1
|
Strych L, Černá M, Hejnalová M, Zavoral T, Komrsková P, Tejcová J, Bitar I, Sládková E, Sýkora J, Šubrt I. Targeted long-read sequencing identified a causal structural variant in X-linked nephrogenic diabetes insipidus. BMC Med Genomics 2024; 17:29. [PMID: 38254165 PMCID: PMC10804598 DOI: 10.1186/s12920-024-01801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND X-linked nephrogenic diabetes insipidus (NDI) is a rare genetic renal disease caused by pathogenic variants in the AVPR2 gene. Single nucleotide variants and small insertions/deletions in AVPR2 are reliably detected by routine clinical sequencing. Nevertheless, structural variants involving AVPR2 are challenging to identify accurately by conventional genetic testing. Here, we report a novel deletion of AVPR2 in a Czech family identified for the first time by targeted long-read sequencing (T-LRS). METHODS A male proband with X-linked NDI underwent clinical sequencing of the AVPR2 gene that failed and thus indicated possible whole-gene deletion. Therefore, PCR mapping and subsequent targeted long-read sequencing (T-LRS) using a Pacific Biosciences sequencer were applied to search for the suspected deletion. To validate the deletion breakpoints and prove variant segregation in the family with X-linked NDI, Sanger sequencing of the deletion junction was performed. Quantitative real-time PCR was further carried out to confirm the carrier status of heterozygous females. RESULTS By T-LRS, a novel 7.5 kb deletion of AVPR2 causing X-linked NDI in the proband was precisely identified. Sanger sequencing of the deletion junction confirmed the variant breakpoints and detected the deletion in the probands´ mother, maternal aunt, and maternal cousin with X-linked NDI. The carrier status in heterozygous females was further validated by quantitative real-time PCR. CONCLUSIONS Identifying the 7.5 kb deletion gave a precise molecular diagnosis for the proband, enabled genetic counselling and genetic testing for the family, and further expanded the spectrum of structural variants causing X-linked NDI. Our results also show that T-LRS has significant potential for accurately identifying putative structural variants.
Collapse
Affiliation(s)
- Lukáš Strych
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic.
| | - Monika Černá
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Markéta Hejnalová
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Tomáš Zavoral
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Pavla Komrsková
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Jitka Tejcová
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Ibrahim Bitar
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Eva Sládková
- Department of Pediatrics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Josef Sýkora
- Department of Pediatrics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Ivan Šubrt
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic.
| |
Collapse
|
2
|
Ding C, Beetz R, Rittner G, Bartsch O. A female with X‐linked Nephrogenic diabetes insipidus in a family with inherited central diabetes Insipidus: Case report and review of the literature. Am J Med Genet A 2020; 182:1032-1040. [DOI: 10.1002/ajmg.a.61516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Can Ding
- Institute of Human GeneticsUniversity Medical Centre of the Johannes Gutenberg University Mainz Germany
| | - Rolf Beetz
- Pediatric Nephrology Unit of the Children's HospitalUniversity Medical Centre of the Johannes Gutenberg University Mainz Germany
| | - Gabriele Rittner
- Institute of Human GeneticsUniversity Medical Centre of the Johannes Gutenberg University Mainz Germany
| | - Oliver Bartsch
- Institute of Human GeneticsUniversity Medical Centre of the Johannes Gutenberg University Mainz Germany
| |
Collapse
|
3
|
Peng D, Dai Y, Xu X. Identification of a novel X-linked arginine-vasopressin receptor 2 mutation in nephrogenic diabetes insipidus: Case report and pedigree analysis. Medicine (Baltimore) 2019; 98:e17359. [PMID: 31577731 PMCID: PMC6783171 DOI: 10.1097/md.0000000000017359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The clinical and genetic characteristics of nephrogenic diabetes insipidus (NDI) were described via assessing 2 cases of NDI patients from a Chinese family. PATIENT CONCERNS Two patients who manifest polyuria and polydipsia were admitted to hospital for definite diagnosis. DIAGNOSIS Water deprivation-vasopressin tests showed that the patients may possess renal-origin diabetes insipidus. All the levels of thyroid-stimulating hormone, luteinizing hormone, follicle stimulation hormone, adrenocorticotropic hormone, prolactin, and growth hormone in both patients were normal. These results were certified that both patients possess a nephropathy-type diabetes insipidus. B-mode ultrasonography and urinalysis test demonstrated that the patient's diabetes insipidus is unlikely to originate from renal organic disease. Remarkably, by nucleotide sequencing, we found a novel mutation c.414_418del in arginine-vasopressin receptor 2 (AVPR2) was related to the disease of NDI. INTERVENTIONS Two patients were treated with oral hydrochlorothiazide and indomethacin. In addition, low salt diet and potassium supplementation throughout the patients' treatment. OUTCOMES The clinical symptoms of 2 patients were significantly reduced after targeted therapy. CONCLUSION A mutation in AVPR2 was discovered to be associated with NID. It provides a new target for molecular diagnosis of NDI, enabling families to undergo genetic counseling and obtain prenatal diagnoses.
