1
|
Yu H, Du X, Chen X, Liu L, Wang X. Transforming growth factor-β (TGF-β): A master signal pathway in teleost sex determination. Gen Comp Endocrinol 2024; 355:114561. [PMID: 38821217 DOI: 10.1016/j.ygcen.2024.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Sex determination and differentiation in fish has always been a hot topic in genetic breeding of aquatic animals. With the advances in next-generation sequencing (NGS) in recent years, sex chromosomes and sex determining genes can be efficiently identified in teleosts. To date, master sex determination genes have been elucidated in 114 species, of which 72 species have sex determination genes belonging to TGF-β superfamily. TGF-β is the only signaling pathway that the largest proportion of components, which including ligands (amhy, gsdfy, gdf6), receptors (amhr, bmpr), and regulator (id2bby), have opportunity recognized as a sex determination gene. In this review, we focus on the recent studies about teleost sex-determination genes within TGF-β superfamily and propose several hypotheses on how these genes regulate sex determination process. Differing from other reviews, our review specifically devotes significant attention to all members of the TGF-β signal pathway, not solely the sex determination genes within the TGF-β superfamily. However, the functions of the paralogous genes of TGF superfamily are still needed ongoing research. Further studies are required to more accurately interpret the molecular mechanism of TGF-β superfamily sex determination genes.
Collapse
Affiliation(s)
- Haiyang Yu
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xinxin Du
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xue Chen
- School of Resource & Environment and Safety Engineering, Jining University, Qufu, Shandong, China
| | - Longxue Liu
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Eintracht J, Owen N, Harding P, Moosajee M. Disruption of common ocular developmental pathways in patient-derived optic vesicle models of microphthalmia. Stem Cell Reports 2024; 19:839-858. [PMID: 38821055 PMCID: PMC11390689 DOI: 10.1016/j.stemcr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Genetic perturbations influencing early eye development can result in microphthalmia, anophthalmia, and coloboma (MAC). Over 100 genes are associated with MAC, but little is known about common disease mechanisms. In this study, we generated induced pluripotent stem cell (iPSC)-derived optic vesicles (OVs) from two unrelated microphthalmia patients and healthy controls. At day 20, 35, and 50, microphthalmia patient OV diameters were significantly smaller, recapitulating the "small eye" phenotype. RNA sequencing (RNA-seq) analysis revealed upregulation of apoptosis-initiating and extracellular matrix (ECM) genes at day 20 and 35. Western blot and immunohistochemistry revealed increased expression of lumican, nidogen, and collagen type IV, suggesting ECM overproduction. Increased apoptosis was observed in microphthalmia OVs with reduced phospho-histone 3 (pH3+) cells confirming decreased cell proliferation at day 35. Pharmacological inhibition of caspase-8 activity with Z-IETD-FMK decreased apoptosis in one patient model, highlighting a potential therapeutic approach. These data reveal shared pathophysiological mechanisms contributing to a microphthalmia phenotype.
Collapse
Affiliation(s)
| | | | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
3
|
Shi Y, Qiu J, Li X, Lin Y, Li W, Hou J, Fu Y. Role of Thyroid Hormone in Dynamic Variation of gdf6a Gene during Metamorphosis of Paralichthys olivaceus. Int J Mol Sci 2023; 25:23. [PMID: 38203198 PMCID: PMC10779056 DOI: 10.3390/ijms25010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
The Japanese flounder (Paralichthys olivaceus) is a marine fish that undergoes a dramatic postembryonic metamorphosis, with the right eye shifting to the left and its lifestyle transitioning from planktonic to benthic. As the light environment of the habitat changes from bright to dim, its photoreceptor system also undergoes adaptive change. Growth differentiation factor 6a (Gdf6a) is a member of the BMP family, which plays a key role in regulating the dorsal-ventral pattern of the retina and photoreceptor fate, and the differentiation of different photoreceptors is also modulated by a thyroid hormone (TH) binding its receptor (TR). However, the relationship between gdf6a and TH and its role in the regulation of photoreceptors during flounder metamorphosis is still poorly understood. In this study, bioinformatics analysis showed that Gdf6a had a conserved TGFB structural domain and clusters with fishes. The expression analysis showed that the expression of gdf6a was highest in the eye tissue of adult flounder and tended to increase and then decrease during metamorphosis, reaching its highest levels at the peak of metamorphosis. Moreover, the expression of gdf6a increased in the early stages of metamorphosis after exogenous TH treatment, while it was inhibited after exogenous thiourea (a TH inhibitor, TU) treatment. To further investigate the targeting role of TH and gdf6a in the metamorphosis of flounder, the results of the Dual-Luciferase revealed that triiodothyronine (T3) may regulate the expression of gdf6a through TRβ. In conclusion, we speculate that TH influences the development of cone photoreceptors during the metamorphosis of the flounder by regulating the expression of gdf6a.
Collapse
Affiliation(s)
- Yaxin Shi
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Junqiang Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xike Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Lin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjuan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
4
|
Werfel L, Martens H, Hennies I, Gjerstad AC, Fröde K, Altarescu G, Banerjee S, Valenzuela Palafoll I, Geffers R, Kirschstein M, Christians A, Bjerre A, Haffner D, Weber RG. Diagnostic Yield and Benefits of Whole Exome Sequencing in CAKUT Patients Diagnosed in the First Thousand Days of Life. Kidney Int Rep 2023; 8:2439-2457. [PMID: 38025229 PMCID: PMC10658255 DOI: 10.1016/j.ekir.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause of chronic kidney disease (CKD) and the need for kidney replacement therapy (KRT) in children. Although more than 60 genes are known to cause CAKUT if mutated, genetic etiology is detected, on average, in only 16% of unselected CAKUT cases, making genetic testing unproductive. Methods Whole exome sequencing (WES) was performed in 100 patients with CAKUT diagnosed in the first 1000 days of life with CKD stages 1 to 5D/T. Variants in 58 established CAKUT-associated genes were extracted, classified according to the American College of Medical Genetics and Genomics guidelines, and their translational value was assessed. Results In 25% of these mostly sporadic patients with CAKUT, a rare likely pathogenic or pathogenic variant was identified in 1 or 2 of 15 CAKUT-associated genes, including GATA3, HNF1B, LIFR, PAX2, SALL1, and TBC1D1. Of the 27 variants detected, 52% were loss-of-function and 18.5% de novo variants. The diagnostic yield was significantly higher in patients requiring KRT before 3 years of age (43%, odds ratio 2.95) and in patients with extrarenal features (41%, odds ratio 3.5) compared with patients lacking these criteria. Considering that all affected genes were previously associated with extrarenal complications, including treatable conditions, such as diabetes, hyperuricemia, hypomagnesemia, and hypoparathyroidism, the genetic diagnosis allowed preventive measures and/or early treatment in 25% of patients. Conclusion WES offers significant advantages for the diagnosis and management of patients with CAKUT diagnosed before 3 years of age, especially in patients who require KRT or have extrarenal anomalies.
