1
|
Alipanah M, Mazloom SM, Gharari F. Detection of selective sweep in European wild sheep breeds. 3 Biotech 2024; 14:122. [PMID: 38560387 PMCID: PMC10978567 DOI: 10.1007/s13205-024-03964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
In wild animal populations, there is a differentiation between populations due to natural selection. The direction and pressure of natural selection in the wild sheep are different in the various geographic areas. Linkage disequilibrium studies showed that regions of the genome in whole wild sheep are under natural selection and that natural selection can affect immune or reproductive or metabolic traits. The study aimed to identify genomic regions under natural selection in wild sheep. For this purpose, the genetic information of 24 European wild sheep and 24 Sardinian wild sheep was used. The genotypes were determined using Illumina 50 K SNPChip arrays based on Oar_4.0 version of the sheep genome. After quality control steps, finally, 31,560 SNP markers were analyzed. The value of LD was calculated by calculating the r2 statistic between all pairs of locations through PLINK software. To identify signs of selection based on linkage disequilibrium methods, an extended haplotype homozygosity test of XP-EHH crossing population and iHS intrapopulation was used. The results of iHS studies showed that in European and Sardinian wild sheep, the highest iHS coefficient under natural selection was observed on 3 and 2 chromosome numbers, respectively. Also, the results of XP-EHH studies showed that the largest XP-EHH coefficients under natural selection in European wild sheep compared to Sardinian and vice versa in Sardinian wild sheep compared to European wild sheep were observed on 3 and 16 chromosome numbers, respectively. In addition, the results of gene cycle studies showed that COPB1, SEC24D, ZDHHC17, BBS4, RFX3, SLC26A8, CAMK2D, GRIA1, GRM1, GRID2, PPP2R1A, CPEB4, PLEKHA5 and KIF13A, VPS39, VPS53, DTNBP1, DYNC1I1, FAM91A genes are under natural selection in Sardinian and European wild sheeps, respectively. The direction and selection pressure of natural selection in the two breeds of wild sheep is different due to different geographic conditions.
Collapse
Affiliation(s)
- Masoud Alipanah
- Department of Plant Production, University of Torbat Heydarieh, Torbat Heydarieh, 9516168595 Iran
| | - Seyed Mostafa Mazloom
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, 9177948974 Iran
| | - Faezeh Gharari
- Department of Plant Production, University of Torbat Heydarieh, Torbat Heydarieh, 9516168595 Iran
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, 9177948974 Iran
| |
Collapse
|
2
|
Genetic characterization of Mangalarga Marchador horse. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Nel C, Gurman P, Swan A, van der Werf J, Snyman M, Dzama K, Gore K, Scholtz A, Cloete S. The genomic structure of isolation across breed, country and strain for important South African and Australian sheep populations. BMC Genomics 2022; 23:23. [PMID: 34983377 PMCID: PMC8725491 DOI: 10.1186/s12864-021-08020-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/13/2021] [Indexed: 01/15/2023] Open
Abstract
Background South Africa and Australia shares multiple important sheep breeds. For some of these breeds, genomic breeding values are provided to breeders in Australia, but not yet in South Africa. Combining genomic resources could facilitate development for across country selection, but the influence of population structures could be important to the compatability of genomic data from varying origins. The genetic structure within and across breeds, countries and strains was evaluated in this study by population genomic parameters derived from SNP-marker data. Populations were first analysed by breed and country of origin and then by subpopulations of South African and Australian Merinos. Results Mean estimated relatedness according to the genomic relationship matrix varied by breed (-0.11 to 0.16) and bloodline (-0.08 to 0.06) groups and depended on co-ancestry as well as recent genetic links. Measures of divergence across bloodlines (FST: 0.04–0.12) were sometimes more distant than across some breeds (FST: 0.05–0.24), but the divergence of common breeds from their across-country equivalents was weak (FST: 0.01–0.04). According to mean relatedness, FST, PCA and Admixture, the Australian Ultrafine line was better connected to the SA Cradock Fine Wool flock than with other AUS bloodlines. Levels of linkage disequilibrium (LD) between adjacent markers was generally low, but also varied across breeds (r2: 0.14–0.22) as well as bloodlines (r2: 0.15–0.19). Patterns of LD decay was also unique to breeds, but bloodlines differed only at the absolute level. Estimates of effective population size (Ne) showed genetic diversity to be high for the majority of breeds (Ne: 128–418) but also for bloodlines (Ne: 137–369). Conclusions This study reinforced the genetic complexity and diversity of important sheep breeds, especially the Merino breed. The results also showed that implications of isolation can be highly variable and extended beyond breed structures. However, knowledge of useful links across these population substructures allows for a fine-tuned approach in the combination of genomic resources. Isolation across country rarely proved restricting compared to other structures considered. Consequently, research into the accuracy of across-country genomic prediction is recommended. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08020-3.