Collapse
Affiliation(s)
- Danxia Peng
- Hunan Provincial People's Paediatric Medicine Center
| | - Ying Dai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, China
| | - Xuan Xu
- Hunan Provincial People's Paediatric Medicine Center
| |
Collapse
|
4
|
Leung MT, Sit JKK, Cheung HN, Iu YP, Chan WKY, Shek CC. Contiguous gene deletion in a Chinese family with X-linked nephrogenic diabetes insipidus: challenges in early diagnosis and implications for affected families. J Pediatr Endocrinol Metab 2019; 32:915-920. [PMID: 31271558 DOI: 10.1515/jpem-2019-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/16/2019] [Indexed: 11/15/2022]
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare disorder of the renal collecting tubules, characterized by an inability to concentrate urine due to an impaired response to arginine vasopressin (AVP), resulting in dilute urine and polyuria. Causes of NDI are heterogeneous and diagnosing congenital NDI (cNDI) in young infants is clinically challenging, as typical symptoms are often unappreciated or inconspicuous. Instead, young infants may present with non-specific signs such as vomiting, poor feeding, failure to thrive, unexplained fevers, irritability, constipation or diarrhea. We report a 37-day-old infant who presented with polyuria and severe hypernatremic dehydration that was unresponsive to vasopressin. The patient was treated with amiloride, indomethacin and hydrochlorothiazide. Genetic analysis revealed a novel contiguous deletion involving the entire AVPR2 gene and the last exon of the adjacent ARHGAP4 gene. A study of the family confirmed the carrier status in the mother. This case illustrates the importance of molecular testing in confirming the diagnosis in the index patient, as well as in identifying asymptomatic at-risk female carriers so that appropriate genetic counselling can be given for reproductive planning. All pediatric patients with suspected cNDI should undergo genetic analysis for a definitive diagnosis.
