1
|
Yu Q, Hu J, Hu X, Zhou Y, Wang F, Jiang S, Wang Y. Demographic patterns of two related desert shrubs with overlapping distributions in response to past climate changes. FRONTIERS IN PLANT SCIENCE 2024; 15:1345624. [PMID: 38450397 PMCID: PMC10915042 DOI: 10.3389/fpls.2024.1345624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Numerous studies have revealed that past geological events and climatic fluctuations had profoundly affected the genetic structure and demographic patterns of species. However, related species with overlapping ranges may have responded to such environmental changes in different ways. In this study, we compared the genetic structure and population dynamics of two typical desert shrubs with overlapping distributions in northern China, Nitraria tangutorum and Nitraria sphaerocarpa, based on chloroplast DNA (cpDNA) variations and species distribution models. We sequenced two cpDNA fragments (trnH-trnA and atpH-atpI) in 633 individuals sampled from 52 natural populations. Twenty-four chlorotypes, including eight rare chlorotypes, were identified, and a single dominant haplotype (H4) widely occurred in the entire geographical ranges of the two species. There were also a few distinctive chlorotypes fixed in different geographical regions. Population structure analyses suggested that the two species had significantly different levels of total genetic diversity and interpopulation differentiation, which was highly likely correlated with the special habitat preferences of the two species. A clear phylogeographic structure was identified to exist among populations of N. sphaerocarpa, but not exist for N. tangutorum. The neutral tests, together with the distribution of pairwise differences revealed that N. tangutorum experienced a sudden demographic expansion, and its expansion approximately occurred between 21 and 7 Kya before present, while a rapid range expansion was not identified for N. sphaerocarpa. The ecological niche modeling (ENM) analysis indicated that the potential ranges of two species apparently fluctuated during the past and present periods, with obvious contraction in the Last Glacial Maximum (LGM) and recolonization in the present, respectively, comparing to the Last Interglacial (LIG). These findings suggest that the two species extensively occurred in the Northwest of China before the Quaternary, and the current populations of them originated from a few separated glacial refugia following their habitat fragmentation in the Quarternary. Our results provide new insights on the impact of past geological and climatic fluctuations on the population dynamics of desert plants in northwestern China, and further enforce the hypothesis that there were several independent glacial refugia for these species during the Quaternary glaciations.
Collapse
Affiliation(s)
- Qiushi Yu
- Xinglongshan Forest Ecosystem National Positioning Observation and Research Station, Gansu Research Academy of Forestry Science and Technology, Lanzhou, China
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou, China
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, China
| | - Jing Hu
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou, China
| | - Xiaoke Hu
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou, China
| | - Yongfeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fanglin Wang
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou, China
| | - Shengxiu Jiang
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou, China
| | - Yuqi Wang
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou, China
| |
Collapse
|
2
|
Yang Y, Jia Y, Zhao Y, Wang Y, Zhou T. Comparative chloroplast genomics provides insights into the genealogical relationships of endangered Tetraena mongolica and the chloroplast genome evolution of related Zygophyllaceae species. Front Genet 2022; 13:1026919. [PMID: 36568371 PMCID: PMC9773207 DOI: 10.3389/fgene.2022.1026919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
A comprehensive understanding of genetic background for rare species will provide an important theoretical basis for the future species management, monitoring and conservation. Tetraena mongolica is restrictedly distributed in the western Ordos plateau of China and has been listed as a national protected plant. We generated 13 chloroplast (cp) genomes of T. mongolica (size range of 106,062-106,230 bp) and conducted a series of comparative analyses of six Zygophyllaceae cp genomes. T. mongolica cp genome exhibited a quadripartite structure with drastically reduced inverted repeats (IRs, 4,315 bp) and undergone the loss of a suit of ndh genes and a copy of rRNAs. Furthermore, all the T. mongolica populations were divided into two genetic groups based on complete cp phylogenomics. In addition, notably variable genome size, gene order and structural changes had been observed among the six Zygophyllaceae cp genomes. Overall, our findings provide insights into the cp genome evolution mode and intraspecific relationships of T. mongolica, and provide a molecular basis for scientific conservation of this endangered plant.
