2
|
Rajatileka S, Odd D, Robinson MT, Spittle AC, Dwomoh L, Williams M, Harding D, Wagstaff M, Owen M, Crosby C, Ching J, Molnár E, Luyt K, Váradi A. Variants of the EAAT2 Glutamate Transporter Gene Promoter Are Associated with Cerebral Palsy in Preterm Infants. Mol Neurobiol 2017; 55:2013-2024. [PMID: 28271401 PMCID: PMC5840247 DOI: 10.1007/s12035-017-0462-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/16/2017] [Indexed: 11/26/2022]
Abstract
Preterm delivery is associated with neurodevelopmental impairment caused by environmental and genetic factors. Dysfunction of the excitatory amino acid transporter 2 (EAAT2) and the resultant impaired glutamate uptake can lead to neurological disorders. In this study, we investigated the role of single nucleotide polymorphisms (SNPs; g.-200C>A and g.-181A>C) in the EAAT2 promoter in susceptibility to brain injury and neurodisability in very preterm infants born at or before 32-week gestation. DNA isolated from newborns’ dried blood spots were used for pyrosequencing to detect both SNPs. Association between EAAT2 genotypes and cerebral palsy, cystic periventricular leukomalacia and a low developmental score was then assessed. The two SNPs were concordant in 89.4% of infants resulting in three common genotypes all carrying two C and two A alleles in different combinations. However, in 10.6% of cases, non-concordance was found, generating six additional rare genotypes. The A alleles at both loci appeared to be detrimental and consequently, the risk of developing cerebral palsy increased four- and sixfold for each additional detrimental allele at -200 and -181 bp, respectively. The two SNPs altered the regulation of the EAAT2 promoter activity and glutamate homeostasis. This study highlights the significance of glutamate in the pathogenesis of preterm brain injury and subsequent development of cerebral palsy and neurodevelopmental disabilities. Furthermore, the described EAAT2 SNPs may be an early biomarker of vulnerability to neurodisability and may aid the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Shavanthi Rajatileka
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - David Odd
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
- Neonatal Intensive Care Unit, Southmead Hospital, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - Matthew T Robinson
- College of Life & Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Alexandra C Spittle
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Louis Dwomoh
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Maggie Williams
- Bristol Genetics Laboratory, Pathology Sciences, Blood Sciences and Bristol Genetics, Southmead Hospital, Bristol, BS10 5NB, UK
| | - David Harding
- Regional Neonatal Intensive Care Unit, St Michael's Hospital, University Hospital NHS Trust, Bristol, BS2 8EG, UK
| | - Miles Wagstaff
- Neonatal Intensive Care Unit, Gloucestershire Royal Hospital, Gloucestershire NHS Trust, Gloucester, GL1 3NN, UK
| | - Marie Owen
- Neonatal Intensive Care Unit, Gloucestershire Royal Hospital, Gloucestershire NHS Trust, Gloucester, GL1 3NN, UK
| | - Charlene Crosby
- Bristol Genetics Laboratory, Pathology Sciences, Blood Sciences and Bristol Genetics, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Jared Ching
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
| | - Elek Molnár
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Karen Luyt
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
- Regional Neonatal Intensive Care Unit, St Michael's Hospital, University Hospital NHS Trust, Bristol, BS2 8EG, UK
| | - Anikó Váradi
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| |
Collapse
|
3
|
Pu D, Pan R, Liu W, Xiao P. Quantitative analysis of single-nucleotide polymorphisms by pyrosequencing with di-base addition. Electrophoresis 2017; 38:876-885. [PMID: 27957738 DOI: 10.1002/elps.201600430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 02/06/2023]
Abstract
We have developed and validated a novel method for quantitative detection of SNPs by using pyrosequencing with di-base addition (PDBA). Based on the principle that the signal intensity is proportional to the template concentration within a linear concentration range, linear formula (Y = AX + B) for each genotype is established, and the relationship between two genotypes of a single SNP can be resolved by corresponding linear formulas. Here, PDBA assays were developed to detect variants rs6717546 and rs4148324, and the linear formulas for each genotype of rs6717546 and rs4148324 were established. The method allowed to quantitatively determine each genotype and showed 100% accordant results against a panel of defined mixtures. A set of 24 template fragments containing variants rs6717546 or rs4148324 was tested to evaluate the method. Our results showed that allele frequency of each genotype was accurately quantified, with results comparable to those of conventional pyrosequencing. Furthermore, this method was capable of detecting alleles with frequencies as low as 3%, which was more sensitive than ∼5 to ∼7% level detected by conventional pyrosequencing. This method offers high sensitivity, reproducibility, and relatively low costs, and thus could provide a much-needed approach for quantitative analysis of SNPs in clinical samples.
Collapse
Affiliation(s)
- Dan Pu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China.,School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, P. R. China
| | - Rongfang Pan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Wenbin Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| |
Collapse
|
4
|
Pu D, Mao C, Cui L, Shi Z, Xiao P. Pyrosequencing with di-base addition for single nucleotide polymorphism genotyping. Anal Bioanal Chem 2016; 408:3113-23. [PMID: 26935928 DOI: 10.1007/s00216-016-9359-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
We develop color code-based pyrosequencing with di-base addition for analysis of single nucleotide polymorphisms (SNPs). When a di-base is added into the polymerization, one or several two-color code(s) containing the type and the number of incorporated nucleotides will be produced. The code information obtained in a single run is useful to genotype SNPs as each allelic variant will give a specific pattern compared to the two other variants. Special care has to be taken while designing the di-base dispensation order. Here, we present a detailed protocol for establishing sequence-specific di-base addition to avoid nonsynchronous extension at the SNP sites. By using this technology, as few as 50 copies of DNA templates were accurately sequenced. Higher signals were produced and thus a relatively lower sample amount was required. Furthermore, the read length of per flow was increased, making simultaneous identification of multiple SNPs in a single sequencing run possible. Validation of the method was performed by using templates with two SNPs covering 37 bp and with three SNPs covering 58 bp as well as 82 bp. These SNPs were successfully genotyped by using only a sequencing primer in a single PCR/sequencing run. Our results demonstrated that this technology could be potentially developed into a powerful methodology to accurately determine SNPs so as to diagnose clinical settings.
Collapse
Affiliation(s)
- Dan Pu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Chengguang Mao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Lunbiao Cui
- Key Laboratory of Enteric Pathogenic Microbiology (NHFPC), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China
| | - Zhiyang Shi
- Key Laboratory of Enteric Pathogenic Microbiology (NHFPC), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|