Collapse
Affiliation(s)
- Mei Tik Leung
- Department of Pathology, Chemical Pathology Laboratory, Queen Elizabeth Hospital, Room 817, 8/F, Block M, 30 Gascoigne Road, Kowloon, Hong Kong, Phone: +85252782423
| | | | - Hoi Ning Cheung
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Yan Ping Iu
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Winnie K Y Chan
- Department of Paediatrics, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Chi Chung Shek
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
5
|
Bai Y, Chen Y, Kong X. Contiguous 22.1-kb deletion embracing AVPR2 and ARHGAP4 genes at novel breakpoints leads to nephrogenic diabetes insipidus in a Chinese pedigree. BMC Nephrol 2018; 19:26. [PMID: 29394883 PMCID: PMC5797393 DOI: 10.1186/s12882-018-0825-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 01/21/2018] [Indexed: 12/02/2022] Open
Abstract
Background It has been reported that mutations in arginine vasopressin type 2 receptor (AVPR2) cause congenital X-linked nephrogenic diabetes insipidus (NDI). However, only a few cases of AVPR2 deletion have been documented in China. Methods An NDI pedigree was included in this study, including the proband and his mother. All NDI patients had polyuria, polydipsia, and growth retardation. PCR mapping, long range PCR and sanger sequencing were used to identify genetic causes of NDI. Results A novel 22,110 bp deletion comprising AVPR2 and ARH4GAP4 genes was identified by PCR mapping, long range PCR and sanger sequencing. The deletion happened perhaps due to the 4-bp homologous sequence (TTTT) at the junctions of both 5′ and 3′ breakpoints. The gross deletion co-segregates with NDI. After analyzing available data of putative clinical signs of AVPR2 and ARH4GAP4 deletion, we reconsider the potential role of AVPR2 deletion in short stature. Conclusions We identified a novel 22.1-kb deletion leading to X-linked NDI in a Chinese pedigree, which would increase the current knowledge in AVPR2 mutation.
Collapse
Affiliation(s)
- Ying Bai
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road East, Zhengzhou, Henan, 450052, China
| | - Yibing Chen
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road East, Zhengzhou, Henan, 450052, China.
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road East, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
6
|
Huang L, Poke G, Gecz J, Gibson K. A novel contiguous gene deletion of AVPR2 and ARHGAP4 genes in male dizygotic twins with nephrogenic diabetes insipidus and intellectual disability. Am J Med Genet A 2012; 158A:2511-8. [PMID: 22965914 DOI: 10.1002/ajmg.a.35591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 06/28/2012] [Indexed: 11/08/2022]
Abstract
The clinical features of loss of ARHGAP4 function remain unclear despite several reports of different patterns of deletions inactivating different functional regions of the protein. The protein encoded by ARHGAP4 is thought to function as a Rho GTPase activating protein. Characterization of the genetic defect causing X-linked nephrogenic diabetes insipidus (NDI) and intellectual disability in two dizygotic twin brothers revealed a novel contiguous deletion of 17,905 bp encompassing the entire AVPR2 gene and extending into intron 7 of the ARHGAP4 gene. Examination of their mother showed that she was a carrier of this deletion. An attempt was made to distinguish the putative clinical signs of an ARHGAP4 deletion from the well-defined phenotype of X-linked NDI caused by an AVPR2 gene deletion. By reviewing all characterized deletions encompassing ARHGAP4, we reconsider the potential role of ARHGAP4 in cognition.
Collapse
Affiliation(s)
- Lingli Huang
- Institute of Reproductive and Stem Cell Engineering, Central South University, China
| | | | | | | |
Collapse
|
7
|
Anesi L, de Gemmis P, Galla D, Hladnik U. Two new large deletions of the AVPR2 gene causing nephrogenic diabetes insipidus and a review of previously published deletions. Nephrol Dial Transplant 2012; 27:3705-12. [PMID: 22879391 DOI: 10.1093/ndt/gfs359] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In this paper, we report two new original deletions and present an extended review of the previously characterized AVPR2 gene deletions to better understand the underlying deletion mechanisms. METHODS The two novel deletions were defined using polymerase chain reaction mapping and junction fragment sequencing. Bioinformatic analysis was performed on both the previously mapped deletions and the novel ones through several web tools. RESULTS In our two patients with nephrogenic diabetes insipidus, we found a 23 755 bp deletion and a 9264 bp deletion both comprising the entire AVPR2 gene and part of the ARHGAP4 gene. Through bioinformatic studies, the smallest overlapping region as well as several motifs and repeats that are known to promote rearrangements were confirmed. CONCLUSIONS Through this study, it was determined that the deletion mechanisms in the AVPR2 region do not follow the rules of non-allelic homologous recombination. Two of the 13 deletions can be attributed to the fork stalling and template switching (FoSTeS) mechanism, whereas the remaining 11 deletions could be caused either by non-homologous end joining or by the FoSTeS mechanism. Although no recurrence was found, several groupings of deletion breakpoints were identified.