Collapse
Affiliation(s)
- Lina Werfel
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ann Christin Gjerstad
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Kerstin Fröde
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Gheona Altarescu
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Anne Christians
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anna Bjerre
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G. Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Yu T, Li G, Wang C, Li N, Yao R, Wang J. Defective Joint Development and Maintenance in GDF6-Related Multiple Synostoses Syndrome. J Bone Miner Res 2023; 38:568-577. [PMID: 36744814 DOI: 10.1002/jbmr.4785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
Multiple synostoses syndromes (SYNS) are a group of rare genetic bone disorders characterized by multiple joint fusions. We previously reported an SYNS4-causing GDF6 c.1330 T > A (p.Tyr444Asn) mutation, which reduced Noggin-induced GDF6 inhibition and enhanced SMAD1/5/8 signaling. However, the mechanisms by which GDF6 gain-of-function mutation alters joint formation and the comprehensive molecular portraits of SYNS4 remain unclear. Herein, we introduce the p.Tyr443Asn (orthologous to the human GDF6 p.Tyr444Asn) mutation into the mouse Gdf6 locus and report the results of extensive phenotype analysis, joint development investigation, and transcriptome profiling of Gdf6 p.Tyr443Asn limb buds. Gdf6 p.Tyr443Asn knock-in mice recapitulated the morphological features of human SYNS4, showing joint fusion in the wrists, ankles, phalanges, and auditory ossicles. Analysis of mouse embryonic forelimbs demonstrated joint interzone formation defects and excess chondrogenesis in Gdf6 p.Tyr443Asn knock-in mice. Further, RNA sequencing of forelimb buds revealed enhanced bone formation and upregulated bone morphogenetic protein (BMP) signaling in mice carrying the Gdf6 p.Tyr443Asn mutation. Because tightly regulated BMP signaling is critical for skeletal development and joint morphogenesis, our study shows that enhancing GDF6 activity has a significant impact on both prenatal joint development and postnatal joint maintenance. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Molecular Characterization of TGF-Beta Gene Family in Buffalo to Identify Gene Duplication and Functional Mutations. Genes (Basel) 2022; 13:genes13081302. [PMID: 35893038 PMCID: PMC9331672 DOI: 10.3390/genes13081302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
The TGF-β superfamily is ubiquitously distributed from invertebrates to vertebrates with diverse cellular functioning such as cell adhesion, motility, proliferation, apoptosis, and differentiation. The present study aimed to characterize the TGF-β gene superfamily in buffalo through evolutionary, structural, and single nucleotide polymorphism (SNPs) analyses to find the functional effect of SNPs in selected genes. We detected 32 TGF-β genes in buffalo genome and all TGF-β proteins exhibited basic nature except INHA, INHBC, MSTN, BMP10, and GDF2, which showed acidic properties. According to aliphatic index, TGF-β proteins were thermostable but unstable in nature. Except for GDF1 and AMH, TGF-β proteins depicted hydrophilic nature. Moreover, all the detected buffalo TGF-β genes showed evolutionary conserved nature. We also identified eight segmental and one tandem duplication event TGF-β gene family in buffalo, and the ratio of Ka/Ks demonstrated that all the duplicated gene pairs were under selective pressure. Comparative amino acid analysis demonstrated higher variation in buffalo TGF-β gene family, as a total of 160 amino acid variations in all the buffalo TGF-β proteins were detected. Mutation analysis revealed that 13 mutations had an overall damaging effect that might have functional consequences on buffalo growth, folliculogenesis, or embryogenesis.
Collapse
|
7
|
Xiao P, Li W, Lu J, Liu Y, Luo Q, Zhang H. Effects of embryonic exposure to bixafen on zebrafish (Danio rerio) retinal development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113007. [PMID: 34808508 DOI: 10.1016/j.ecoenv.2021.113007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Bixafen, a pyrazole-carboxamide fungicide, is a potent toxicant that may elicit multiple adverse effects in non-target organisms. However, knowledge of the mechanisms involved in developmental defects caused by bixafen in aquatic organisms remains limited. In this study, the effects of bixafen on retinal development were evaluated in embryo-larval zebrafish. We exposed zebrafish embryos to 0, 0.1, and 0.3 μM bixafen. Exposure of zebrafish embryos to bixafen caused severe retinal defects, including extreme microphthalmia and a significantly increased cell density of the ganglion cell layer (GCL). Compared with the controls, the expression levels of rod and cone photoreceptor marker genes (rho, opn1sw2, opn1mw1, opn1lw1, and opn1sw1) in the outer nuclear layer (ONL) were significantly downregulated after bixafen exposure. Furthermore, bixafen caused significantly increased expression levels in the GCL marker ath5 and decreased expression levels in the inner nuclear layer (INL) markers prox1a, vsx1, and sox2. Accordingly, we observed a significantly increased rate of cell apoptosis in the retina after bixafen exposure. Taken together, our data demonstrate that bixafen exhibits retinal developmental toxicity to zebrafish embryos/larvae, and thus, it may pose a significant environmental threat to aquatic organisms.
Collapse
Affiliation(s)
- Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Wenhua Li
- School of Biomedical Sciences, Huaqiao University, Xiamen 361021, PR China.
| | - Jinfang Lu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China
| | - Qiulan Luo
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, PR China
| | - He Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| |
Collapse
|
8
|
Wu R, Hu W, Chen H, Wang Y, Li Q, Xiao C, Fan L, Zhong Z, Chen X, Lv K, Zhong S, Shi Y, Chen J, Zhu W, Zhang J, Hu X, Wang J. A Novel Human Long Noncoding RNA SCDAL Promotes Angiogenesis through SNF5-Mediated GDF6 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004629. [PMID: 34319658 PMCID: PMC8456203 DOI: 10.1002/advs.202004629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/23/2021] [Indexed: 06/08/2023]
Abstract
Angiogenesis is essential for vascular development. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating angiogenesis remain under-explored. Human embryonic stem cell-derived mesenchymal stem cells (hES-MSCs) are shown to exert more potent cardioprotective effects against cardiac ischemia than human bone marrow-derived MSCs (hBM-MSCs), associated with enhanced neovascularization. The purpose of this study is to search for angiogenic lncRNAs enriched in hES-MSCs, and investigate their roles and mechanisms. AC103746.1 is one of the most highly expressed intergenic lncRNAs detected in hES-MSCs versus hBM-MSCs, and named as SCDAL (stem cell-derived angiogenic lncRNA). SCDAL knockdown significantly reduce the angiogenic potential and reparative effects of hES-MSCs in the infarcted hearts, while overexpression of SCDAL in either hES-MSCs or hBM-MSCs exhibits augmented angiogenesis and cardiac function recovery. Mechanistically, SCDAL induces growth differentiation factor 6 (GDF6) expression via direct interaction with SNF5 at GDF6 promoter. Secreted GDF6 promotes endothelial angiogenesis via non-canonical vascular endothelial growth factor receptor 2 activation. Furthermore, SCDAL-GDF6 is expressed in human endothelial cells, and directly enhances endothelial angiogenesis in vitro and in vivo. Thus, these findings uncover a previously unknown lncRNA-dependent regulatory circuit for angiogenesis. Targeted intervention of the SCDAL-GDF6 pathway has potential as a therapy for ischemic heart diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Wangxing Hu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Huan Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou310012P. R. China