Collapse
Affiliation(s)
- Yanci Yang
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, China
| | - Yun Jia
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, Shaanxi, China
| | - Yanling Zhao
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, China
| | - Yonglong Wang
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, China
| | - Tao Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Kim C, Kim DK, Sun H, Kim JH. Phylogenetic relationship, biogeography, and conservation genetics of endangered Fraxinus chiisanensis (Oleaceae), endemic to South Korea. PLANT DIVERSITY 2022; 44:170-180. [PMID: 35505990 PMCID: PMC9043305 DOI: 10.1016/j.pld.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/03/2021] [Accepted: 06/13/2021] [Indexed: 06/14/2023]
Abstract
Endemic plants are important for understanding phylogenetic relationships, biogeographical history, and genetic variation because of their restricted distribution and their role in conserving biodiversity. Here, we investigated the phylogenetic relationships of the Korean endemic Fraxinus chiisanensis by reconstructing the molecular phylogeny of Fraxinus based on two nuclear DNA (nrITS and phantastica) and two chloroplast DNA (psbA-trnH and rpl32-trnL) regions. Within our fossil-calibrated phylogenetic framework, we also inferred the biogeographical history of F. chiisanensis. To provide a scientific basis for the conservation of F. chiisanensis, we determined the levels of genetic diversity and genetic differentiation in this species. Combining information from nuclear and chloroplast DNA sequence data, our molecular phylogenetic analyses identified F. chiisanensis as a genetically distinct unit from its sister group, Fraxinus platypoda from Japan. Our molecular dating analyses using nuclear and chloroplast DNA data sets show F. chiisanensis diverged from its sister F. platypoda in the Early or Middle Miocene and differentiated in the Late Miocene on the Korean Peninsula. Our results suggest that the divergence of F. chiisanensis was associated with the submergence of the East China Sea land bridge and enhanced monsoons in East Asia. When compared to F. platypoda, F. chiisanensis exhibits low genetic diversity within populations and high genetic differentiation among populations. These results help us to understand the evolutionary history of F. chiisanensis and to develop a conservation strategy for this species.
Collapse
Affiliation(s)
- Changkyun Kim
- Plant Research Division, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Dong-Kap Kim
- Forest Biodiversity Division, Korea National Arboretum, Pocheon 11186, Republic of Korea
| | - Hang Sun
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, PR China
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
4
|
Wang X, Dorjee T, Chen Y, Gao F, Zhou Y. The complete chloroplast genome sequencing analysis revealed an unusual IRs reduction in three species of subfamily Zygophylloideae. PLoS One 2022; 17:e0263253. [PMID: 35108324 PMCID: PMC8809528 DOI: 10.1371/journal.pone.0263253] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
Tetraena mongolica, Zygophyllum xanthoxylon, and Z. fabago are three typical dryland plants with important ecological values in subfamily Zygophylloideae of Zygophyllaceae. Studies on the chloroplast genomes of them are favorable for understanding the diversity and phylogeny of Zygophyllaceae. Here, we sequenced and assembled the whole chloroplast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago, and performed comparative genomic and phylogenetic analysis. The total size, structure, gene content and orders of these three chloroplast genomes were similar, and the three chloroplast genomes exhibited a typical quadripartite structure with a large single-copy region (LSC; 79,696–80,291 bp), a small single-copy region (SSC; 16,462–17,162 bp), and two inverted repeats (IRs; 4,288–4,413 bp). A total of 107 unique genes were identified from the three chloroplast genomes, including 70 protein-coding genes, 33 tRNAs, and 4 rRNAs. Compared with other angiosperms, the three chloroplast genomes were significantly reduced in overall length due to an unusual 16–24 kb shrinkage of IR regions and loss of the 11 genes which encoded subunits of NADH dehydrogenase. Genome-wide comparisons revealed similarities and variations between the three species and others. Phylogenetic analysis based on the three chloroplast genomes supported the opinion that Zygophyllaceae belonged to Zygophyllales in Fabids, and Z. xanthoxylon and Z. fabago belonged to Zygophyllum. The genome-wide comparisons revealed the similarity and variations between the chloroplast genomes of the three Zygophylloideae species and other plant species. This study provides a valuable molecular biology evidence for further studies of phylogenetic status of Zygophyllaceae.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Tashi Dorjee
