1
|
Jia Y, Fu Q, Li B, Xu Y, Tariq A. Polymorphism analysis of major histocompatibility complex (MHC) DQB gene in the Asiatic black bear (Ursus thibetanus). MAMMAL RES 2023. [DOI: 10.1007/s13364-023-00685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Mathematical modeling and stochastic simulations suggest that low-affinity peptides can bisect MHC1-mediated export of high-affinity peptides into "early"- and "late"-phases. Heliyon 2021; 7:e07466. [PMID: 34286133 PMCID: PMC8278427 DOI: 10.1016/j.heliyon.2021.e07466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/23/2021] [Accepted: 06/29/2021] [Indexed: 02/01/2023] Open
Abstract
The peptide loading complex (PLC) is a multi-protein complex of the endoplasmic reticulum (ER) which optimizes major histocompatibility I (MHC1)-mediated export of intracellular high-affinity peptides. Whilst, the molecular biology of MHC1-mediated export is well supported by empirical data, the stoichiometry, kinetics and spatio-temporal profile of the participating molecular entities are a matter of considerable debate. Here, a low-affinity peptide-driven (LAPD)-model of MHC1-mediated high-affinity peptide export is formulated, implemented, analyzed and simulated. The model is parameterized in terms of the contribution of the shunt reaction to the concentration of exportable MHC1. Theoretical analyses and simulation studies of the model suggest that low-affinity peptides can bisect MHC1-mediated export of high-affinity peptides into time-dependent distinct “early”- and “late”-phases. The net exportable MHC1 (eM1β(t)) is a function of the retrograde (rM1β(t))- and anterograde (aM1β(t))-derived fractions. The “early”-phase is dominated by the contribution of the retrograde/recyclable (rM1β≈61%,aM1β≈39%) pathway to exportable MHC1, is characterized by Tapasin-mediated peptide-editing and is ATP-independent. The “late”-phase on the other hand, is characterized by de novo PLC-assembly, rapid disassembly and a significant contribution of the anterograde pathway to exportable MHC1 (rM1β≈21%,aM1β≈79%). The shunt reaction is rate limiting and may integrate peptide translocation with PLC-assembly/disassembly thereby, regulating peptide export under physiological and pathological (viral infections, dysplastic alterations) conditions.
Collapse
|
3
|
Du L, Liu Q, Shen F, Fan Z, Hou R, Yue B, Zhang X. Transcriptome analysis reveals immune-related gene expression changes with age in giant panda ( Ailuropoda melanoleuca) blood. Aging (Albany NY) 2020; 11:249-262. [PMID: 30641486 PMCID: PMC6339791 DOI: 10.18632/aging.101747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022]
Abstract
The giant panda (Ailuropoda melanoleuca), an endangered species endemic to western China, has long been threatened with extinction that is exacerbated by highly contagious and fatal diseases. Aging is the most well-defined risk factor for diseases and is associated with a decline in immune function leading to increased susceptibility to infection and reduced response to vaccination. Therefore, this study aimed to determine which genes and pathways show differential expression with age in blood tissues. We obtained 210 differentially expressed genes by RNA-seq, including 146 up-regulated and 64 down-regulated genes in old pandas (18-21yrs) compared to young pandas (2-6yrs). We identified ISG15, STAT1, IRF7 and DDX58 as the hub genes in the protein-protein interaction network. All of these genes were up-regulated with age and played important roles in response to pathogen invasion. Functional enrichment analysis indicated that up-regulated genes were mainly involved in innate immune response, while the down-regulated genes were mainly related to B cell activation. These may suggest that the innate immunity is relatively well preserved to compensate for the decline in the adaptive immune function. In conclusion, our findings will provide a foundation for future studies on the molecular mechanisms underlying immune changes associated with ageing.
