among Oryza species.
Collapse
|