| | - Yingchao Wang
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Qingju Li
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Changchen Xiao
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Lin Fan
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Zhiwei Zhong
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Xiaoying Chen
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Kaiqi Lv
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Shuhan Zhong
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Yanna Shi
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jinghai Chen
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Wei Zhu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jianyi Zhang
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamSchool of Medicine and School of EngineeringBirminghamAL35294USA
| | - Xinyang Hu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jian'an Wang
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| |
Collapse
|
9
|
Dash S, Brastrom LK, Patel SD, Scott CA, Slusarski DC, Lachke SA. The master transcription factor SOX2, mutated in anophthalmia/microphthalmia, is post-transcriptionally regulated by the conserved RNA-binding protein RBM24 in vertebrate eye development. Hum Mol Genet 2021; 29:591-604. [PMID: 31814023 DOI: 10.1093/hmg/ddz278] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/24/2019] [Accepted: 11/10/2019] [Indexed: 11/14/2022] Open
Abstract
Mutations in the key transcription factor, SOX2, alone account for 20% of anophthalmia (no eye) and microphthalmia (small eye) birth defects in humans-yet its regulation is not well understood, especially on the post-transcription level. We report the unprecedented finding that the conserved RNA-binding motif protein, RBM24, positively controls Sox2 mRNA stability and is necessary for optimal SOX2 mRNA and protein levels in development, perturbation of which causes ocular defects, including microphthalmia and anophthalmia. RNA immunoprecipitation assay indicates that RBM24 protein interacts with Sox2 mRNA in mouse embryonic eye tissue. and electrophoretic mobility shift assay shows that RBM24 directly binds to the Sox2 mRNA 3'UTR, which is dependent on AU-rich elements (ARE) present in the Sox2 mRNA 3'UTR. Further, we demonstrate that Sox2 3'UTR AREs are necessary for RBM24-based elevation of Sox2 mRNA half-life. We find that this novel RBM24-Sox2 regulatory module is essential for early eye development in vertebrates. We show that Rbm24-targeted deletion using a constitutive CMV-driven Cre in mouse, and rbm24a-CRISPR/Cas9-targeted mutation or morpholino knockdown in zebrafish, results in Sox2 downregulation and causes the developmental defects anophthalmia or microphthalmia, similar to human SOX2-deficiency defects. We further show that Rbm24 deficiency leads to apoptotic defects in mouse ocular tissue and downregulation of eye development markers Lhx2, Pax6, Jag1, E-cadherin and gamma-crystallins. These data highlight the exquisite specificity that conserved RNA-binding proteins like RBM24 mediate in the post-transcriptional control of key transcription factors, namely, SOX2, associated with organogenesis and human developmental defects.
Collapse
Affiliation(s)
- Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Lindy K Brastrom
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Shaili D Patel
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - C Anthony Scott
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
10
|
Zhou F, Elzi DJ, Jayabal P, Ma X, Chiu YC, Chen Y, Blackman B, Weintraub ST, Houghton PJ, Shiio Y. GDF6-CD99 Signaling Regulates Src and Ewing Sarcoma Growth. Cell Rep 2021; 33:108332. [PMID: 33147457 PMCID: PMC7688343 DOI: 10.1016/j.celrep.2020.108332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/07/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
We report here that the autocrine signaling mediated by growth and differentiation factor 6 (GDF6), a member of the bone morphogenetic protein (BMP) family of cytokines, maintains Ewing sarcoma growth by preventing Src hyperactivation. Surprisingly, Ewing sarcoma depends on the prodomain, not the BMP domain, of GDF6. We demonstrate that the GDF6 prodomain is a ligand for CD99, a transmembrane protein that has been widely used as a marker of Ewing sarcoma. The binding of the GDF6 prodomain to the CD99 extracellular domain results in recruitment of CSK (C-terminal Src kinase) to the YQKKK motif in the intracellular domain of CD99, inhibiting Src activity. GDF6 silencing causes hyperactivation of Src and p21-dependent growth arrest. We demonstrate that two GDF6 prodomain mutants linked to Klippel-Feil syndrome are hyperactive in CD99-Src signaling. These results reveal a cytokine signaling pathway that regulates the CSK-Src axis and cancer cell proliferation and suggest the gain-of-function activity for disease-causing GDF6 mutants. Ewing sarcoma is driven by the EWS-ETS fusion oncoprotein, but little is known about the extracellular signaling regulating this cancer. Zhou et al. report that the prodomain of GDF6 is a ligand for CD99, inhibiting Src through CSK and maintaining Ewing sarcoma growth in an autocrine fashion.
Collapse
Affiliation(s)
- Fuchun Zhou
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - David J Elzi
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; BioAffinity Technologies, Inc., 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Panneerselvam Jayabal
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yu-Chiao Chiu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Population Health Sciences, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Barron Blackman
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Susan T Weintraub
- Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yuzuru Shiio
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
11
|
Madhangi M, Dutta D, Show S, Bhat VK, Rather MI, Tiwari A, Singh N, Duvvari MR, Murthy GJ, Kumar A, Nongthomba U. Exome sequencing and functional studies in zebrafish identify WDR8 as the causative gene for isolated Microspherophakia in Indian families. Hum Mol Genet 2021; 30:467-484. [PMID: 33693649 DOI: 10.1093/hmg/ddab061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
Isolated Microspherophakia (MSP) is an autosomal recessive disorder characterized by a smaller than normal spherical lens. Till date, LTBP2 is the only gene shown to cause MSP. We used homozygosity mapping and whole-exome sequencing and identified a homozygous mutation, c.1148C > T (p.Pro383Leu), in the WDR8 (or WRAP73) gene in two Indian MSP families. In vitro experiments showed that the missense mutation renders the protein unstable. WDR8 is a centriolar protein that has important roles in centrosomal assembly, spindle pole formation and ciliogenesis. Co-immunoprecipitation experiments from HeLa cells indicated that the mutation interferes with the interaction of WDR8 with its binding partners. In zebrafish, both morpholino-mediated knockdown and CRISPR/Cas knockout of wdr8 resulted in decreased eye and lens size. The lack of wdr8 affected cell cycle progression in the retinal cells, causing a reduction in cell numbers in the retina and lens. The reduction in eye size and the cell cycle defects were rescued by exogenous expression of the human wild-type WDR8. However, the human mutant WDR8 (p.Pro383Leu) was unable to rescue the eye defects, indicating that the missense mutation abrogates WDR8 protein function. Thus, our zebrafish results suggested that WDR8 is the causative gene for MSP in these Indian families.