Collapse
Affiliation(s)
- Lianming Du
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Qin Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China.,College of Life Sciences and Food Engineering, Yibin University, Yibin 644000, China
| | - Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Sahoo NR, Kumar P, Khan MF, Mourya R, Ravikumar GVPPS, Tiwari AK. Sequence diversity of major histo-compatibility complex class II DQA1 in Indian Tharparkar cattle: novel alleles and in-silico analysis. HLA 2019; 93:451-461. [PMID: 30868742 DOI: 10.1111/tan.13521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/29/2023]
Abstract
Exon 2 of MHC class II gene codes for the first domain of the molecule that forms the peptide-binding groove and its polymorphism partly explains functional MHC diversity. A 850 bp DQA1 gene fragment spanning from intron I to exon III was typed by sequencing of 40 Tharparkar cattle of various agro-climatic zones of northern India along with 10 Tharparkar crossbreds. On analysis of nucleotide sequences, a total of 30 polymorphic sites (1 insertion and 29 SNPs) were identified in 14 MHC alleles leading to amino acid changes in 5 places in 249 bp (exon 2). Five new BoLa DQA1 alleles were identified and reported. The within group mean distance was highest in Tharparkar herd of Bikaner (0.045) and lowest (0.020) in that of Surathgarh (breeding tract) whereas, between groups mean distance was highest in Bikaner Tharparkar-Suratgarh Tharparkar pair. There was excess of nonsynonymous over synonymous nucleotide substitutions in the present study. The effects of these substitutions were predicted using I-Mutant and Panther online resources. The mean ratio of dN/dS was found to be >1.0 at 12 codons with two mutation hotspots at 13th codon (P = 0.002) and 64th codon (P = 0.01). The phylo-geographic analysis revealed that alleles 5, 7 and 13 formed a different cluster with alleles 7 and 13 grouped by the most frequent allele (BoLa-DQA*1401).
Collapse
Affiliation(s)
- Nihar R Sahoo
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Pushpendra Kumar
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mohd F Khan
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ranjeeta Mourya
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - G V P P S Ravikumar
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.,National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Ashok K Tiwari
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
5
|
Yu L, Nie Y, Yan L, Hu Y, Wei F. No evidence for MHC-based mate choice in wild giant pandas. Ecol Evol 2018; 8:8642-8651. [PMID: 30271533 PMCID: PMC6157678 DOI: 10.1002/ece3.4419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 11/10/2022] Open
Abstract
Major histocompatibility complex genes (MHC), a gene cluster that controls the immune response to parasites, are regarded as an important determinant of mate choice. However, MHC-based mate choice studies are especially rare for endangered animals. The giant panda (Ailuropoda melanoleuca), a flagship species, has suffered habitat loss and fragmentation. We investigated the genetic variation of three MHC class II loci, including DRB1, DQA1, and DQA2, for 19 mating-pairs and 11 parent-pairs of wild giant pandas based on long-term field behavior observations and genetic samples. We tested four hypotheses of mate choice based on this MHC variation. We found no supporting evidence for the MHC-based heterosis, genetic diversity, genetic compatibility and "good gene" hypotheses. These results suggest that giant pandas may not use MHC-based signals to select mating partners, probably because limited mating opportunities or female-biased natal dispersal restricts selection for MHC-based mate choice, acknowledging the caveat of the small sample size often encountered in endangered animal studies. Our study provides insight into the mate choice mechanisms of wild giant pandas and highlights the need to increase the connectivity and facilitate dispersal among fragmented populations and habitats.