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yiru Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Fei Gao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- * E-mail: (FG); (YZ)
| | - Yijun Zhou
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- * E-mail: (FG); (YZ)
| |
Collapse
|
5
|
Cheng J, Kao H, Dong S. Population genetic structure and gene flow of rare and endangered Tetraena mongolica Maxim. revealed by reduced representation sequencing. BMC PLANT BIOLOGY 2020; 20:391. [PMID: 32842966 PMCID: PMC7448513 DOI: 10.1186/s12870-020-02594-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/12/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Studying population genetic structure and gene flow of plant populations and their influencing factors is of particular significance in the field of conservation biology, especially important for species such as rare and endangered plants. Tetraena mongolica Maxim. (TM), belongs to Zygophyllaceae family, a rare and endangered plant with narrow distribution. However, for the last decade, due to excessive logging, urban expansion, industrial and tourism development, habitat fragmentation and loss of natural habitats have become major threats to the population of endangered plants. RESULTS In this study, genetic diversity, population genetic structure and gene flow of TM populations were evaluated by reduced representation sequencing technology, and a total of more than 133.45 GB high-quality clean reads and 38,097 high-quality SNPs were generated. Analysis based on multiple methods, we found that the existing TM populations have moderate levels of genetic diversity, and very low genetic differentiation as well as high levels of gene flow between populations. Population structure and principal coordinates analysis showed that 8 TM populations can be divided into two groups. The Mantel test detected no significant correlation between geographical distances and genetic distance for the whole sampling. Moreover, the migration model indicated that the gene flow is more of a north to south migration pattern in history. CONCLUSIONS This study demonstrates that the present genetic structure is mainly due to habitat fragmentation caused by urban sprawl, industrial development and coal mining. Our recommendation with respect to conservation management is that, all 8 populations should be preserved as a whole population, rather than just those in the core area of TM nature reserve. In particular, the populations near the edge of TM distribution in cities and industrial areas deserve our special protection.
Collapse
Affiliation(s)
- Jin Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Huixia Kao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shubin Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
6
|
Dang Z, Huang L, Jia Y, Lockhart PJ, Fong Y, Tian Y. Identification of Genic SSRs Provide a Perspective for Studying Environmental Adaptation in the Endemic Shrub Tetraena mongolica. Genes (Basel) 2020; 11:E322. [PMID: 32197402 PMCID: PMC7140860 DOI: 10.3390/genes11030322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 02/03/2023] Open
Abstract
Tetraena mongolica is a xerophytic shrub endemic to desert regions in Inner Mongolia. This species has evolved distinct survival strategies that allow it to adapt to hyper-drought and heterogeneous habitats. Simple sequence repeats (SSRs) may provide a molecular basis in plants for fast adaptation to environmental change. Thus, identifying SSRs and their possible effects on gene behavior has the potential to provide valuable information for studies of adaptation. In this study, we sequenced six individual transcriptomes of T. mongolica from heterogeneous habitats, focused on SSRs located in genes, and identified 811 polymorphic SSRs. Of the identified SSRs, 172, 470, and 76 were located in 5' UTRs, CDSs, and 3' UTRs in 591 transcripts; and AG/CT, AAC/GTT, and AT/AT were the most abundant repeats in each gene region. Functional annotation showed that many of the identified polymorphic SSRs were in genes that were enriched in several GO terms and KEGG pathways, suggesting the functional significance of these genes in the environmental adaptation process. The identification of polymorphic genic SSRs in our study lays a foundation for future studies investigating the contribution of SSRs to regulation of genes in natural populations of T. mongolica and their importance for adaptive evolution of this species.