Collapse
Affiliation(s)
- M Madhangi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Debanjan Dutta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sautan Show
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Vishwanath K Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Mohammad I Rather
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Ankana Tiwari
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Nivedita Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Maheswara R Duvvari
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Gowri J Murthy
- Prabha Eye Clinic and Research Centre, Bangalore 560070, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Yoshida GM, Yáñez JM. Multi-trait GWAS using imputed high-density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia. BMC Genomics 2021; 22:57. [PMID: 33451291 PMCID: PMC7811220 DOI: 10.1186/s12864-020-07341-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background Body traits are generally controlled by several genes in vertebrates (i.e. polygenes), which in turn make them difficult to identify through association mapping. Increasing the power of association studies by combining approaches such as genotype imputation and multi-trait analysis improves the ability to detect quantitative trait loci associated with polygenic traits, such as body traits. Results A multi-trait genome-wide association study (mtGWAS) was performed to identify quantitative trait loci (QTL) and genes associated with body traits in Nile tilapia (Oreochromis niloticus) using genotypes imputed to whole-genome sequences (WGS). To increase the statistical power of mtGWAS for the detection of genetic associations, summary statistics from single-trait genome-wide association studies (stGWAS) for eight different body traits recorded in 1309 animals were used. The mtGWAS increased the statistical power from the original sample size from 13 to 44%, depending on the trait analyzed. The better resolution of the WGS data, combined with the increased power of the mtGWAS approach, allowed the detection of significant markers which were not previously found in the stGWAS. Some of the lead single nucleotide polymorphisms (SNPs) were found within important functional candidate genes previously associated with growth-related traits in other terrestrial species. For instance, we identified SNP within the α1,6-fucosyltransferase (FUT8), solute carrier family 4 member 2 (SLC4A2), A disintegrin and metalloproteinase with thrombospondin motifs 9 (ADAMTS9) and heart development protein with EGF like domains 1 (HEG1) genes, which have been associated with average daily gain in sheep, osteopetrosis in cattle, chest size in goats, and growth and meat quality in sheep, respectively. Conclusions The high-resolution mtGWAS presented here allowed the identification of significant SNPs, linked to strong functional candidate genes, associated with body traits in Nile tilapia. These results provide further insights about the genetic variants and genes underlying body trait variation in cichlid fish with high accuracy and strong statistical support. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07341-z.
Collapse
Affiliation(s)
- Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile. .,Núcleo Milenio INVASAL, Concepción, Chile.
| |
Collapse
|
13
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
14
|
Nadolski NJ, Balay SD, Wong CXL, Waskiewicz AJ, Hocking JC. Abnormal Cone and Rod Photoreceptor Morphogenesis in gdf6a Mutant Zebrafish. Invest Ophthalmol Vis Sci 2020; 61:9. [PMID: 32293666 PMCID: PMC7401959 DOI: 10.1167/iovs.61.4.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Analysis of photoreceptor morphology and gene expression in mispatterned eyes of zebrafish growth differentiation factor 6a (gdf6a) mutants. Methods Rod and cone photoreceptors were compared between gdf6a mutant and control zebrafish from larval to late adult stages using transgenic labels, immunofluorescence, and confocal microscopy, as well as by transmission electron microscopy. To compare transcriptomes between larval gdf6a mutant and control zebrafish, RNA-Seq was performed on isolated eyes. Results Although rod and cone photoreceptors differentiate in gdf6a mutant zebrafish, the cells display aberrant growth and morphology. The cone outer segments, the light-detecting sensory endings, are reduced in size in the mutant larvae and fail to recover to control size at subsequent stages. In contrast, rods form temporarily expanded outer segments. The inner segments, which generate the required energy and proteins for the outer segments, are shortened in both rods and cones at all stages. RNA-Seq analysis provides a set of misregulated genes associated with the observed abnormal photoreceptor morphogenesis. Conclusions GDF6 mutations were previously identified in patients with Leber congenital amaurosis. Here, we reveal a unique photoreceptor phenotype in the gdf6a mutant zebrafish whereby rods and cones undergo abnormal maturation distinct for each cell type. Further, subsequent development shows partial recovery of cell morphology and maintenance of the photoreceptor layer. By conducting a transcriptomic analysis of the gdf6a larval eyes, we identified a collection of genes that are candidate regulators of photoreceptor size and morphology.
Collapse
|
15
|
Yoon KH, Fox SC, Dicipulo R, Lehmann OJ, Waskiewicz AJ. Ocular coloboma: Genetic variants reveal a dynamic model of eye development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:590-610. [PMID: 32852110 DOI: 10.1002/ajmg.c.31831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Ocular coloboma is a congenital disorder of the eye where a gap exists in the inferior retina, lens, iris, or optic nerve tissue. With a prevalence of 2-19 per 100,000 live births, coloboma, and microphthalmia, an associated ocular disorder, represent up to 10% of childhood blindness. It manifests due to the failure of choroid fissure closure during eye development, and it is a part of a spectrum of ocular disorders that include microphthalmia and anophthalmia. Use of genetic approaches from classical pedigree analyses to next generation sequencing has identified more than 40 loci that are associated with the causality of ocular coloboma. As we have expanded studies to include singleton cases, hereditability has been very challenging to prove. As such, researchers over the past 20 years, have unraveled the complex interrelationship amongst these 40 genes using vertebrate model organisms. Such research has greatly increased our understanding of eye development. These genes function to regulate initial specification of the eye field, migration of retinal precursors, patterning of the retina, neural crest cell biology, and activity of head mesoderm. This review will discuss the discovery of loci using patient data, their investigations in animal models, and the recent advances stemming from animal models that shed new light in patient diagnosis.
Collapse
Affiliation(s)
- Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Sabrina C Fox
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Renée Dicipulo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Ordan J Lehmann
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
16
|
Martens H, Hennies I, Getwan M, Christians A, Weiss AC, Brand F, Gjerstad AC, Christians A, Gucev Z, Geffers R, Seeman T, Kispert A, Tasic V, Bjerre A, Lienkamp SS, Haffner D, Weber RG. Rare heterozygous GDF6 variants in patients with renal anomalies. Eur J Hum Genet 2020; 28:1681-1693. [PMID: 32737436 PMCID: PMC7784874 DOI: 10.1038/s41431-020-0678-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/22/2023] Open
Abstract
Although over 50 genes are known to cause renal malformation if mutated, the underlying genetic basis, most easily identified in syndromic cases, remains unsolved in most patients. In search of novel causative genes, whole-exome sequencing in a patient with renal, i.e., crossed fused renal ectopia, and extrarenal, i.e., skeletal, eye, and ear, malformations yielded a rare heterozygous variant in the GDF6 gene encoding growth differentiation factor 6, a member of the BMP family of ligands. Previously, GDF6 variants were reported to cause pleiotropic defects including skeletal, e.g., vertebral, carpal, tarsal fusions, and ocular, e.g., microphthalmia and coloboma, phenotypes. To assess the role of GDF6 in the pathogenesis of renal malformation, we performed targeted sequencing in 193 further patients identifying rare GDF6 variants in two cases with kidney hypodysplasia and extrarenal manifestations. During development, gdf6 was expressed in the pronephric tubule of Xenopus laevis, and Gdf6 expression was observed in the ureteric tree of the murine kidney by RNA in situ hybridization. CRISPR/Cas9-derived knockout of Gdf6 attenuated migration of murine IMCD3 cells, an effect rescued by expression of wild-type but not mutant GDF6, indicating affected variant function regarding a fundamental developmental process. Knockdown of gdf6 in Xenopus laevis resulted in impaired pronephros development. Altogether, we identified rare heterozygous GDF6 variants in 1.6% of all renal anomaly patients and 5.4% of renal anomaly patients additionally manifesting skeletal, ocular, or auricular abnormalities, adding renal hypodysplasia and fusion to the phenotype spectrum of GDF6 variant carriers and suggesting an involvement of GDF6 in nephrogenesis.
