1
|
Qian R, Xie F, Zhang W, Kong J, Zhou X, Wang C, Li X. Genome-wide detection of CNV regions between Anqing six-end-white and Duroc pigs. Mol Cytogenet 2023; 16:12. [PMID: 37400846 PMCID: PMC10316616 DOI: 10.1186/s13039-023-00646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Anqing six-end-white pig is a native breed in Anhui Province. The pigs have the disadvantages of a slow growth rate, low proportion of lean meat, and thick back fat, but feature the advantages of strong stress resistance and excellent meat quality. Duroc pig is an introduced pig breed with a fast growth rate and high proportion of lean meat. With the latter breed featuring superior growth characteristics but inferior meat quality traits, the underlying molecular mechanism that causes these phenotypic differences between Chinese and foreign pigs is still unclear. RESULTS In this study, copy number variation (CNV) detection was performed using the re-sequencing data of Anqing Six-end-white pigs and Duroc pigs, A total of 65,701 CNVs were obtained. After merging the CNVs with overlapping genomic positions, 881 CNV regions (CNVRs) were obtained. Based on the obtained CNVR information combined with their positions on the 18 chromosomes, a whole-genome map of the pig CNVs was drawn. GO analysis of the genes in the CNVRs showed that they were primarily involved in the cellular processes of proliferation, differentiation, and adhesion, and primarily involved in the biological processes of fat metabolism, reproductive traits, and immune processes. CONCLUSION The difference analysis of the CNVs between the Chinese and foreign pig breeds showed that the CNV of the Anqing six-end-white pig genome was higher than that of the introduced pig breed Duroc. Six genes related to fat metabolism, reproductive performance, and stress resistance were found in genome-wide CNVRs (DPF3, LEPR, MAP2K6, PPARA, TRAF6, NLRP4).
Collapse
Affiliation(s)
- Rong Qian
- Institue of Agricultural Economics and Information, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Fei Xie
- College of Animal Science, Anhui Science and Technology University, Fengyang County, 233100, Anhui Province, China
| | - Wei Zhang
- Institue of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - JuanJuan Kong
- Institue of Agricultural Economics and Information, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Xueli Zhou
- Institue of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Chonglong Wang
- Institue of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| | - Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Fengyang County, 233100, Anhui Province, China.
| |
Collapse
|
2
|
Variations in BCO2 Coding Sequence Causing a Difference in Carotenoid Concentration in the Skin of Chinese Indigenous Chicken. Genes (Basel) 2023; 14:genes14030671. [PMID: 36980942 PMCID: PMC10048632 DOI: 10.3390/genes14030671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Carotenoid consumption decreases the risk of cancer, osteoporosis, or neurodegenerative diseases through interrupting the formation of free radicals. The deposition of carotenoids in chicken skin makes the skin color turn from white into yellow. The enzyme β-carotene oxygenase 2 (BCO2) plays a key role during the degradation process of carotenoids in skin. How the BCO2 affects the skin color of the chicken and whether it is the key factor that results in the phenotypic difference between yellow- and white-skin chickens are still unclear. In this research, the measurement of the concentration of carotenoids in chicken skin by HPLC showed that the carotenoid concentration in chickens with a yellow skin was significantly higher than that in white-skin chickens. Moreover, there were significant differences in BCO2 gene expression in the back skin between yellow- and white-skin chickens. Scanning the SNPs in BCO2 gene revealed a G/A mutation in exon 6 of the BCO2 gene in white and yellow skin chicken. Generally, one SNP c.890A>G was found to be associated with the chicken skin color and may be used as a genetic marker in breeding for yellow skin in Chinese indigenous chickens.
Collapse
|
3
|
Genome-Wide Detection and Analysis of Copy Number Variation in Anhui Indigenous and Western Commercial Pig Breeds Using Porcine 80K SNP BeadChip. Genes (Basel) 2023; 14:genes14030654. [PMID: 36980927 PMCID: PMC10047991 DOI: 10.3390/genes14030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Copy number variation (CNV) is an important class of genetic variations widely associated with the porcine genome, but little is known about the characteristics of CNVs in foreign and indigenous pig breeds. We performed a genome-wide comparison of CNVs between Anhui indigenous pig (AHIP) and Western commercial pig (WECP) breeds based on data from the Porcine 80K SNP BeadChip. After analysis using the PennCNV software, we detected 3863 and 7546 CNVs in the AHIP and WECP populations, respectively. We obtained 225 (loss: 178, gain: 47) and 379 (loss: 293, gain: 86) copy number variation regions (CNVRs) randomly distributed across the autosomes of the AHIP and WECP populations, accounting for 10.90% and 22.57% of the porcine autosomal genome, respectively. Functional enrichment analysis of genes in the CNVRs identified genes related to immunity (FOXJ1, FOXK2, MBL2, TNFRSF4, SIRT1, NCF1) and meat quality (DGAT1, NT5E) in the WECP population; these genes were a loss event in the WECP population. This study provides important information on CNV differences between foreign and indigenous pig breeds, making it possible to provide a reference for future improvement of these breeds and their production performance.