Collapse
Affiliation(s)
- Cornelius Nel
- Department of Animal Sciences, Stellenbosch University, 7602, Stellenbosch, South Africa. .,Animal Sciences, Western Cape Department of Agriculture, 7607, Elsenburg, South Africa.
| | - Phillip Gurman
- Animal Genetics & Breeding Unit, University of New England, NSW, 2351, Armidale, Australia
| | - Andrew Swan
- Animal Genetics & Breeding Unit, University of New England, NSW, 2351, Armidale, Australia
| | - Julius van der Werf
- School of Environmental and Rural Science, University of New England, 2351, Armidale, NSW, Australia
| | - Margaretha Snyman
- Department of Agriculture, Land Reform and Rural Development, Grootfontein Agricultural Development Institute, 5900, Middelburg, South Africa
| | - Kennedy Dzama
- Department of Animal Sciences, Stellenbosch University, 7602, Stellenbosch, South Africa
| | - Klint Gore
- Animal Genetics & Breeding Unit, University of New England, NSW, 2351, Armidale, Australia
| | - Anna Scholtz
- Animal Sciences, Western Cape Department of Agriculture, 7607, Elsenburg, South Africa
| | - Schalk Cloete
- Department of Animal Sciences, Stellenbosch University, 7602, Stellenbosch, South Africa.,Animal Sciences, Western Cape Department of Agriculture, 7607, Elsenburg, South Africa
| |
Collapse
|
4
|
Rahimmadar S, Ghaffari M, Mokhber M, Williams JL. Linkage Disequilibrium and Effective Population Size of Buffalo Populations of Iran, Turkey, Pakistan, and Egypt Using a Medium Density SNP Array. Front Genet 2021; 12:608186. [PMID: 34950186 PMCID: PMC8689148 DOI: 10.3389/fgene.2021.608186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
Linkage disequilibrium (LD) across the genome provides information to identify the genes and variations related to quantitative traits in genome-wide association studies (GWAS) and for the implementation of genomic selection (GS). LD can also be used to evaluate genetic diversity and population structure and reveal genomic regions affected by selection. LD structure and Ne were assessed in a set of 83 water buffaloes, comprising Azeri (AZI), Khuzestani (KHU), and Mazandarani (MAZ) breeds from Iran, Kundi (KUN) and Nili-Ravi (NIL) from Pakistan, Anatolian (ANA) buffalo from Turkey, and buffalo from Egypt (EGY). The values of corrected r2 (defined as the correlation between two loci) of adjacent SNPs for three pooled Iranian breeds (IRI), ANA, EGY, and two pooled Pakistani breeds (PAK) populations were 0.24, 0.28, 0.27, and 0.22, respectively. The corrected r2 between SNPs decreased with increasing physical distance from 100 Kb to 1 Mb. The LD values for IRI, ANA, EGY, and PAK populations were 0.16, 0.23, 0.24, and 0.21 for less than 100Kb, respectively, which reduced rapidly to 0.018, 0.042, 0.059, and 0.024, for a distance of 1 Mb. In all the populations, the decay rate was low for distances greater than 2Mb, up to the longest studied distance (15 Mb). The r2 values for adjacent SNPs in unrelated samples indicated that the Affymetrix Axiom 90 K SNP genomic array was suitable for GWAS and GS in these populations. The persistency of LD phase (PLDP) between populations was assessed, and results showed that PLPD values between the populations were more than 0.9 for distances of less than 100 Kb. The Ne in the recent generations has declined to the extent that breeding plans are urgently required to ensure that these buffalo populations are not at risk of being lost. We found that results are affected by sample size, which could be partially corrected for; however, additional data should be obtained to be confident of the results.