Collapse
Affiliation(s)
- Zhenhua Dang
- Inner Mongolia Key Laboratory of Grassland Ecology & Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Z.D.); (L.H.); (Y.J.)
| | - Lei Huang
- Inner Mongolia Key Laboratory of Grassland Ecology & Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Z.D.); (L.H.); (Y.J.)
| | - Yuanyuan Jia
- Inner Mongolia Key Laboratory of Grassland Ecology & Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Z.D.); (L.H.); (Y.J.)
| | - Peter J. Lockhart
- School of Fundamental Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand; (P.J.L.); (Y.F.)
| | - Yang Fong
- School of Fundamental Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand; (P.J.L.); (Y.F.)
| | - Yunyun Tian
- Ministry of Education Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
7
|
Zhao Y, Pan B, Zhang M. Phylogeography and conservation genetics of the endangered Tugarinovia mongolica (Asteraceae) from Inner Mongolia, Northwest China. PLoS One 2019; 14:e0211696. [PMID: 30730930 PMCID: PMC6366884 DOI: 10.1371/journal.pone.0211696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/20/2019] [Indexed: 11/23/2022] Open
Abstract
Tugarinovia (Family Asteraceae) is a monotypic genus. It’s sole species, Tugarinovia mongolica Iljin, is distributed in the northern part of Inner Mongolia, with one additional variety, Tugarinovia mongolica var ovatifolia, which is distributed in the southern part of Inner Mongolia. The species has a limited geographical range and declining populations. To understand the phylogeographic structure of T. mongolica, we sequenced two chloroplast DNA regions (psbA-trnH and psbK-psbI) from 219 individuals of 16 populations, and investigated the genetic variation and phylogeographic patterns of T. mongolica. The results identified a total of 17 (H1-H17) chloroplast haplotypes. There were no haplotypes shared between the northern (T. mongolica) and southern groups (T. mongolica var. ovatifolia), and they formed two distinct lineages. The regional split was also supported by AMOVA and BEAST analyses. AMOVA showed the main variation that occurred between the two geographic groups. The time of divergence of the two groups can be dated to the early Pleistocene epoch, when climate fluctuations most likely resulted in the allopatric divergence of T. mongolica. The formation of the desert blocked genetic flow and enhanced the divergence of the northern and southern groups. Our results indicate that the genetic differences between T. mongolica and T. mongolica var. ovatifolia are consistent with previously proposed morphological differences. We speculate that the dry, cold climate and the expansion of the desert during the Quaternary resulted in the currently observed distribution of extant populations of T. mongolica. In the northern group, the populations Chuanjinsumu, Wuliji and Yingen displayed the highest genetic diversity and should be given priority protection. The southern group showed a higher genetic drift (FST = 1, GST = 1), and the inbreeding load (HS = 0) required protection for each population. Our results propose that the protection of T. mongolica should be implemented through in situ and ex situ conservation practices to increase the effective population size and genetic diversity.