Collapse
|
4
|
Ding X, Zhao R, Dai Y, Zhang Y, Lin S, Ye J. Comprehensive Analysis of Copy Number Variations on Glycoside Hydrolase 45 Genes among Different Bursaphelenchus xylophilus Strains. Int J Mol Sci 2022; 23:ijms232315323. [PMID: 36499649 PMCID: PMC9735991 DOI: 10.3390/ijms232315323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Bursaphelenchus xylophilus is considered the most dangerous quarantine pest in China. It causes enormous economic and ecological losses in many countries from Asia and Europe. The glycoside hydrolase 45 gene family has been demonstrated in early studies to contribute to the cell wall degradation ability of B. xylophilus during its infection. However, the copy number variation (CNV) of the GH45 gene and its association with B. xylophilus pathogenicity were not fully elucidated. In this study, we found that the GH45 gene with two copies is the most predominant type among 259 B. xylophilus strains collected from China and Japan. Additionally, 18 strains are identified as GH45 genes with a single copy, and only two strains are verified to have three copies. Subsequent expression analysis and inoculation test suggest that the copy numbers of the GH45 gene are correlated with gene expression as well as the B. xylophilus pathogenicity. B. xylophilus strains with more copies of the GH45 gene usually exhibit more abundant expression and cause more severe wilt symptoms on pine trees. The aforementioned results indicated the potential regulatory effects of CNV in B. xylophilus and provided novel information to better understand the molecular pathogenesis of this devastating pest.
Collapse
Affiliation(s)
- Xiaolei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
- Correspondence:
| | - Ruiwen Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| | - Yonglin Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| | - Sixi Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| |
Collapse
|
5
|
Copy Number Variation of the SOX6 Gene and Its Associations with Growth Traits in Ashidan Yak. Animals (Basel) 2022; 12:ani12223074. [PMID: 36428302 PMCID: PMC9686495 DOI: 10.3390/ani12223074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Copy number variation (CNV) is a fundamental type of structural variation of the genome affecting the economic traits of livestock. The SOX6 gene (sex-determining region Y-box 6), as a transcription factor, has multiple functions with regard to sex determination, embryonic growth, the nervous system development, as well as bone, and various organ formation. This study employed quantitative real-time fluorescence quota PCR (qPCR) for detecting the SOX6-CNV of the 311 Ashidan yaks and analyzed the correlation of the SOX6-CNV with four phenotypes (including body weight, withers height, body length, and chest girth) of the yaks aged 6, 12, 18, and 30 months using ANOVA and multiple comparisons. Furthermore, the SOX6 gene expression was identified in seven different tissues of the yaks. The experiment results demonstrated the expression of SOX6 in each tissue, and the kidney and muscle tissue were found to have higher relative expression levels. Based on the processing by IBM SPSS software, SOX6-CNV was significantly correlated with the chest girth of the 6-months old yaks (p < 0.05) and 30-months yaks (p < 0.05), and withers height of 6 months yaks (p < 0.05) and 18-months yaks (p < 0.05), as well as the normal type of CNV, was chosen for yak breeding. In conclusion, SOX6 might be prominently involved in promoting growth and development of yaks, suggesting that the SOX6 gene can be used in breeding yaks by molecular marker-assisted selection (MAS). The study also offered some important insights into the references and clues for the genetic breeding of yaks.