Collapse
Affiliation(s)
- Shirin Rahimmadar
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - Mokhtar Ghaffari
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - Mahdi Mokhber
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia.,Department of Animal Science, Food and Nutrition, Università Cattolica Del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
5
|
Davenport KM, Massa AT, Bhattarai S, McKay SD, Mousel MR, Herndon MK, White SN, Cockett NE, Smith TPL, Murdoch BM. Characterizing Genetic Regulatory Elements in Ovine Tissues. Front Genet 2021; 12:628849. [PMID: 34093640 PMCID: PMC8173140 DOI: 10.3389/fgene.2021.628849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Ovine Functional Annotation of Animal Genomes (FAANG) project, part of the broader livestock species FAANG initiative, aims to identify and characterize gene regulatory elements in domestic sheep. Regulatory element annotation is essential for identifying genetic variants that affect health and production traits in this important agricultural species, as greater than 90% of variants underlying genetic effects are estimated to lie outside of transcribed regions. Histone modifications that distinguish active or repressed chromatin states, CTCF binding, and DNA methylation were used to characterize regulatory elements in liver, spleen, and cerebellum tissues from four yearling sheep. Chromatin immunoprecipitation with sequencing (ChIP-seq) was performed for H3K4me3, H3K27ac, H3K4me1, H3K27me3, and CTCF. Nine chromatin states including active promoters, active enhancers, poised enhancers, repressed enhancers, and insulators were characterized in each tissue using ChromHMM. Whole-genome bisulfite sequencing (WGBS) was performed to determine the complement of whole-genome DNA methylation with the ChIP-seq data. Hypermethylated and hypomethylated regions were identified across tissues, and these locations were compared with chromatin states to better distinguish and validate regulatory elements in these tissues. Interestingly, chromatin states with the poised enhancer mark H3K4me1 in the spleen and cerebellum and CTCF in the liver displayed the greatest number of hypermethylated sites. Not surprisingly, active enhancers in the liver and spleen, and promoters in the cerebellum, displayed the greatest number of hypomethylated sites. Overall, chromatin states defined by histone marks and CTCF occupied approximately 22% of the genome in all three tissues. Furthermore, the liver and spleen displayed in common the greatest percent of active promoter (65%) and active enhancer (81%) states, and the liver and cerebellum displayed in common the greatest percent of poised enhancer (53%), repressed enhancer (68%), hypermethylated sites (75%), and hypomethylated sites (73%). In addition, both known and de novo CTCF-binding motifs were identified in all three tissues, with the highest number of unique motifs identified in the cerebellum. In summary, this study has identified the regulatory regions of genes in three tissues that play key roles in defining health and economically important traits and has set the precedent for the characterization of regulatory elements in ovine tissues using the Rambouillet reference genome.