Collapse
Affiliation(s)
- Yanfen Zhao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Borong Pan
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- * E-mail:
| | - Mingli Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Ma X, Chang J, Li Z, Zhai W, Yu X, Feng Y. The complete chloroplast genome of Tetraena mongolica (Zygophyllaceae), an endangered shrub endemic to China. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1584066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Xiao Ma
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jiyang Chang
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhanghai Li
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhai
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xianxian Yu
- School of Urban–Rural Planning and Landscape Architecture, Xuchang University, Xuchang, China
| | - Yanlei Feng
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| |
Collapse
|
9
|
Wang Q, Wu S, Su X, Zhang L, Xu X, Lyu L, Cai H, Shrestha N, Liu Y, Wang W, Wang Z. Niche conservatism and elevated diversification shape species diversity in drylands: evidence from Zygophyllaceae. Proc Biol Sci 2018; 285:rspb.2018.1742. [PMID: 30381380 DOI: 10.1098/rspb.2018.1742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/10/2018] [Indexed: 12/28/2022] Open
Abstract
The integrated contributions of climate and macroevolutionary processes to global patterns of species diversity are still controversial in spite of a long history of studies. The niche conservatism hypothesis and the net diversification rate hypothesis have gained wide attention in recent literature. Many studies have tested these two hypotheses for woody species in humid forests; however, the determinants of species diversity patterns for arid-adapted plants remain largely ignored. Here, using a molecular phylogeny and the global distributions of Zygophyllaceae, a typical arid-adapted plant family, we assessed the effects of contemporary climate and net diversification rates on species diversity patterns in drylands. We found the variables representing water availability to be the best predictors for Zygophyllaceae diversity. Specifically, Zygophyllaceae species diversity significantly decreased with the increase in water availability, probably owing to phylogenetic conservatism of water-related niches. The net diversification rates of Zygophyllaceae accelerated sharply in the recent 10 Myr, coinciding roughly with the period of global aridification. The species diversity of Zygophyllaceae significantly increased with the increase in mean net diversification rates per geographical unit, especially in the Old World, supporting the net diversification rate hypothesis. Our study provides a case exploring climatic and evolutionary mechanisms of dryland species diversity patterns, and suggests that the conservatism in water-related niches and elevated net diversification rates in drylands may have jointly determined the global patterns of dryland species diversity.
Collapse
Affiliation(s)
- Qinggang Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China.,Department of Ecology and Ecological Engineering, College of Resources and Environmental Sciences, and Key Laboratory of Biodiversity and Organic Farming of Beijing City, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shengdan Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiangyan Su
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Linjing Zhang
- College of Life Sciences, Shanxi Normal University, Linfen, Shanxi 041000, People's Republic of China
| | - Xiaoting Xu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Lisha Lyu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China.,School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Hongyu Cai
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Nawal Shrestha
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yunpeng Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China .,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
10
|
Zhi Y, Sun Z, Sun P, Zhao K, Guo Y, Zhang D, Zhang B. How much genetic variation is stored in the endangered and fragmented shrub Tetraena mongolica Maxim? PeerJ 2018; 6:e5645. [PMID: 30258729 PMCID: PMC6152454 DOI: 10.7717/peerj.5645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022] Open
Abstract
Tetraena mongolica Maxim (Zygophyllaceae) is an endangered species endemic to western Inner Mongolia and China, and is currently threatened by habitat loss and human over-exploitation. We explored the genetic background, its genetic diversity, population structure, and demographic history, based on 12 polymorphic nuclear microsatellite loci. Our results indicated high genetic diversity in extant populations, but no distinguishable gene cluster corresponding with a specific biogeography. Population demography analysis using a MSVAR indicated a strong, recent population decline approximately 5,455 years ago. These results suggest that the Yellow River and Zhuozi Mountain range may not prevent pollination between populations. Finally, we surmised that the population demography of T. mongolica was likely to have been affected by early mankind activities.