Collapse
|
6
|
Fontanesi L. Genetics and genomics of pigmentation variability in pigs: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Wang Z, Guo Y, Liu S, Meng Q. Genome-Wide Assessment Characteristics of Genes Overlapping Copy Number Variation Regions in Duroc Purebred Population. Front Genet 2021; 12:753748. [PMID: 34721540 PMCID: PMC8552909 DOI: 10.3389/fgene.2021.753748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Copy number variations (CNVs) are important structural variations that can cause significant phenotypic diversity. Reliable CNVs mapping can be achieved by identification of CNVs from different genetic backgrounds. Investigations on the characteristics of overlapping between CNV regions (CNVRs) and protein-coding genes (CNV genes) or miRNAs (CNV-miRNAs) can reveal the potential mechanisms of their regulation. In this study, we used 50 K SNP arrays to detect CNVs in Duroc purebred pig. A total number of 211 CNVRs were detected with a total length of 118.48 Mb, accounting for 5.23% of the autosomal genome sequence. Of these CNVRs, 32 were gains, 175 losses, and four contained both types (loss and gain within the same region). The CNVRs we detected were non-randomly distributed in the swine genome and were significantly enriched in the segmental duplication and gene density region. Additionally, these CNVRs were overlapping with 1,096 protein-coding genes (CNV-genes), and 39 miRNAs (CNV-miRNAs), respectively. The CNV-genes were enriched in terms of dosage-sensitive gene list. The expression of the CNV genes was significantly higher than that of the non-CNV genes in the adult Duroc prostate. Of all detected CNV genes, 22.99% genes were tissue-specific (TSI > 0.9). Strong negative selection had been underway in the CNV-genes as the ones that were located entirely within the loss CNVRs appeared to be evolving rapidly as determined by the median dN plus dS values. Non-CNV genes tended to be miRNA target than CNV-genes. Furthermore, CNV-miRNAs tended to target more genes compared to non-CNV-miRNAs, and a combination of two CNV-miRNAs preferentially synergistically regulated the same target genes. We also focused our efforts on examining CNV genes and CNV-miRNAs functions, which were also involved in the lipid metabolism, including DGAT1, DGAT2, MOGAT2, miR143, miR335, and miRLET7. Further molecular experiments and independent large studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Shengwei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Qingli Meng
- Beijing Breeding Swine Center, Beijing, China
| |
Collapse
|
8
|
Wang X, Zheng Z, Cai Y, Chen T, Li C, Fu W, Jiang Y. CNVcaller: highly efficient and widely applicable software for detecting copy number variations in large populations. Gigascience 2018; 6:1-12. [PMID: 29220491 PMCID: PMC5751039 DOI: 10.1093/gigascience/gix115] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/17/2017] [Indexed: 01/01/2023] Open
Abstract
Background The increasing amount of sequencing data available for a wide variety of species can be theoretically used for detecting copy number variations (CNVs) at the population level. However, the growing sample sizes and the divergent complexity of nonhuman genomes challenge the efficiency and robustness of current human-oriented CNV detection methods. Results Here, we present CNVcaller, a read-depth method for discovering CNVs in population sequencing data. The computational speed of CNVcaller was 1-2 orders of magnitude faster than CNVnator and Genome STRiP for complex genomes with thousands of unmapped scaffolds. CNV detection of 232 goats required only 1.4 days on a single compute node. Additionally, the Mendelian consistency of sheep trios indicated that CNVcaller mitigated the influence of high proportions of gaps and misassembled duplications in the nonhuman reference genome assembly. Furthermore, multiple evaluations using real sheep and human data indicated that CNVcaller achieved the best accuracy and sensitivity for detecting duplications. Conclusions The fast generalized detection algorithms included in CNVcaller overcome prior computational barriers for detecting CNVs in large-scale sequencing data with complex genomic structures. Therefore, CNVcaller promotes population genetic analyses of functional CNVs in more species.
Collapse
Affiliation(s)
- Xihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuqing Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yudong Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Gong J, Cheng T, Wu Y, Yang X, Feng Q, Mita K. Genome-wide patterns of copy number variations in Spodoptera litura. Genomics 2018; 111:1231-1238. [PMID: 30114452 DOI: 10.1016/j.ygeno.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/26/2018] [Accepted: 08/04/2018] [Indexed: 01/06/2023]
Abstract
Spodoptera litura is a polyphagous pest and can feed on more than 100 species of plants, causing great damage to agricultural production. The SNP results showed that there were gene exchanges between different regions. To explore the variations of larger segments in S. litura genome, we used genome resequencing samples from 14 regions of China, India, and Japan to study the copy number variations (CNVs). We identified 3976 CNV events and 1581 unique copy number variation regions (CNVRs) occupying the 108.5 Mb genome of S. litura. A total of 5527 genes that overlapped with CNVRs were detected. Selection signal analysis identified 19 shared CNVRs and 105 group-specific CNVRs, whose related genes were involved in various biological processes in S. litura. We constructed the first CNVs map in S. litura genome, and our findings will be valuable for understanding the genomic variations and population differences of S. litura.