Collapse
Affiliation(s)
- Kimberly M. Davenport
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, United States
| | - Alisha T. Massa
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | | | | | - Michelle R. Mousel
- USDA, ARS, Animal Disease Research Unit, Pullman, WA, United States
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Maria K. Herndon
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Stephen N. White
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- USDA, ARS, Animal Disease Research Unit, Pullman, WA, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | | | - Timothy P. L. Smith
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, United States
| | - Brenda M. Murdoch
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
6
|
Zhao H, Guo T, Lu Z, Liu J, Zhu S, Qiao G, Han M, Yuan C, Wang T, Li F, Zhang Y, Hou F, Yue Y, Yang B. Genome-wide association studies detects candidate genes for wool traits by re-sequencing in Chinese fine-wool sheep. BMC Genomics 2021; 22:127. [PMID: 33602144 PMCID: PMC7893944 DOI: 10.1186/s12864-021-07399-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The quality and yield of wool determine the economic value of the fine-wool sheep. Therefore, discovering markers or genes relevant to wool traits is the cornerstone for the breeding of fine-wool sheep. In this study, we used the Illumina HiSeq X Ten platform to re-sequence 460 sheep belonging to four different fine-wool sheep breeds, namely, Alpine Merino sheep (AMS), Chinese Merino sheep (CMS), Aohan fine-wool sheep (AHS) and Qinghai fine-wool sheep (QHS). Eight wool traits, including fiber diameter (FD), fiber diameter coefficient of variance (FDCV), fiber diameter standard deviation (FDSD), staple length (SL), greasy fleece weight (GFW), clean wool rate (CWR), staple strength (SS) and staple elongation (SE) were examined. A genome-wide association study (GWAS) was performed to detect the candidate genes for the eight wool traits. RESULTS A total of 8.222 Tb of raw data was generated, with an average of approximately 8.59X sequencing depth. After quality control, 12,561,225 SNPs were available for analysis. And a total of 57 genome-wide significant SNPs and 30 candidate genes were detected for the desired wool traits. Among them, 7 SNPs and 6 genes are related to wool fineness indicators (FD, FDCV and FDSD), 10 SNPs and 7 genes are related to staple length, 13 SNPs and 7 genes are related to wool production indicators (GFW and CWR), 27 SNPs and 10 genes associated with staple elongation. Among these candidate genes, UBE2E3 and RHPN2 associated with fiber diameter, were found to play an important role in keratinocyte differentiation and cell proliferation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results, revealed that multitude significant pathways are related to keratin and cell proliferation and differentiation, such as positive regulation of canonical Wnt signaling pathway (GO:0090263). CONCLUSION This is the first GWAS on the wool traits by using re-sequencing data in Chinese fine-wool sheep. The newly detected significant SNPs in this study can be used in genome-selective breeding for the fine-wool sheep. And the new candidate genes would provide a good theoretical basis for the fine-wool sheep breeding.
Collapse
Affiliation(s)
- Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Shaohua Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Guoyan Qiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Mei Han
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Tianxiang Wang
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Fanwen Li
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Yajun Zhang
- Xinjiang Gongnaisi Breeding Sheep Farm, Xinyuan, 835808, China
| | - Fujun Hou
- Aohan Banner Breeding Sheep Farm, Chifeng, 024300, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
7
|
Fernández J, Villanueva B, Toro MA. Optimum mating designs for exploiting dominance in genomic selection schemes for aquaculture species. Genet Sel Evol 2021; 53:14. [PMID: 33568069 PMCID: PMC7877044 DOI: 10.1186/s12711-021-00610-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/28/2021] [Indexed: 11/30/2022] Open
Abstract
Background In commercial fish, dominance effects could be exploited by predicting production abilities of the offspring that would be generated by different mating pairs and choosing those pairs that maximise the average offspring phenotype. Consequently, matings would be performed to reduce inbreeding depression. This can be achieved by applying mate selection (MS) that combines selection and mating decisions in a single step. An alternative strategy to MS would be to apply minimum coancestry mating (MCM) after selection based on estimated breeding values. The objective of this study was to evaluate, by computer simulations, the potential benefits that can be obtained by implementing MS or MCM based on genomic data for exploiting dominance effects when creating commercial fish populations that are derived from a breeding nucleus. Methods The selected trait was determined by a variable number of loci with additive and dominance effects. The population consisted of 50 full-sib families with 30 offspring each. Males and females with the highest estimated genomic breeding values were selected in the nucleus and paired using the MCM strategy. Both MCM and MS were used to create the commercial population. Results For a moderate number of SNPs, equal or even higher mean phenotypic values are obtained by selecting on genomic breeding values and then applying MCM than by using MS when the trait exhibited substantial inbreeding depression. This could be because MCM leads to high levels of heterozygosity across the whole genome, even for loci affecting the trait that are in linkage equilibrium with the SNPs. In contrast, MS specifically promotes heterozygosity for SNPs for which a dominance effect has been detected. Conclusions In most scenarios, for the management of aquaculture breeding programs it seems advisable to follow the MCM strategy when creating the commercial population, especially for traits with large inbreeding depression. Moreover, MCM has the appealing property of reducing inbreeding levels, with a corresponding reduction in inbreeding depression for traits beyond those included in the selection objective.