Collapse
Affiliation(s)
- Lijun Yu
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yonggang Nie
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| | - Li Yan
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
6
|
Grogan KE, Sauther ML, Cuozzo FP, Drea CM. Genetic wealth, population health: Major histocompatibility complex variation in captive and wild ring-tailed lemurs ( Lemur catta). Ecol Evol 2017; 7:7638-7649. [PMID: 29043021 PMCID: PMC5632616 DOI: 10.1002/ece3.3317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 12/24/2022] Open
Abstract
Across species, diversity at the major histocompatibility complex (MHC) is critical to individual disease resistance and, hence, to population health; however, MHC diversity can be reduced in small, fragmented, or isolated populations. Given the need for comparative studies of functional genetic diversity, we investigated whether MHC diversity differs between populations which are open, that is experiencing gene flow, versus populations which are closed, that is isolated from other populations. Using the endangered ring-tailed lemur (Lemur catta) as a model, we compared two populations under long-term study: a relatively "open," wild population (n = 180) derived from Bezà Mahafaly Special Reserve, Madagascar (2003-2013) and a "closed," captive population (n = 121) derived from the Duke Lemur Center (DLC, 1980-2013) and from the Indianapolis and Cincinnati Zoos (2012). For all animals, we assessed MHC-DRB diversity and, across populations, we compared the number of unique MHC-DRB alleles and their distributions. Wild individuals possessed more MHC-DRB alleles than did captive individuals, and overall, the wild population had more unique MHC-DRB alleles that were more evenly distributed than did the captive population. Despite management efforts to maintain or increase genetic diversity in the DLC population, MHC diversity remained static from 1980 to 2010. Since 2010, however, captive-breeding efforts resulted in the MHC diversity of offspring increasing to a level commensurate with that found in wild individuals. Therefore, loss of genetic diversity in lemurs, owing to small founder populations or reduced gene flow, can be mitigated by managed breeding efforts. Quantifying MHC diversity within individuals and between populations is the necessary first step to identifying potential improvements to captive management and conservation plans.
Collapse
Affiliation(s)
- Kathleen E. Grogan
- University Program in EcologyDuke UniversityDurhamNCUSA
- Department of Evolutionary AnthropologyDuke UniversityDurhamNCUSA
| | | | - Frank P. Cuozzo
- Lajuma Research CentreLouis Trichardt (Makhado)0920South Africa
| | - Christine M. Drea
- University Program in EcologyDuke UniversityDurhamNCUSA
- Department of Evolutionary AnthropologyDuke UniversityDurhamNCUSA
- Department of BiologyDuke UniversityDurhamNCUSA
| |
Collapse
|
7
|
Savage AE, Mulder KP, Torres T, Wells S. Lost but not forgotten: MHC genotypes predict overwinter survival despite depauperate MHC diversity in a declining frog. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-1001-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Nishita Y, Abramov AV, Kosintsev PA, Lin LK, Watanabe S, Yamazaki K, Kaneko Y, Masuda R. Genetic variation of the MHC class II DRB genes in the Japanese weasel, Mustela itatsi, endemic to Japan, compared with the Siberian weasel, Mustela sibirica. ACTA ACUST UNITED AC 2016; 86:431-42. [PMID: 26593752 DOI: 10.1111/tan.12700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 01/19/2023]
Abstract
Major histocompatibility complex (MHC) genes encode proteins that play a critical role in vertebrate immune system and are highly polymorphic. To further understand the molecular evolution of the MHC genes, we compared MHC class II DRB genes between the Japanese weasel (Mustela itatsi), a species endemic to Japan, and the Siberian weasel (Mustela sibirica), a closely related species on the continent. We sequenced a 242-bp region of DRB exon 2, which encodes antigen-binding sites (ABS), and found 24 alleles from 31 M. itatsi individuals and 17 alleles from 21 M. sibirica individuals, including broadly distributed, species-specific and/or geographically restricted alleles. Our results suggest that pathogen-driven balancing selection have acted to maintain the diversity in the DRB genes. For predicted ABS, nonsynonymous substitutions exceeded synonymous substitutions, also indicating positive selection, which was not seen at non-ABS. In a Bayesian phylogenetic tree, two M. sibirica DRB alleles were basal to the rest of the sequences from mustelid species and may represent ancestral alleles. Trans-species polymorphism was evident between many mustelid DRB alleles, especially between M. itatsi and M. sibirica. These two Mustela species divided about 1.7 million years ago, but still share many MHC alleles, indicative of their close phylogenetic relationship.