Collapse
Affiliation(s)
- Yingbiao Zhi
- School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China.,School of Life Sciences, Anhui University, Hefei, Anhui, China.,Ordos Institute of Technology, Ordos, Inner Mongolia, China
| | - Zhonglou Sun
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Ping Sun
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Kai Zhao
- School of Resource and Environment, Anqing Normal University, Anqing, Anhui, China
| | - Yangnan Guo
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China.,China Energy Technology Holdings Ltd., Beijing, China
| | - Dejian Zhang
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| |
Collapse
|
11
|
Yang L, Chen J, Hu W, Yang T, Zhang Y, Yukiyoshi T, Zhou Y, Wang Y. Population Genetic Structure of Glycyrrhiza inflata B. (Fabaceae) Is Shaped by Habitat Fragmentation, Water Resources and Biological Characteristics. PLoS One 2016; 11:e0164129. [PMID: 27711241 PMCID: PMC5053598 DOI: 10.1371/journal.pone.0164129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/20/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Habitat fragmentation, water resources and biological characteristics are important factors that shape the genetic structure and geographical distribution of desert plants. Analysis of the relationships between these factors and population genetic variation should help to determine the evolutionary potential and conservation strategies for genetic resources for desert plant populations. As a traditional Chinese herb, Glycyrrhiza inflata B. (Fabaceae) is restricted to the fragmented desert habitat in China and has undergone a dramatic decline due to long-term over-excavation. Determining the genetic structure of the G. inflata population and identifying a core collection could help with the development of strategies to conserve this species. RESULTS We investigated the genetic variation of 25 G. inflata populations based on microsatellite markers. A high level of population genetic divergence (FST = 0.257), population bottlenecks, reduced gene flow and moderate genetic variation (HE = 0.383) were detected. The genetic distances between the populations significantly correlated with the geographical distances, and this suggests that habitat fragmentation has driven a special genetic structure of G. inflata in China through isolation by distance. STRUCTURE analysis showed that G. inflata populations were structured into three clusters and that the populations belonged to multiple water systems, which suggests that water resources were related to the genetic structure of G. inflata. In addition, the biological characteristics of the perennial species G. inflata, such as its long-lived seeds, asexual reproduction, and oasis ecology, may be related to its resistance to habitat fragmentation. A core collection of G. inflata, that included 57 accessions was further identified, which captured the main allelic diversity of G. inflata. CONCLUSIONS Recent habitat fragmentation has accelerated genetic divergence. The population genetic structure of G. inflata has been shaped by habitat fragmentation, water resources and biological characteristics. This genetic information and core collection will facilitate the conservation of wild germplasm and breeding of this Chinese medicinal plant.
Collapse
Affiliation(s)
- Lulu Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- University of the Chinese Academy of Sciences, Beijing, P.R. China
| | - Jianjun Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Weiming Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- University of the Chinese Academy of Sciences, Beijing, P.R. China
| | - Tianshun Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | | | | | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
| |
Collapse
|
12
|
Xu Z, Zhang ML, Cohen JI. Phylogeographic History of Atraphaxis Plants in Arid Northern China and the Origin of A. bracteata in the Loess Plateau. PLoS One 2016; 11:e0163243. [PMID: 27656885 PMCID: PMC5033255 DOI: 10.1371/journal.pone.0163243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/05/2016] [Indexed: 12/02/2022] Open
Abstract
In China, species of Atraphaxis (Polygonaceae) primarily inhabit arid zones across temperate steppe and desert regions. The complex geologic history (e.g., expansion of deserts) and extreme climate shifts of the region appear to have played an important role in shaping the phylogeography of Atraphaxis. The present study focuses on species-level phylogeographic patterns of Atraphaxis in China, with the goal of determining the impact of past environmental changes, in northern China, on the evolutionary history of the genus. Five hundred and sixty-four individuals distributed among 71 populations of 11 species of Atraphaxis from across the geographic range of the genus were studied using sequence data from two plastid spacers, psbK-psbI and psbB-psbH. The results demonstrate that most chloroplast haplotypes are species-specific, except for some present among widespread species. The phylogeny of Atraphaxis was well structured, and molecular dating analyses suggest that the main divergence events occurred during the late Pliocene and Pleistocene (5.73–0.03 million years ago). The statistical dispersal-vicariance analysis (S-DIVA) results provide evidence that phylogeographic patterns for the genus were characterized by both vicariance events and regional dispersal. The presented data suggest that the rapid expansion of deserts and climatic changes in northern China during the late Pliocene and Pleistocene have driven the diversification and spread of Atraphaxis in the region. The expansion of the Tengger Desert provided appropriate conditions for the origin of A. bracteata. Additionally, a contact zone in the north of the Hexi Corridor was identified as having played a significant role as a migratory route for species in adjacent areas.