Collapse
Affiliation(s)
- Jesús Fernández
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain.
| | | | - Miguel Angel Toro
- Departamento de Producción Agraria, ETSI Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| |
Collapse
|
8
|
Xiong H, He X, Li J, Liu X, Peng C, Xi D, Deng W. Genetic diversity and genetic origin of Lanping black-boned sheep investigated by genome-wide single-nucleotide polymorphisms (SNPs). Arch Anim Breed 2020; 63:193-201. [PMID: 32760786 PMCID: PMC7397722 DOI: 10.5194/aab-63-193-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/26/2020] [Indexed: 11/11/2022] Open
Abstract
Lanping black-boned sheep was first discovered in the 1950s in Lanping county of China and characterized by black pigmentation on skin and internal organs. Due to the novel and unique trait, the genetic background of Lanping black-boned sheep is of great interest. Here, we genotyped genome-wide SNPs (single nucleotide polymorphisms) of Lanping black-boned sheep and Lanping normal sheep using Illumina OvineSNP50 BeadChip to investigate the genetic diversity and genetic origin of Lanping black-boned sheep. We also downloaded a subset SNP dataset of two Tibet-lineage sheep breeds and four other sheep breeds from the International Sheep Genomics Consortium (ISGC) as a reference for interpreting. Lanping black-boned sheep had a lower genetic diversity level when compared to seven other sheep breeds. Principal component analysis (PCA) showed that Lanping black-boned sheep and Lanping normal sheep were clustered into the Asian group, but there was no clear separation between the two breeds. Structure analysis demonstrated a high ancestry coefficient in Lanping black-boned sheep and Lanping normal sheep. However, the two populations were separated into two distinct branches in a neighbor-joining (NJ) tree. We further evaluated the genetic divergence using population F ST , which showed that the genetic differentiation that existed between Lanping black-boned sheep and Lanping normal sheep was higher than that between Tibet sheep and Changthangi sheep, which revealed that Lanping black-boned sheep is a different breed from Lanping normal sheep on the genetic level. In addition, structure analysis and NJ tree showed that Lanping black-boned sheep had a relatively close relation with Tibet sheep. The results reported herein are a first step toward understanding the genetic background of Lanping black-boned sheep, and it will provide informative knowledge on the unique genetic resource conservation and mechanism of novel breed formation.
Collapse
Affiliation(s)
- Heli Xiong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, People's Republic of China.,Yunnan Animal Science and Veterinary Institute, Kunming 650224, People's Republic of China
| | - Xiaoming He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| | - Jing Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, People's Republic of China.,Yunnan Kunming Police Dog Base of Ministry of Public Security, Kunming 650201, People's Republic of China
| | - Xingneng Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| | - Chaochao Peng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| |
Collapse
|
9
|
Karimi K, Farid AH, Sargolzaei M, Myles S, Miar Y. Linkage Disequilibrium, Effective Population Size and Genomic Inbreeding Rates in American Mink Using Genotyping-by-Sequencing Data. Front Genet 2020; 11:223. [PMID: 32231688 PMCID: PMC7083153 DOI: 10.3389/fgene.2020.00223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Knowledge of linkage disequilibrium (LD) patterns is necessary to determine the minimum density of markers required for genomic studies and to infer historical changes as well as inbreeding events in the populations. In this study, we used genotyping-by-sequencing (GBS) approach to detect single nucleotide polymorphisms (SNPs) across American mink genome and further to estimate LD, effective population size (Ne), and inbreeding rates based on excess of homozygosity (FHOM) and runs of homozygosity (ROH). A GBS assay was constructed based on the sequencing of ApeKI-digested libraries from 285 American mink using Illumina HiSeq Sequencer. Data of 13,321 SNPs located on 46 scaffolds was used to perform LD analysis. The average LD (r2 ± SD) between adjacent SNPs was 0.30 ± 0.35 over all scaffolds with an average distance of 51 kb between markers. The average r2 < 0.2 was observed at inter-marker distances of >40 kb, suggesting that at least 60,000 informative SNPs would be required for genomic selection in American mink. The Ne was estimated to be 116 at five generations ago. In addition, the most rapid decline of population size was observed between 100 and 200 generations ago. Our results showed that short extensions of homozygous genotypes (500 kb to 1 Mb) were abundant across the genome and accounted for 33% of all ROH identified. The average inbreeding coefficient based on ROH longer than 1 Mb was 0.132 ± 0.042. The estimations of FHOM ranged from −0.44 to 0.34 among different samples with an average of 0.15 over all individuals. This study provided useful insights to determine the density of SNP panel providing enough statistical power and accuracy in genomic studies of American mink. Moreover, these results confirmed that GBS approach can be considered as a useful tool for genomic studies in American mink.