Collapse
Affiliation(s)
- Y Nishita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - A V Abramov
- Zoological Institute, Russian Academy of Sciences, Moscow, Russia
| | - P A Kosintsev
- Institute of Plant & Animal Ecology, Russian Academy of Sciences, Moscow, Russia
| | - L-K Lin
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - S Watanabe
- Seian University of Art and Design, Otsu, Japan
| | - K Yamazaki
- Forest Ecology Laboratory, Department of Forest Science, Faculty of Regional Environmental Science, Tokyo University of Agriculture, Fuchu, Japan
| | - Y Kaneko
- Department of Ecoregion Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - R Masuda
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Kohyama TI, Omote K, Nishida C, Takenaka T, Saito K, Fujimoto S, Masuda R. Spatial and temporal variation at major histocompatibility complex class IIB genes in the endangered Blakiston's fish owl. ZOOLOGICAL LETTERS 2015; 1:13. [PMID: 26605058 PMCID: PMC4657285 DOI: 10.1186/s40851-015-0013-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/25/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Quantifying intraspecific genetic variation in functionally important genes, such as those of the major histocompatibility complex (MHC), is important in the establishment of conservation plans for endangered species. The MHC genes play a crucial role in the vertebrate immune system and generally show high levels of diversity, which is likely due to pathogen-driven balancing selection. The endangered Blakiston's fish owl (Bubo blakistoni) has suffered marked population declines on Hokkaido Island, Japan, during the past several decades due to human-induced habitat loss and fragmentation. We investigated the spatial and temporal patterns of genetic diversity in MHC class IIβ genes in Blakiston's fish owl, using massively parallel pyrosequencing. RESULTS We found that the Blakiston's fish owl genome contains at least eight MHC class IIβ loci, indicating recent gene duplications. An analysis of sequence polymorphism provided evidence that balancing selection acted in the past. The level of MHC variation, however, was low in the current fish owl populations in Hokkaido: only 19 alleles were identified from 174 individuals. We detected considerable spatial differences in MHC diversity among the geographically isolated populations. We also detected a decline of MHC diversity in some local populations during the past decades. CONCLUSIONS Our study demonstrated that the current spatial patterns of MHC variation in Blakiston's fish owl populations have been shaped by loss of variation due to the decline and fragmentation of populations, and that the short-term effects of genetic drift have counteracted the long-term effects of balancing selection.
Collapse
Affiliation(s)
- Tetsuo I Kohyama
- />Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Keita Omote
- />Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Chizuko Nishida
- />Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Takeshi Takenaka
- />FILIN, Hachiken 2 Jo Nishi 2, Nishi-ku, Sapporo 063-0842 Japan
| | - Keisuke Saito
- />Institute for Raptor Biomedicine, Kushiro, 084-0922 Japan
| | | | - Ryuichi Masuda
- />Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| |
Collapse
|
10
|
Major histocompatibility complex alleles associated with parasite susceptibility in wild giant pandas. Heredity (Edinb) 2014; 114:85-93. [PMID: 25248466 DOI: 10.1038/hdy.2014.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility complex (MHC) polymorphism is thought to be driven by antagonistic coevolution between pathogens and hosts, mediated through either overdominance or frequency-dependent selection. However, investigations under natural conditions are still rare for endangered mammals which often exhibit depleted variation, and the mechanism of selection underlying the maintenance of characteristics remains a considerable debate. In this study, 87 wild giant pandas were used to investigate MHC variation associated with parasite load. With the knowledge of the MHC profile provided by the genomic data of the giant panda, seven DRB1, seven DQA1 and eight DQA2 alleles were identified at each single locus. Positive selection evidenced by a significantly higher number of non-synonymous substitutions per non-synonymous codon site relative to synonymous substitutions per synonymous codon site could only be detected at the DRB1 locus, which leads to the speculation that DRB1 may have a more important role in dealing with parasite infection for pandas. Coprological analyses revealed that 55.17% of individuals exhibited infection with 1-2 helminthes and 95.3% of infected pandas carried Baylisascaris shroederi. Using a generalized linear model, we found that Aime-DRB1*10 was significantly associated with parasite infection, but no resistant alleles could be detected. MHC heterozygosity of the pandas was found to be uncorrelated with the infection status or the infection intensity. These results suggested that the possible selection mechanisms in extant wild pandas may be frequency dependent rather than being determined by overdominance selection. Our findings could guide the candidate selection for the ongoing reintroduction or translocation of pandas.