Collapse
|
8
|
Moon SD, Kim JH, Shim JY, Lim DJ, Cha BY, Han JH. Analysis of a novel AVPR2 mutation in a family with nephrogenic diabetes insipidus. Int J Clin Exp Med 2010; 4:1-9. [PMID: 21394280 PMCID: PMC3048978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/25/2010] [Indexed: 05/30/2023]
Abstract
Congenital nephrogenic diabetes insipidus (NDI) is a rare X-linked recessive disorder associated with germ-line mutations of the arginine vasopressin (AVP) receptor type 2 (AVPR2) gene. Recent molecular studies have demonstrated that insensitivity of renal tubule cells to AVP is associated with AVPR2 mutations. We identified a novel deletion mutation at nucleotide position 302 (302delC), in a Korean NDI family, that results in a frameshift and a truncated receptor protein. To identify the mutant AVPR2 protein we developed an expression vector for the AVPR2 mutation by a PCR-based restriction fragment replacement strategy. COS-7 cells were transiently transfected with expression vectors for the wild-type and mutant genes, and we analyzed AVP-induced cyclic adenosine monophos-phate (cAMP) responses, and assessed the localization of AVPR2 receptors, in the transfected COS-7 cells. In the cells expressing the mutant gene, the maximum AVP-induced cAMP response was reduced and the truncated receptor proteins were retained within the cytoplasmic compartment. These results suggest that the novel frameshift AVPR2 (302delC) mutation is responsible for the AVP resistance in the family with congenital NDI.
Collapse
Affiliation(s)
- Sung-Dae Moon
- Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of KoreaSeoul, Korea
| | - Ju-Hee Kim
- Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of KoreaSeoul, Korea
| | - Joo-Yun Shim
- Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of KoreaSeoul, Korea
| | - Dong-Jun Lim
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of KoreaSeoul, Korea
| | - Bong-Yun Cha
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of KoreaSeoul, Korea
| | - Je-Ho Han
- Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of KoreaSeoul, Korea
| |
Collapse
|
9
|
Spanakis E, Milord E, Gragnoli C. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance. J Cell Physiol 2008; 217:605-17. [PMID: 18726898 DOI: 10.1002/jcp.21552] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Almost 90% of nephrogenic diabetes insipidus (NDI) is due to mutations in the arginine-vasopressin receptor 2 gene (AVPR2). We retrospectively examined all the published mutations/variants in AVPR2. We planned to perform a comprehensive review of all the AVPR2 mutations/variants and to test whether any amino acid change causing a missense mutation is significantly more or less common than others. We performed a Medline search and collected detailed information regarding all AVPR2 mutations and variants. We performed a frequency comparison between mutated and wild-type amino acids and codons. We predicted the mutation effect or reported it based on published in vitro studies. We also reported the ethnicity of each mutation/variant carrier. In summary, we identified 211 AVPR2 mutations which cause NDI in 326 families and 21 variants which do not cause NDI in 71 NDI families. We described 15 different types of mutations including missense, frameshift, inframe deletion, deletion, insertion, nonsense, duplication, splicing and combined mutations. The missense mutations represent the 55.83% of all the NDI published families. Arginine and tyrosine are significantly (P = 4.07E-08 and P = 3.27E-04, respectively) the AVPR2 most commonly mutated amino acids. Alanine and glutamate are significantly (P = 0.009 and P = 0.019, respectively) the least mutated AVPR2 amino acids. The spectrum of mutations varies from rare gene variants or polymorphisms not causing NDI to rare mutations causing NDI, among which arginine and tyrosine are the most common missense. The AVPR2 mutations are spread world-wide. Our study may serve as an updated review, comprehensive of all AVPR2 variants and specific gene locations. J. Cell. Physiol. 217: 605-617, 2008. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Elias Spanakis