Collapse
Affiliation(s)
- Zhe Xu
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Ming-Li Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - James I Cohen
- Applied Biology, Kettering University, 1700 University Ave., Flint, MI, 48504, United States of America
| |
Collapse
|
13
|
Wen Z, Xu Z, Shi X, Zhang J, Zhang M. Genetic structure of Salsola junatovii (Chenopodiaceae) in the northern edge of the Taklimakan desert and conservational implications. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Wang Q, Zhang ML, Yin LK. Genetic diversity and population differentiation of Capparis spinosa (Capparaceae) in Northwestern China. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.02.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5792708. [PMID: 27314028 PMCID: PMC4903145 DOI: 10.1155/2016/5792708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/27/2016] [Indexed: 11/17/2022]
Abstract
Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity.
Collapse
|
16
|
Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast. Appl Microbiol Biotechnol 2016; 100:7223-38. [DOI: 10.1007/s00253-016-7592-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
|
17
|
The role of East Asian monsoon system in shaping population divergence and dynamics of a constructive desert shrub Reaumuria soongarica. Sci Rep 2015; 5:15823. [PMID: 26510579 PMCID: PMC4625182 DOI: 10.1038/srep15823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/30/2015] [Indexed: 11/08/2022] Open
Abstract
Both of the uplift of Qinghai-Tibet Plateau (QTP) and the development of East Asian monsoon system (EAMS) could have comprehensively impacted the formation and evolution of Arid Central Asia (ACA). To understand how desert plants endemic to ACA responded to these two factors, we profiled the historical population dynamics and distribution range shift of a constructive desert shrub Reaumuria soongarica (Tamaricaceae) based on species wide investigation of sequence variation of chloroplast DNA and nuclear ribosomal ITS. Phylogenetic analysis uncovered a deep divergence occurring at ca. 2.96 Mya between the western and eastern lineages of R. soongarica, and ecological niche modeling analysis strongly supported that the monsoonal climate could have fragmented its habitats in both glacial and interglacial periods and impelled its intraspecific divergence. Additionally, the population from the east monsoonal zone expanded rapidly, suggesting that the local monsoonal climate significantly impacted its population dynamics. The isolation by distance tests supported strong maternal gene flow along the direction of the East Asian winter monsoon, whose intensification induced the genetic admixture along the latitudinal populations of R. soongarica. Our results presented a new case that the development of EAMS had prominently impacted the intraspecific divergence and population dynamics of this desert plant.
Collapse
|
18
|
Wen Z, Xu Z, Zhang H, Feng Y. Chloroplast phylogeography of a desert shrub, Calligonum calliphysa (Calligonum, Polygonaceae), in arid Northwest China. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Microsatellite markers reveal strong genetic structure in the endemic Chilean dolphin. PLoS One 2015; 10:e0123956. [PMID: 25898340 PMCID: PMC4405423 DOI: 10.1371/journal.pone.0123956] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding genetic differentiation and speciation processes in marine species with high dispersal capabilities is challenging. The Chilean dolphin, Cephalorhynchus eutropia, is the only endemic cetacean of Chile and is found in two different coastal habitats: a northern habitat with exposed coastlines, bays and estuaries from Valparaíso (33°02′S) to Chiloé (42°00′S), and a southern habitat with highly fragmented inshore coastline, channels and fjords between Chiloé and Navarino Island (55°14′S). With the aim of evaluating the potential existence of conservation units for this species, we analyzed the genetic diversity and population structure of the Chilean dolphin along its entire range. We genotyped 21 dinucleotide microsatellites for 53 skin samples collected between 1998 and 2012 (swab: n = 8, biopsy: n = 38, entanglement n = 7). Bayesian clustering and spatial model analyses identified two genetically distinct populations corresponding to the northern and southern habitats. Genetic diversity levels were similar in the two populations (He: 0.42 v/s 0.45 for southern and northern populations, respectively), while effective size population was higher in the southern area (Ne: 101 v/s 39). Genetic differentiation between these two populations was high and significant (FST = 0.15 and RST = 0.19), indicating little or no current gene flow. Because of the absence of evident geographical barriers between the northern and southern populations, we propose that genetic differentiation may reflect ecological adaptation to the different habitat conditions and resource uses. Therefore, the two genetic populations of this endemic and Near Threatened species should be considered as different conservation units with independent management strategies.