Collapse
|
11
|
Yang QL, Kong JJ, Wang DW, Zhao SG, Gun SB. Swine Leukocyte Antigen-DQA Gene Variation and Its Association with Piglet Diarrhea in Large White, Landrace and Duroc. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1065-71. [PMID: 25049886 PMCID: PMC4093232 DOI: 10.5713/ajas.2013.13067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/23/2013] [Accepted: 03/29/2013] [Indexed: 01/17/2023]
Abstract
The swine leukocyte antigen class II molecules are possibly associated with the induction of protective immunity. The study described here was to investigate the relationship between polymorphisms in exon 2 of the swine DQA gene and piglet diarrhea. This study was carried out on 425 suckling piglets from three purebred pig strains (Large White, Landrace and Duroc). The genetic diversity of exon 2 in swine DQA was detected by PCR-SSCP and sequencing analysis, eight unique SSCP patterns (AB, BB, BC, CC, CD, BD, BE and DD) representing five specific allele (A to E) sequences were detected. Sequence analysis revealed 21 nucleotide variable sites and resulting in 12 amino acid substitutions in the populations. A moderate level polymorphism and significant deviations from Hardy-Weinberg equilibrium of the genotypes distribution were observed in the populations (p<0.01). The association analysis indicated that there was a statistically significant difference in the score of piglet diarrhea between different genotypes, individuals with genotype CC showed a lower diarrhea score than genotypes AB (0.98±0.09), BB (0.85±0.77) and BC (1.25±0.23) (p<0.05), and significantly low than genotype BE (1.19±0.19) (p<0.01), CC genotype may be a most resistance genotype for piglet diarrhea.
Collapse
Affiliation(s)
- Q L Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - J J Kong
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - D W Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - S G Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - S B Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
12
|
Yasukochi Y, Kurosaki T, Yoneda M, Koike H, Satta Y. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus. BMC Evol Biol 2012. [PMID: 23190438 PMCID: PMC3575356 DOI: 10.1186/1471-2148-12-230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that the Japanese black bears may also retain more potential resistance against pathogens than other endangered mammalian species. To prevent further decline of potential resistance against pathogens, a conservation policy for the Japanese black bear should be designed to maintain MHC rare variants in each local population.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Evolutionary Studies of Biosystems, the Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan.
| | | | | | | | | |
Collapse
|
13
|
Wei F, Hu Y, Zhu L, Bruford MW, Zhan X, Zhang L. Black and white and read all over: the past, present and future of giant panda genetics. Mol Ecol 2012; 21:5660-74. [PMID: 23130639 DOI: 10.1111/mec.12096] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 11/29/2022]
Abstract
Few species attract much more attention from the public and scientists than the giant panda (Ailuropoda melanoleuca), a popular, enigmatic but highly endangered species. The application of molecular genetics to its biology and conservation has facilitated surprising insights into the biology of giant pandas as well as the effectiveness of conservation efforts during the past decades. Here, we review the history of genetic advances in this species, from phylogeny, demographical history, genetic variation, population structure, noninvasive population census and adaptive evolution to reveal to what extent the current status of the giant panda is a reflection of its evolutionary legacy, as opposed to the influence of anthropogenic factors that have negatively impacted this species. In addition, we summarize the conservation implications of these genetic findings applied for the management of this high-profile species. Finally, on the basis of these advances and predictable future changes in genetic technology, we discuss future research directions that seem promising for giant panda biology and conservation.
Collapse
Affiliation(s)
- Fuwen Wei
- Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing 100101, China.
| | | | | | | | | | | |
Collapse
|
14
|
Ujvari B, Belov K. Major Histocompatibility Complex (MHC) markers in conservation biology. Int J Mol Sci 2011; 12:5168-86. [PMID: 21954351 PMCID: PMC3179158 DOI: 10.3390/ijms12085168] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/27/2011] [Accepted: 08/05/2011] [Indexed: 12/28/2022] Open
Abstract
Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity.