- Laboratory of Molecular Genetics of Complex and Monogenic Disorders, Department of Medicine and Cellular & Molecular Physiology, M. S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
10
|
Knops NBB, Bos KK, Kerstjens M, van Dael K, Vos YJ. Nephrogenic diabetes insipidus in a patient with L1 syndrome: a new report of a contiguous gene deletion syndrome including L1CAM and AVPR2. Am J Med Genet A 2008; 146A:1853-8. [PMID: 18553546 DOI: 10.1002/ajmg.a.32386] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report on an infant boy with congenital hydrocephalus due to L1 syndrome and polyuria due to diabetes insipidus. We initially believed his excessive urine loss was from central diabetes insipidus and that the cerebral malformation caused a secondary insufficient pituitary vasopressin release. However, he failed to respond to treatment with a vasopressin analogue, which pointed to nephrogenic diabetes insipidus (NDI). L1 syndrome and X-linked NDI are distinct clinical disorders caused by mutations in the L1CAM and AVPR2 genes, respectively, located in adjacent positions in Xq28. In this boy we found a deletion of 61,577 basepairs encompassing the entire L1CAM and AVPR2 genes and extending into intron 7 of the ARHGAP4 gene. To our knowledge this is the first description of a patient with a deletion of these three genes. He is the second patient to be described with L1 syndrome and NDI. During follow-up he manifested complications from the hydrocephalus and NDI including global developmental delay and growth failure with low IGF-1 and hypothyroidism.
Collapse
Affiliation(s)
- Noël B B Knops
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Fujimoto M, Imai K, Hirata K, Kashiwagi R, Morinishi Y, Kitazawa K, Sasaki S, Arinami T, Nonoyama S, Noguchi E. Immunological profile in a family with nephrogenic diabetes insipidus with a novel 11 kb deletion in AVPR2 and ARHGAP4 genes. BMC MEDICAL GENETICS 2008; 9:42. [PMID: 18489790 PMCID: PMC2413213 DOI: 10.1186/1471-2350-9-42] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 05/20/2008] [Indexed: 11/28/2022]
Abstract
Background Congenital nephrogenic diabetes insipidus (NDI) is characterised by an inability to concentrate urine despite normal or elevated plasma levels of the antidiuretic hormone arginine vasopressin. We report a Japanese extended family with NDI caused by an 11.2-kb deletion that includes the entire AVPR2 locus and approximately half of the Rho GTPase-activating protein 4 (ARHGAP4) locus. ARHGAP4 belongs to the RhoGAP family, Rho GTPases are critical regulators of many cellular activities, such as motility and proliferation which enhances intrinsic GTPase activity. ARHGAP4 is expressed at high levels in hematopoietic cells, and it has been reported that an NDI patient lacking AVPR2 and all of ARHGAP4 showed immunodeficiency characterised by a marked reduction in the number of circulating CD3+ cells and almost complete absence of CD8+ cells. Methods PCR and sequencing were performed to identify the deleted region in the Japanese NDI patients. Immunological profiles of the NDI patients were analysed by flow cytometry. We also investigated the gene expression profiles of peripheral blood mononuclear cells (PBMC) from NDI patients and healthy controls in microarray technique. Results We evaluated subjects (one child and two adults) with 11.2-kb deletion that includes the entire AVPR2 locus and approximately half of the ARHGAP4. Hematologic tests showed a reduction of CD4+ cells in one adult patient, a reduction in CD8+ cells in the paediatric patient, and a slight reduction in the serum IgG levels in the adult patients, but none of them showed susceptibility to infection. Gene expression profiling of PBMC lacking ARHGAP4 revealed that expression of RhoGAP family genes was not influenced greatly by the lack of ARHGAP4. Conclusion These results suggest that loss of ARHGAP4 expression is not compensated for by other family members. ARHGAP4 may play some role in lymphocyte differentiation but partial loss of ARHGAP4 does not result in clinical immunodeficiency.
Collapse
Affiliation(s)
- Masaya Fujimoto
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|