Collapse
|
20
|
Zhihao S, Mingli Z. A range wide geographic pattern of genetic diversity and population structure of Hexinia polydichotoma (Asteraceae) in Tarim Basin and adjacent areas. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Gao XY, Meng HH, Zhang ML. Diversification and vicariance of desert plants: Evidence inferred from chloroplast DNA sequence variation of Lagochilus ilicifolius (Lamiaceae). BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Xie KQ, Zhang ML. The effect of Quaternary climatic oscillations on Ribes meyeri (Saxifragaceae) in northwestern China. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Collevatti RG, de Castro TG, de Souza Lima J, de Campos Telles MP. Phylogeography of Tibouchina papyrus (Pohl) Toledo (Melastomataceae), an endangered tree species from rocky savannas, suggests bidirectional expansion due to climate cooling in the Pleistocene. Ecol Evol 2012; 2:1024-35. [PMID: 22837846 PMCID: PMC3399167 DOI: 10.1002/ece3.236] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/05/2012] [Accepted: 02/08/2012] [Indexed: 11/05/2022] Open
Abstract
Many endemic species present disjunct geographical distribution; therefore, they are suitable models to test hypotheses about the ecological and evolutionary mechanisms involved in the origin of disjunct distributions in these habitats. We studied the genetic structure and phylogeography of Tibouchina papyrus (Melastomataceae), endemic to rocky savannas in Central Brazil, to test hypothesis of vicariance and dispersal in the origin of the disjunct geographical distribution. We sampled 474 individuals from the three localities where the species is reported: Serra dos Pirineus, Serra Dourada, and Serra de Natividade. Analyses were based on the polymorphisms at cpDNA and on nuclear microsatellite loci. To test for vicariance and dispersal we constructed a median-joining network and performed an analysis of molecular variance (AMOVA). We also tested population bottleneck and estimated demographic parameters and time to most recent common ancestor (TMRCA) using coalescent analyses. A remarkable differentiation among populations was found. No significant effect of population expansion was detected and coalescent analyses showed a negligible gene flow among populations and an ancient coalescence time for chloroplast genome. Our results support that the disjunct distribution of T. papyrus may represent a climatic relict. With an estimated TMRCA dated from ∼836.491 ± 107.515 kyr BP (before present), we hypothesized that the disjunct distribution may be the outcome of bidirectional expansion of the geographical distribution favored by the drier and colder conditions that prevailed in much of Brazil during the Pre-Illinoian glaciation, followed by the retraction as the climate became warmer and moister.
Collapse
Affiliation(s)
- Rosane Garcia Collevatti
- Laboratório de Genética e Biodiversidade, Departamento de Biologia Geral, ICB, Universidade Federal de Goiás CxP. 131, 74001-970 Goiânia, GO, Brazil
| | | | | | | |
Collapse
|
24
|
Phylogeography of Ulmus elongata based on Fourier transform-infrared spectroscopy (FTIR), thermal gravimetric and differential thermal analyses. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2011.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Meng HH, Zhang ML. Phylogeography of Lagochilus ilicifolius (Lamiaceae) in relation to Quaternary climatic oscillation and aridification in northern China. BIOCHEM SYST ECOL 2011. [DOI: 10.1016/j.bse.2011.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|