Collapse
Affiliation(s)
- Jiao Gong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, South China Normal University, Guangzhou 510631, China
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| |
Collapse
|
10
|
Li X, Li X, Luo R, Wang W, Wang T, Tang H. Detection of KIT Genotype in Pigs by TaqMan MGB Real-Time Quantitative Polymerase Chain Reaction. DNA Cell Biol 2018; 37:457-464. [DOI: 10.1089/dna.2017.4070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xiuxiu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, P.R. China
- College of Animal Science, Shandong Agricultural University, Tai'an, P.R. China
| | - Xiaoning Li
- Lishan College, Shandong Normal University, Jinan, P.R. China
| | - Rongrong Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, P.R. China
- College of Animal Science, Shandong Agricultural University, Tai'an, P.R. China
| | - Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, P.R. China
- College of Animal Science, Shandong Agricultural University, Tai'an, P.R. China
| | - Tao Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, P.R. China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, P.R. China
- College of Animal Science, Shandong Agricultural University, Tai'an, P.R. China
| |
Collapse
|
11
|
Analysis of genome-wide copy number variations in Chinese indigenous and western pig breeds by 60 K SNP genotyping arrays. PLoS One 2014; 9:e106780. [PMID: 25198154 PMCID: PMC4157799 DOI: 10.1371/journal.pone.0106780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022] Open
Abstract
Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs.
Collapse
|
12
|
|
13
|
Li S, Wang C, Yu W, Zhao S, Gong Y. Identification of genes related to white and black plumage formation by RNA-Seq from white and black feather bulbs in ducks. PLoS One 2012; 7:e36592. [PMID: 22615785 PMCID: PMC3352928 DOI: 10.1371/journal.pone.0036592] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/03/2012] [Indexed: 01/19/2023] Open
Abstract
To elucidate the genes involved in the formation of white and black plumage in ducks, RNA from white and black feather bulbs of an F(2) population were analyzed using RNA-Seq. A total of 2,642 expressed sequence tags showed significant differential expression between white and black feather bulbs. Among these tags, 186 matched 133 annotated genes that grouped into 94 pathways. A number of genes controlling melanogenesis showed differential expression between the two types of feather bulbs. This differential expression was confirmed by qPCR analysis and demonstrated that Tyr (Tyrosinase) and Tyrp1 (Tyrosinase-related protein-1) were expressed not in W-W (white feather bulb from white dorsal plumage) and W-WB (white feather bulb from white-black dorsal plumage) but in B-B (black feather bulb from black dorsal plumage) and B-WB (black feather bulb from white-black dorsal plumage) feather bulbs. Tyrp2 (Tyrosinase-related protein-2) gene did not show expression in the four types of feather bulbs but expressed in retina. C-kit (The tyrosine kinase receptor) expressed in all of the samples but the relative mRNA expression in B-B or B-WB was approximately 10 fold higher than that in W-W or W-WB. Additionally, only one of the two Mitf isoforms was associated with plumage color determination. Downregulation of c-Kit and Mitf in feather bulbs may be the cause of white plumage in the duck.
Collapse
Affiliation(s)
- Shijun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Cui Wang
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenhua Yu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuhong Zhao
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yanzhang Gong
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
14
|
Whole-genome association study for the roan coat color in an intercrossed pig population between Landrace and Korean native pig. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0108-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Ramayo-Caldas Y, Castelló A, Pena RN, Alves E, Mercadé A, Souza CA, Fernández AI, Perez-Enciso M, Folch JM. Copy number variation in the porcine genome inferred from a 60 k SNP BeadChip. BMC Genomics 2010; 11:593. [PMID: 20969757 PMCID: PMC3091738 DOI: 10.1186/1471-2164-11-593] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/22/2010] [Indexed: 12/17/2022] Open
Abstract
Background Recent studies in pigs have detected copy number variants (CNVs) using the Comparative Genomic Hybridization technique in arrays designed to cover specific porcine chromosomes. The goal of this study was to identify CNV regions (CNVRs) in swine species based on whole genome SNP genotyping chips. Results We used predictions from three different programs (cnvPartition, PennCNV and GADA) to analyze data from the Porcine SNP60 BeadChip. A total of 49 CNVRs were identified in 55 animals from an Iberian x Landrace cross (IBMAP) according to three criteria: detected in at least two animals, contained three or more consecutive SNPs and recalled by at least two programs. Mendelian inheritance of CNVRs was confirmed in animals belonging to several generations of the IBMAP cross. Subsequently, a segregation analysis of these CNVRs was performed in 372 additional animals from the IBMAP cross and its distribution was studied in 133 unrelated pig samples from different geographical origins. Five out of seven analyzed CNVRs were validated by real time quantitative PCR, some of which coincide with well known examples of CNVs conserved across mammalian species. Conclusions Our results illustrate the usefulness of Porcine SNP60 BeadChip to detect CNVRs and show that structural variants can not be neglected when studying the genetic variability in this species.