Collapse
Affiliation(s)
- Helge Martens
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, 30625, Hannover, Germany
| | - Maike Getwan
- Department of Medicine, Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,Institute of Anatomy and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Anne Christians
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Anna-Carina Weiss
- Institute of Molecular Biology, Hannover Medical School, 30625, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Ann Christin Gjerstad
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Arne Christians
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, 30625, Hannover, Germany
| | - Zoran Gucev
- Medical Faculty Skopje, University Children's Hospital, 1000, Skopje, North Macedonia
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tomáš Seeman
- Department of Paediatrics and Transplantation Center, University Hospital Motol, Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, 30625, Hannover, Germany
| | - Velibor Tasic
- Medical Faculty Skopje, University Children's Hospital, 1000, Skopje, North Macedonia
| | - Anna Bjerre
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,Institute of Anatomy and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, 30625, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
17
|
Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet 2019; 138:799-830. [PMID: 30762128 DOI: 10.1007/s00439-019-01977-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.
Collapse
|
18
|
Gaspar P, Almudi I, Nunes MDS, McGregor AP. Human eye conditions: insights from the fly eye. Hum Genet 2018; 138:973-991. [PMID: 30386938 DOI: 10.1007/s00439-018-1948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster has served as an excellent model to study and understand the genetics of many human diseases from cancer to neurodegeneration. Studying the regulation of growth, determination and differentiation of the compound eyes of this fly, in particular, have provided key insights into a wide range of diseases. Here we review the regulation of the development of fly eyes in light of shared aspects with human eye development. We also show how understanding conserved regulatory pathways in eye development together with the application of tools for genetic screening and functional analyses makes Drosophila a powerful model to diagnose and characterize the genetics underlying many human eye conditions, such as aniridia and retinitis pigmentosa. This further emphasizes the importance and vast potential of basic research to underpin applied research including identifying and treating the genetic basis of human diseases.
Collapse
Affiliation(s)
- Pedro Gaspar
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo, CSIC/ Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013, Sevilla, Spain
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
19
|
Hocking JC, Famulski JK, Yoon KH, Widen SA, Bernstein CS, Koch S, Weiss O, Agarwala S, Inbal A, Lehmann OJ, Waskiewicz AJ. Morphogenetic defects underlie Superior Coloboma, a newly identified closure disorder of the dorsal eye. PLoS Genet 2018. [PMID: 29522511 PMCID: PMC5862500 DOI: 10.1371/journal.pgen.1007246] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eye primordium arises as a lateral outgrowth of the forebrain, with a transient fissure on the inferior side of the optic cup providing an entry point for developing blood vessels. Incomplete closure of the inferior ocular fissure results in coloboma, a disease characterized by gaps in the inferior eye and recognized as a significant cause of pediatric blindness. Here, we identify eight patients with defects in tissues of the superior eye, a congenital disorder that we term superior coloboma. The embryonic origin of superior coloboma could not be explained by conventional models of eye development, leading us to reanalyze morphogenesis of the dorsal eye. Our studies revealed the presence of the superior ocular sulcus (SOS), a transient division of the dorsal eye conserved across fish, chick, and mouse. Exome sequencing of superior coloboma patients identified rare variants in a Bone Morphogenetic Protein (Bmp) receptor (BMPR1A) and T-box transcription factor (TBX2). Consistent with this, we find sulcus closure defects in zebrafish lacking Bmp signaling or Tbx2b. In addition, loss of dorsal ocular Bmp is rescued by concomitant suppression of the ventral-specific Hedgehog pathway, arguing that sulcus closure is dependent on dorsal-ventral eye patterning cues. The superior ocular sulcus acts as a conduit for blood vessels, with altered sulcus closure resulting in inappropriate connections between the hyaloid and superficial vascular systems. Together, our findings explain the existence of superior coloboma, a congenital ocular anomaly resulting from aberrant morphogenesis of a developmental structure. Ocular coloboma is a disease characterized by gaps in the lower portion of the eye and can affect the iris, lens, or retina, and cause loss of vision. Coloboma arises from incomplete closure of a transient fissure on the underside of the developing eye. Therefore, our identification of patients with similar tissue defects, but restricted to the superior half of eye, was surprising. Here, we describe an ocular developmental structure, the superior ocular sulcus, as a potential origin for the congenital disorder superior coloboma. Formation and closure of the sulcus are directed by dorsal-ventral eye patterning, and altered patterning interferes with the role of the sulcus as a pathway for blood vessel growth onto the eye.
Collapse
Affiliation(s)
- Jennifer C Hocking
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | - Jakub K Famulski
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Biology, University of Kentucky, Lexington, Unites States of America
| | - Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Sonya A Widen
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Cassidy S Bernstein
- Department of Molecular Biosciences, University of Texas at Austin,Unites States of America
| | - Sophie Koch
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Omri Weiss
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Seema Agarwala
- Department of Molecular Biosciences, University of Texas at Austin,Unites States of America.,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Unites States of America.,Institute for Neuroscience, University of Texas at Austin, Austin, Unites States of America
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ordan J Lehmann
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Research Institute, University of Alberta, Edmonton, Canada
| | - Andrew J Waskiewicz
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
20
|
Krispin S, Stratman AN, Melick CH, Stan RV, Malinverno M, Gleklen J, Castranova D, Dejana E, Weinstein BM. Growth Differentiation Factor 6 Promotes Vascular Stability by Restraining Vascular Endothelial Growth Factor Signaling. Arterioscler Thromb Vasc Biol 2017; 38:353-362. [PMID: 29284606 DOI: 10.1161/atvbaha.117.309571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The assembly of a functional vascular system requires a coordinated and dynamic transition from activation to maturation. High vascular endothelial growth factor activity promotes activation, including junction destabilization and cell motility. Maturation involves junctional stabilization and formation of a functional endothelial barrier. The identity and mechanism of action of prostabilization signals are still mostly unknown. Bone morphogenetic protein receptors and their ligands have important functions during embryonic vessel assembly and maturation. Previous work has suggested a role for growth differentiation factor 6 (GDF6; bone morphogenetic protein 13) in vascular integrity although GDF6's mechanism of action was not clear. Therefore, we sought to further explore the requirement for GDF6 in vascular stabilization. APPROACH AND RESULTS We investigated the role of GDF6 in promoting endothelial vascular integrity in vivo in zebrafish and in cultured human umbilical vein endothelial cells in vitro. We report that GDF6 promotes vascular integrity by counteracting vascular endothelial growth factor activity. GDF6-deficient endothelium has increased vascular endothelial growth factor signaling, increased vascular endothelial-cadherin Y658 phosphorylation, vascular endothelial-cadherin delocalization from cell-cell interfaces, and weakened endothelial cell adherence junctions that become prone to vascular leak. CONCLUSIONS Our results suggest that GDF6 promotes vascular stabilization by restraining vascular endothelial growth factor signaling. Understanding how GDF6 affects vascular integrity may help to provide insights into hemorrhage and associated vascular pathologies in humans.