Collapse
Affiliation(s)
- Beata Ujvari
- Faculty of Veterinary Science, University of Sydney, RMC Gunn Bldg, Sydney, NSW 2006, Australia; E-Mail:
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney, RMC Gunn Bldg, Sydney, NSW 2006, Australia; E-Mail:
| |
Collapse
|
15
|
Goda N, Mano T, Kosintsev P, Vorobiev A, Masuda R. Allelic diversity of the MHC class II DRB genes in brown bears (Ursus arctos) and a comparison of DRB sequences within the family Ursidae. ACTA ACUST UNITED AC 2010; 76:404-10. [PMID: 20630039 DOI: 10.1111/j.1399-0039.2010.01528.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The allelic diversity of the DRB locus in major histocompatibility complex (MHC) genes was analyzed in the brown bear (Ursus arctos) from the Hokkaido Island of Japan, Siberia, and Kodiak of Alaska. Nineteen alleles of the DRB exon 2 were identified from a total of 38 individuals of U. arctos and were highly polymorphic. Comparisons of non-synonymous and synonymous substitutions in the antigen-binding sites of deduced amino acid sequences indicated evidence for balancing selection on the bear DRB locus. The phylogenetic analysis of the DRB alleles among three genera (Ursus, Tremarctos, and Ailuropoda) in the family Ursidae revealed that DRB allelic lineages were not separated according to species. This strongly shows trans-species persistence of DRB alleles within the Ursidae.
Collapse
Affiliation(s)
- N Goda
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
16
|
Radwan J, Biedrzycka A, Babik W. Does reduced MHC diversity decrease viability of vertebrate populations? BIOLOGICAL CONSERVATION 2010; 143:537-544. [PMID: 32226082 PMCID: PMC7092871 DOI: 10.1016/j.biocon.2009.07.026] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 07/09/2009] [Accepted: 07/27/2009] [Indexed: 05/12/2023]
Abstract
Loss of genetic variation may render populations more vulnerable to pathogens due to inbreeding depression and depletion of variation in genes responsible for immunity against parasites. Here we review the evidence for the significance of variation in genes of the Major Histocompatibility Complex (MHC) for conservation efforts. MHC molecules present pathogen-derived antigens to the effector cells of the immune system and thus trigger the adaptive immune response. Some MHC genes are the most variable functional genes in the vertebrate genome. Their variation is clearly of adaptive significance and there is considerable evidence that its maintenance is mainly due to balancing selection imposed by pathogens. However, while the evidence for selection shaping MHC variation on the historical timescale is compelling, a correlation between levels of MHC variation and variation at neutral loci is often observed, indicating that on a shorter timescale drift also substantially affects MHC, leading to depletion of MHC diversity. The evidence that the loss of MHC variation negatively affects population survival is so far equivocal and difficult to separate from effects of general inbreeding. Some species with depleted MHC variation seem to be particularly susceptible to infection, but other species thrive and expand following severe bottlenecks that have drastically limited their MHC variation. However, while the latter demonstrate that MHC variation is not always critical for population survival, these species may in fact represent rare examples of survival despite of the loss of MHC variation. There is clearly a compelling need for data that would disclose the possible consequences of MHC diversity for population viability. In particular, we need more data on the impact of MHC allelic richness on the abundance of parasites or prevalence of disease in populations, while controlling for the role of general inbreeding. Before such evidence accumulates, captive breeding programs and other conservation measures aimed at inbreeding avoidance should be favoured over those protecting only MHC variation, especially since inbreeding avoidance programs would usually conserve both types of genetic diversity simultaneously.