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Henshall JM, Whan VA, Norris BJ. Reconstructing CNV genotypes using segregation analysis: combining pedigree information with CNV assay. Genet Sel Evol 2010; 42:34. [PMID: 20701809 PMCID: PMC2928190 DOI: 10.1186/1297-9686-42-34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 08/12/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Repeated blocks of genome sequence have been shown to be associated with genetic diversity and disease risk in humans, and with phenotypic diversity in model organisms and domestic animals. Reliable tests are desirable to determine whether individuals are carriers of copy number variants associated with disease risk in humans and livestock, or associated with economically important traits in livestock. In some cases, copy number variants affect the phenotype through a dosage effect but in other cases, allele combinations have non-additive effects. In the latter cases, it has been difficult to develop tests because assays typically return an estimate of the sum of the copy number counts on the maternally and paternally inherited chromosome segments, and this sum does not uniquely determine the allele configuration. In this study, we show that there is an old solution to this new problem: segregation analysis, which has been used for many years to infer alleles in pedigreed populations. METHODS Segregation analysis was used to estimate copy number alleles from assay data on simulated half-sib sheep populations. Copy number variation at the Agouti locus, known to be responsible for the recessive self-colour black phenotype, was used as a model for the simulation and an appropriate penetrance function was derived. The precision with which carriers and non-carriers of the undesirable single copy allele could be identified, was used to evaluate the method for various family sizes, assay strategies and assay accuracies. RESULTS Using relationship data and segregation analysis, the probabilities of carrying the copy number alleles responsible for black or white fleece were estimated with much greater precision than by analyzing assay results for animals individually. The proportion of lambs correctly identified as non-carriers of the undesirable allele increased from 7% when the lambs were analysed alone to 80% when the lambs were analysed in half-sib families. CONCLUSIONS When a quantitative assay is used to estimate copy number alleles, segregation analysis of related individuals can greatly improve the precision of the estimates. Existing software for segregation analysis would require little if any change to accommodate the penetrance function for copy number assay data.
Collapse
Affiliation(s)
- John M Henshall
- CSIRO Livestock Industries, FD McMaster Laboratory Chiswick, Armidale, 2350, NSW, Australia
| | - Vicki A Whan
- CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia 4067, Queensland, Australia
| | - Belinda J Norris
- CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia 4067, Queensland, Australia
| |
Collapse
|
17
|
Hwang KC, Cho SK, Lee SH, Park JY, Kwon DN, Choi YJ, Park C, Kim JH, Park KK, Hwang S, Park SB, Kim JH. Depigmentation of skin and hair color in the somatic cell cloned pig. Dev Dyn 2009; 238:1701-8. [PMID: 19504460 DOI: 10.1002/dvdy.21986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Previously, we have successfully produced nine cloned piglets using Duroc donor cells. Among these clones, one showed distinct depigmentation of the skin and hair color during puberty. In this study, we selected a clone with depigmentation to investigate the etiology of the anomaly in somatic cell nuclear transfer. We hypothesized that genes related to Waardenburg syndrome (Mitf, Pax-3, Sox-10, Slug, and Kit) are closely associated with the depigmentation of pig, which was derived from somatic cell nuclear transfer (scNT). Total RNA was extracted from the ear tissue of affected and unaffected scNT-derived pigs, and the transcripts encoding Mitf, Pax-3, Sox-10, and Slug, together with the Kit gene, were amplified by reverse transcription-polymerase chain reaction, sequenced, and analyzed. The cDNA sequences from the scNT pig that showed progressive depigmentation did not reveal a mutation in these genes. Although we did not find any mutations in these genes, expression of the genes implicated in Waardenburg syndrome was severely down-regulated in the affected scNT pig when compared with unaffected scNT pigs. This down-regulation of gene expression may result in a previously undescribed phenotype that shows melanocyte instability, leading to progressive loss of pigmentation.
Collapse
Affiliation(s)
- Kyu-Chan Hwang
- Department of Animal Biotechnology, KonKuk University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|