Collapse
Affiliation(s)
- Shlomo Krispin
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Amber N Stratman
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Chase H Melick
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Radu V Stan
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Matteo Malinverno
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Jamie Gleklen
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Daniel Castranova
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Elisabetta Dejana
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Brant M Weinstein
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.).
| |
Collapse
|
21
|
Terhal PA, Verbeek NE, Knoers N, Nievelstein RJAJ, van den Ouweland A, Sakkers RJ, Speleman L, van Haaften G. Further delineation of the GDF6 related multiple synostoses syndrome. Am J Med Genet A 2017; 176:225-229. [DOI: 10.1002/ajmg.a.38503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/16/2017] [Accepted: 09/24/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Paulien A. Terhal
- Department of Genetics; University Medical Center Utrecht; Utrecht Netherlands
- Center for Molecular Medicine; University Medical Center Utrecht; Utrecht Netherlands
| | - Nienke E. Verbeek
- Department of Genetics; University Medical Center Utrecht; Utrecht Netherlands
- Center for Molecular Medicine; University Medical Center Utrecht; Utrecht Netherlands
| | - Nine Knoers
- Department of Genetics; University Medical Center Utrecht; Utrecht Netherlands
- Center for Molecular Medicine; University Medical Center Utrecht; Utrecht Netherlands
| | | | | | - Ralph J. Sakkers
- Department of Orthopaedic Surgery; University Medical Center Utrecht; Utrecht Netherlands
| | - Lucienne Speleman
- Department of Otorhinolaryngology; University Medical Center Utrecht; Utrecht Netherlands
| | - Gijs van Haaften
- Department of Genetics; University Medical Center Utrecht; Utrecht Netherlands
- Center for Molecular Medicine; University Medical Center Utrecht; Utrecht Netherlands
| |
Collapse
|
22
|
Bardakjian T, Krall M, Wu D, Lao R, Tang PLF, Wan E, Kopinsky S, Schneider A, Kwok PY, Slavotinek A. A recurrent, non-penetrant sequence variant, p.Arg266Cys in Growth/Differentiation Factor 3 ( GDF3) in a female with unilateral anophthalmia and skeletal anomalies. Am J Ophthalmol Case Rep 2017; 7:102-106. [PMID: 29260090 PMCID: PMC5722175 DOI: 10.1016/j.ajoc.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 01/08/2023] Open
Abstract
Purpose The genetic causes of anophthalmia, microphthalmia and coloboma remain poorly understood. Missense mutations in Growth/Differentiation Factor 3 (GDF3) gene have previously been reported in patients with microphthalmia, iridial and retinal colobomas, Klippel-Feil anomaly with vertebral fusion, scoliosis, rudimentary 12th ribs and an anomalous right temporal bone. We used whole exome sequencing with a trio approach to study a female with unilateral anophthalmia, kyphoscoliosis and additional skeletal anomalies. Observations Exome sequencing revealed that the proposita was heterozygous for c.796C > T, predicting p.Arg266Cys, in GDF3. Sanger sequencing confirmed the mutation and showed that the unaffected mother was heterozygous for the same missense substitution. Conclusions and importance Although transfection studies with the p.Arg266Cys mutation have shown that this amino acid substitution is likely to impair function, non-penetrance for the ocular defects was apparent in this family and has been observed in other families with sequence variants in GDF3. We conclude p.Arg266Cys and other GDF3 mutations can be non-penetrant, making pathogenicity more difficult to establish when sequence variants in this gene are present in patients with structural eye defects.
Collapse
Affiliation(s)
- Tanya Bardakjian
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Max Krall
- Dept. of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Di Wu
- Dept. of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Richard Lao
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Paul Ling-Fung Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Eunice Wan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Sarina Kopinsky
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Adele Schneider
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anne Slavotinek
- Dept. of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Richardson R, Tracey-White D, Webster A, Moosajee M. The zebrafish eye-a paradigm for investigating human ocular genetics. Eye (Lond) 2016; 31:68-86. [PMID: 27612182 DOI: 10.1038/eye.2016.198] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future.
Collapse
Affiliation(s)
- R Richardson
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Tracey-White
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - A Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - M Moosajee
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
24
|
Valdivia LE, Lamb DB, Horner W, Wierzbicki C, Tafessu A, Williams AM, Gestri G, Krasnow AM, Vleeshouwer-Neumann TS, Givens M, Young RM, Lawrence LM, Stickney HL, Hawkins TA, Schwarz QP, Cavodeassi F, Wilson SW, Cerveny KL. Antagonism between Gdf6a and retinoic acid pathways controls timing of retinal neurogenesis and growth of the eye in zebrafish. Development 2016; 143:1087-98. [PMID: 26893342 PMCID: PMC4852494 DOI: 10.1242/dev.130922] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye. Summary: In the vertebrate eye, dorsally expressed Gdf6a limits RA pathway activity to control the transition from proliferation to differentiation, thereby regulating eye size.
Collapse
Affiliation(s)
- Leonardo E Valdivia
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Dayna B Lamb
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Wilson Horner
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Claudia Wierzbicki
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Amanuel Tafessu
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Audrey M Williams
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Gaia Gestri
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Anna M Krasnow
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | | | - McKenzie Givens
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Rodrigo M Young
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Lisa M Lawrence
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Heather L Stickney
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Quenten P Schwarz
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Kara L Cerveny
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| |
Collapse
|
25
|
Reis LM, Semina EV. Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma. ACTA ACUST UNITED AC 2015; 105:96-113. [PMID: 26046913 DOI: 10.1002/bdrc.21097] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia, and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors, confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and finally, provide an avenue for the development and testing of therapeutic interventions.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
26
|
Ji Y, Zhang X, Wu K, Su Y, Li M, Zuo C, Wen F. Association of rs6982567 near GDF6 with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in a Han Chinese cohort. BMC Ophthalmol 2014; 14:140. [PMID: 25416513 PMCID: PMC4251681 DOI: 10.1186/1471-2415-14-140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/11/2014] [Indexed: 11/30/2022] Open
Abstract
Background Growth differentiation factor 6 (GDF6) has been reported to be a novel disease gene for age-related macular degeneration (AMD) in Caucasians. This study aimed to investigate whether rs6982567 was associated with neovascular AMD (nAMD) or polypoidal choroidal vasculopathy (PCV) in a Han Chinese cohort. Methods A total of 612 participants (251 PCV patients, 157 nAMD patients and 204 controls) were included in this study. The SNaPshot system was used to genotype the rs6982567. PLINK software was used to evaluate the genotypes and allele frequencies of patients and controls. Results The allele frequencies of rs6982567 were not significantly associated with nAMD, PCV or PCV and nAMD combined. Subjects with the TT genotype had a 2.42-fold greater risk of PCV (95% confidence interval, 1.07-5.43, p = 0.0290) than subjects with CC genotype. A recessive model of rs6982567 was statistically significantly associated with PCV (odds ratio, 2.29; 95% confidence interval, 1.04-5.05; p = 0.0351). However, the association did not withstand stringent Bonferroni correction. There were no significant differences in genotype distributions or models in nAMD. Conclusions There was a possible weak association between the rs6982567 near GDF6 and PCV in this replication study with an independent Han Chinese cohort. A complete survey of the GDF6 locus with a larger sample size is needed in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou 510060, China.