Collapse
Affiliation(s)
- Jacek Radwan
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120 Kraków, Poland
| | - Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120 Kraków, Poland
| | - Wiesław Babik
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| |
Collapse
|
17
|
|
18
|
Goda N, Mano T, Masuda R. Genetic Diversity of the MHC Class-IIDQAGene in Brown Bears (Ursus arctos) on Hokkaido, Northern Japan. Zoolog Sci 2009; 26:530-5. [DOI: 10.2108/zsj.26.530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Pan HJ, Wan QH, Fang SG. Molecular characterization of major histocompatibility complex class I genes from the giant panda (Ailuropoda melanoleuca). Immunogenetics 2008; 60:185-93. [DOI: 10.1007/s00251-008-0281-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
20
|
Zeng CJ, Pan HJ, Gong SB, Yu JQ, Wan QH, Fang SG. Giant panda BAC library construction and assembly of a 650-kb contig spanning major histocompatibility complex class II region. BMC Genomics 2007; 8:315. [PMID: 17825108 PMCID: PMC2018726 DOI: 10.1186/1471-2164-8-315] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 09/08/2007] [Indexed: 11/24/2022] Open
Abstract
Background Giant panda is rare and endangered species endemic to China. The low rates of reproductive success and infectious disease resistance have severely hampered the development of captive and wild populations of the giant panda. The major histocompatibility complex (MHC) plays important roles in immune response and reproductive system such as mate choice and mother-fetus bio-compatibility. It is thus essential to understand genetic details of the giant panda MHC. Construction of a bacterial artificial chromosome (BAC) library will provide a new tool for panda genome physical mapping and thus facilitate understanding of panda MHC genes. Results A giant panda BAC library consisting of 205,800 clones has been constructed. The average insert size was calculated to be 97 kb based on the examination of 174 randomly selected clones, indicating that the giant panda library contained 6.8-fold genome equivalents. Screening of the library with 16 giant panda PCR primer pairs revealed 6.4 positive clones per locus, in good agreement with an expected 6.8-fold genomic coverage of the library. Based on this BAC library, we constructed a contig map of the giant panda MHC class II region from BTNL2 to DAXX spanning about 650 kb by a three-step method: (1) PCR-based screening of the BAC library with primers from homologous MHC class II gene loci, end sequences and BAC clone shotgun sequences, (2) DNA sequencing validation of positive clones, and (3) restriction digest fingerprinting verification of inter-clone overlapping. Conclusion The identifications of genes and genomic regions of interest are greatly favored by the availability of this giant panda BAC library. The giant panda BAC library thus provides a useful platform for physical mapping, genome sequencing or complex analysis of targeted genomic regions. The 650 kb sequence-ready BAC contig map of the giant panda MHC class II region from BTNL2 to DAXX, verified by the three-step method, offers a powerful tool for further studies on the giant panda MHC class II genes.
Collapse
Affiliation(s)
- Chang-Jun Zeng
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- State Conservation Center for Gene Resources of Endangered Wildlife and the Key Laboratory of Conservation Genetics and Reproductive Biology for Endangered Wild Animals of the Ministry of Education, Hangzhou 310058, P. R. China
| | - Hui-Juan Pan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- State Conservation Center for Gene Resources of Endangered Wildlife and the Key Laboratory of Conservation Genetics and Reproductive Biology for Endangered Wild Animals of the Ministry of Education, Hangzhou 310058, P. R. China
| | - Shao-Bin Gong
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- State Conservation Center for Gene Resources of Endangered Wildlife and the Key Laboratory of Conservation Genetics and Reproductive Biology for Endangered Wild Animals of the Ministry of Education, Hangzhou 310058, P. R. China
| | - Jian-Qiu Yu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- State Conservation Center for Gene Resources of Endangered Wildlife and the Key Laboratory of Conservation Genetics and Reproductive Biology for Endangered Wild Animals of the Ministry of Education, Hangzhou 310058, P. R. China
| | - Qiu-Hong Wan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- State Conservation Center for Gene Resources of Endangered Wildlife and the Key Laboratory of Conservation Genetics and Reproductive Biology for Endangered Wild Animals of the Ministry of Education, Hangzhou 310058, P. R. China
| | - Sheng-Guo Fang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- State Conservation Center for Gene Resources of Endangered Wildlife and the Key Laboratory of Conservation Genetics and Reproductive Biology for Endangered Wild Animals of the Ministry of Education, Hangzhou 310058, P. R. China
| |
Collapse
|