| |
Collapse
|
27
|
Williamson KA, FitzPatrick DR. The genetic architecture of microphthalmia, anophthalmia and coloboma. Eur J Med Genet 2014; 57:369-80. [PMID: 24859618 DOI: 10.1016/j.ejmg.2014.05.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
Microphthalmia, anophthalmia and coloboma (MAC) are distinct phenotypes that represent a continuum of structural developmental eye defects. In severe bilateral cases (anophthalmia or severe microphthalmia) the genetic cause is now identifiable in approximately 80 percent of cases, with de novo heterozygous loss-of-function mutations in SOX2 or OTX2 being the most common. The genetic cause of other forms of MAC, in particular isolated coloboma, remains unknown in the majority of cases. This review will focus on MAC phenotypes that are associated with mutation of the genes SOX2, OTX2, PAX6, STRA6, ALDH1A3, RARB, VSX2, RAX, FOXE3, BMP4, BMP7, GDF3, GDF6, ABCB6, ATOH7, C12orf57, TENM3 (ODZ3), and VAX1. Recently reported mutation of the SALL2 and YAP1 genes are discussed in brief. Clinical and genetic features were reviewed in a total of 283 unrelated MAC cases or families that were mutation-positive from these 20 genes. Both the relative frequency of mutations in MAC cohort screens and the level of confidence in the assignment of disease-causing status were evaluated for each gene.
Collapse
Affiliation(s)
- Kathleen A Williamson
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David R FitzPatrick
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
28
|
gdf6a is required for cone photoreceptor subtype differentiation and for the actions of tbx2b in determining rod versus cone photoreceptor fate. PLoS One 2014; 9:e92991. [PMID: 24681822 PMCID: PMC3969374 DOI: 10.1371/journal.pone.0092991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/27/2014] [Indexed: 12/17/2022] Open
Abstract
Functional vision restoration is within reach via stem cell therapy, but one of the largest obstacles is the derivation of colour-sensitive cone photoreceptors that are required for high-acuity daytime vision. To enhance progress made using nocturnal murine models, we instead utilize cone-rich zebrafish and herein investigate relationships between gdf6a and tbx2b in cone photoreceptor development. Growth/differentiation factor 6a (gdf6a), a bone morphogenetic protein family ligand, is an emerging factor in photoreceptor degenerative diseases. The T-box transcription factor tbx2b is required to specify UV cone photoreceptor fate instead of rod photoreceptor fate. Interactions between these factors in cone development would be unanticipated, considering the discrete phenotypes in their respective mutants. However, gdf6a positively modulates the abundance of tbx2b transcript during early eye morphogenesis, and we extended this conclusion to later stages of retinal development comprising the times when photoreceptors differentiate. Despite this, gdf6a-/- larvae possess a normal relative number of UV cones and instead present with a low abundance of blue cone photoreceptors, approximately half that of siblings (p<0.001), supporting a differential role for gdf6a amongst the spectral subtypes of cone photoreceptors. Further, gdf6a-/- larvae from breeding of compound heterozygous gdf6a+/-;tbx2b+/- mutants exhibit the recessive lots-of-rods phenotype (which also shows a paucity of UV cones) at significantly elevated rates (44% or 48% for each of two tbx2b alleles, χ2 p≤0.007 for each compared to expected Mendelian 25%). Thus the gdf6a-/- background sensitizes fish such that the recessive lots-of-rods phenotype can appear in heterozygous tbx2b+/- fish. Overall, this work establishes a novel link between tbx2b and gdf6a in determining photoreceptor fates, defining the nexus of an intricate pathway influencing the abundance of cone spectral subtypes and specifying rod vs. cone photoreceptors. Understanding this interaction is a necessary step in the refinement of stem cell-based restoration of daytime vision in humans.
Collapse
|
29
|
Cartilage derived morphogenetic protein 2 – A potential therapy for intervertebral disc regeneration? Biologicals 2014; 42:65-73. [DOI: 10.1016/j.biologicals.2013.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 12/11/2022] Open
|
30
|
Markunas CA, Soldano K, Dunlap K, Cope H, Asiimwe E, Stajich J, Enterline D, Grant G, Fuchs H, Gregory SG, Ashley-Koch AE. Stratified whole genome linkage analysis of Chiari type I malformation implicates known Klippel-Feil syndrome genes as putative disease candidates. PLoS One 2013; 8:e61521. [PMID: 23620759 PMCID: PMC3631233 DOI: 10.1371/journal.pone.0061521] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/11/2013] [Indexed: 01/08/2023] Open
Abstract
Chiari Type I Malformation (CMI) is characterized by displacement of the cerebellar tonsils below the base of the skull, resulting in significant neurologic morbidity. Although multiple lines of evidence support a genetic contribution to disease, no genes have been identified. We therefore conducted the largest whole genome linkage screen to date using 367 individuals from 66 families with at least two individuals presenting with nonsyndromic CMI with or without syringomyelia. Initial findings across all 66 families showed minimal evidence for linkage due to suspected genetic heterogeneity. In order to improve power to localize susceptibility genes, stratified linkage analyses were performed using clinical criteria to differentiate families based on etiologic factors. Families were stratified on the presence or absence of clinical features associated with connective tissue disorders (CTDs) since CMI and CTDs frequently co-occur and it has been proposed that CMI patients with CTDs represent a distinct class of patients with a different underlying disease mechanism. Stratified linkage analyses resulted in a marked increase in evidence of linkage to multiple genomic regions consistent with reduced genetic heterogeneity. Of particular interest were two regions (Chr8, Max LOD = 3.04; Chr12, Max LOD = 2.09) identified within the subset of "CTD-negative" families, both of which harbor growth differentiation factors (GDF6, GDF3) implicated in the development of Klippel-Feil syndrome (KFS). Interestingly, roughly 3-5% of CMI patients are diagnosed with KFS. In order to investigate the possibility that CMI and KFS are allelic, GDF3 and GDF6 were sequenced leading to the identification of a previously known KFS missense mutation and potential regulatory variants in GDF6. This study has demonstrated the value of reducing genetic heterogeneity by clinical stratification implicating several convincing biological candidates and further supporting the hypothesis that multiple, distinct mechanisms are responsible for CMI.
Collapse
Affiliation(s)
- Christina A. Markunas
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Karen Soldano
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kaitlyn Dunlap
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Heidi Cope
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Edgar Asiimwe
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jeffrey Stajich
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David Enterline
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gerald Grant
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Herbert Fuchs
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Simon G. Gregory
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Allison E. Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
31
|
Bond AM, Bhalala OG, Kessler JA. The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation. Dev Neurobiol 2012; 72:1068-84. [PMID: 22489086 DOI: 10.1002/dneu.22022] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bone morphogenetic proteins (BMPs) are a group of powerful morphogens that are critical for development of the nervous system. The effects of BMP signaling on neural stem cells are myriad and dynamic, changing with each stage of development. During early development inhibition of BMP signaling differentiates neuroectoderm from ectoderm, and BMP signaling helps to specify neural crest. Thus modulation of BMP signaling underlies formation of both the central and peripheral nervous systems. BMPs secreted from dorsal structures then form a gradient which helps pattern the dorsal-ventral axis of the developing spinal cord and brain. During forebrain development BMPs sequentially induce neurogenesis and then astrogliogenesis and participate in neurite outgrowth from immature neurons. BMP signaling also plays a critical role in maintaining adult neural stem cell niches in the subventricular zone (SVZ) and subgranular zone (SGZ). BMPs are able to exert such diverse effects through closely regulated temporospatial expression and interaction with other signaling pathways.
Collapse
Affiliation(s)
- Allison M Bond
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|
32
|
Clendenning DE, Mortlock DP. The BMP ligand Gdf6 prevents differentiation of coronal suture mesenchyme in early cranial development. PLoS One 2012; 7:e36789. [PMID: 22693558 PMCID: PMC3365063 DOI: 10.1371/journal.pone.0036789] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/13/2012] [Indexed: 01/28/2023] Open
Abstract
Growth Differentiation Factor-6 (Gdf6) is a member of the Bone Morphogenetic Protein (BMP) family of secreted signaling molecules. Previous studies have shown that Gdf6 plays a role in formation of a diverse subset of skeletal joints. In mice, loss of Gdf6 results in fusion of the coronal suture, the intramembranous joint that separates the frontal and parietal bones. Although the role of GDFs in the development of cartilaginous limb joints has been studied, limb joints are developmentally quite distinct from cranial sutures and how Gdf6 controls suture formation has remained unclear. In this study we show that coronal suture fusion in the Gdf6-/- mouse is due to accelerated differentiation of suture mesenchyme, prior to the onset of calvarial ossification. Gdf6 is expressed in the mouse frontal bone primordia from embryonic day (E) 10.5 through 12.5. In the Gdf6-/- embryo, the coronal suture fuses prematurely and concurrently with the initiation of osteogenesis in the cranial bones. Alkaline phosphatase (ALP) activity and Runx2 expression assays both showed that the suture width is reduced in Gdf6+/- embryos and is completely absent in Gdf6-/- embryos by E12.5. ALP activity is also increased in the suture mesenchyme of Gdf6+/- embryos compared to wild-type. This suggests Gdf6 delays differentiation of the mesenchyme occupying the suture, prior to the onset of ossification. Therefore, although BMPs are known to promote bone formation, Gdf6 plays an inhibitory role to prevent the osteogenic differentiation of the coronal suture mesenchyme.
Collapse
Affiliation(s)
- Dawn E. Clendenning
- Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Douglas P. Mortlock
- Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The introduction of hydrogel socket and orbital expanders has modified the approach towards the rehabilitation of congenital anophthalmia. This study highlights the most recent advances for the treatment of congenital anophthalmia based on personal experience and the review of recent literature. RECENT FINDINGS Hydrogel socket expanders may be positioned as an out-patient procedure with topical anaesthesia, using cyanoacrylate glue as opposed to temporary tarsorraphy. Increased orbital volume has been confirmed by computed tomography (CT) scan or magnetic resonance imaging (MRI) following early dermis-fat graft in children with congenital anophthalmia. An orbital tissue expander made of an inflatable silicone globe sliding on a titanium T-plate and secured to the lateral orbital rim appears to be effective to stimulate orbital bone growth and development. SUMMARY Congenital anophthalmia has a complex cause with both genetic and environmental factors involved. The ideal treatment is simultaneous expansion of the eyelids, socket and orbital bones, and it should begin after birth as soon as possible. Socket expansion with self-inflating expanders is a useful technique, although custom-made conformers may produce similar results. Dermis-fat grafts are another reasonable option as an orbital implant, following adequate lid and socket expansion.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To summarize recent breakthroughs regarding the genes known to play a role in normal ocular development in humans and to elucidate the role mutations in these genes play in anophthalmia and microphthalmia. RECENT FINDINGS The main themes discussed within this article are the various documented genetic advances in identifying the various causes of anophthalmia and microphthalmia. In addition, the complex interplay of these genes during critical embryonic development will be addressed. SUMMARY The recent identification of many eye development genes has changed the ability to identify a cause of anophthalmia and microphthalmia in many individuals. Syndrome identification and the availability of genetic testing underscores the desirability of evaluation by a geneticist for all individuals with anophthalmia and microphthalmia in order to provide appropriate management, long-term guidance, and genetic counseling.
Collapse
|
35
|
Slavotinek AM. Eye development genes and known syndromes. Mol Genet Metab 2011; 104:448-56. [PMID: 22005280 PMCID: PMC3224152 DOI: 10.1016/j.ymgme.2011.09.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 11/22/2022]
Abstract
Anophthalmia and microphthalmia (A/M) are significant eye defects because they can have profound effects on visual acuity. A/M is associated with non-ocular abnormalities in an estimated 33-95% of cases and around 25% of patients have an underlying genetic syndrome that is diagnosable. Syndrome recognition is important for targeted molecular genetic testing, prognosis and for counseling regarding recurrence risks. This review provides clinical and molecular information for several of the commonest syndromes associated with A/M: Anophthalmia-Esophageal-Genital syndrome, caused by SOX2 mutations, Anophthalmia and pituitary abnormalities caused by OTX2 mutations, Matthew-Wood syndrome caused by STRA6 mutations, oculofaciocardiodental syndrome and Lenz microphthalmia caused by BCOR mutations, Microphthalmia Linear Skin pigmentation syndrome caused by HCCS mutations, Anophthalmia, pituitary abnormalities, polysyndactyly caused by BMP4 mutations and Waardenburg anophthalmia caused by mutations in SMOC1. In addition, we briefly discuss the ocular and extraocular phenotypes associated with several other important eye developmental genes, including GDF6, VSX2, RAX, SHH, SIX6 and PAX6.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, CA 94143-0748, USA.
| |
Collapse
|
36
|
Corbo CP, Othman NA, Gutkin MC, Alonso ADC, Fulop ZL. Use of different morphological techniques to analyze the cellular composition of the adult zebrafish optic tectum. Microsc Res Tech 2011; 75:325-33. [PMID: 21823204 DOI: 10.1002/jemt.21061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/13/2011] [Indexed: 11/11/2022]
Abstract
Cellular composition of the adult zebrafish (Danio rerio) optic tectal cortex was examined in this study. Morphological techniques such as 1 μm thick serial plastic sections stained with osmium tetroxide and toluidine blue, modified rapid Golgi silver impregnation, GFAP immunohistochemistry, confocal microscopy, as well as scanning and transmission electron microscopy were used. Neuronal and glial components are described and the layers of the cortex are revisited. Specific neuronal arrangements as well as unique glial/ependymal cells are described. A three dimensional rendering of the astrocytic fiber arrangement in the marginal zone is presented and a composite drawing summarizes the cellular composition of the optic tectum.
Collapse
Affiliation(s)
- Christopher P Corbo
- Laboratory for Developmental Brain Research and Neuroplasticity, Department of Biological Sciences, Wagner College, Staten Island, New York 10301, USA
| | | | | | | | | |
Collapse
|