Collapse
Affiliation(s)
- Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - A Hossain Farid
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.,Select Sires Inc., Plain City, OH, United States
| | - Sean Myles
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
10
|
Jasielczuk I, Gurgul A, Szmatoła T, Semik-Gurgul E, Pawlina-Tyszko K, Szyndler-Nędza M, Blicharski T, Szulc K, Skrzypczak E, Bugno-Poniewierska M. Comparison of linkage disequilibrium, effective population size and haplotype blocks in Polish Landrace and Polish native pig populations. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Michailidou S, Tsangaris GT, Tzora A, Skoufos I, Banos G, Argiriou A, Arsenos G. Analysis of genome-wide DNA arrays reveals the genomic population structure and diversity in autochthonous Greek goat breeds. PLoS One 2019; 14:e0226179. [PMID: 31830089 PMCID: PMC6907847 DOI: 10.1371/journal.pone.0226179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
Goats play an important role in the livestock sector in Greece. The national herd consists mainly of two indigenous breeds, the Eghoria and Skopelos. Here, we report the population structure and genomic profiles of these two native goat breeds using Illumina’s Goat SNP50 BeadChip. Moreover, we present a panel of candidate markers acquired using different genetic models for breed discrimination. Quality control on the initial dataset resulted in 48,841 SNPs kept for downstream analysis. Principal component and admixture analyses were applied to assess population structure. The rate of inbreeding within breed was evaluated based on the distribution of runs of homozygosity in the genome and respective coefficients, the genomic relationship matrix, the patterns of linkage disequilibrium, and the historic effective population size. Results showed that both breeds exhibit high levels of genetic diversity. Level of inbreeding between the two breeds estimated by the Wright’s fixation index FST was low (Fst = 0.04362), indicating the existence of a weak genetic differentiation between them. In addition, grouping of farms according to their geographical locations was observed. This study presents for the first time a genome-based analysis on the genetic structure of the two indigenous Greek goat breeds and identifies markers that can be potentially exploited in future selective breeding programs for traceability purposes, targeted genetic improvement schemes and conservation strategies.
Collapse
Affiliation(s)
- S. Michailidou
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thermi, Greece
- * E-mail:
| | - G. Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - A. Tzora
- School of Agriculture, Department of Agriculture, Division of Animal Production, University of Ioannina, Kostakioi Artas, Greece
| | - I. Skoufos
- School of Agriculture, Department of Agriculture, Division of Animal Production, University of Ioannina, Kostakioi Artas, Greece
| | - G. Banos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland's Rural College and The Roslin Institute University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - A. Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thermi, Greece
| | - G. Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Benjelloun B, Boyer F, Streeter I, Zamani W, Engelen S, Alberti A, Alberto FJ, BenBati M, Ibnelbachyr M, Chentouf M, Bechchari A, Rezaei HR, Naderi S, Stella A, Chikhi A, Clarke L, Kijas J, Flicek P, Taberlet P, Pompanon F. An evaluation of sequencing coverage and genotyping strategies to assess neutral and adaptive diversity. Mol Ecol Resour 2019; 19:1497-1515. [PMID: 31359622 PMCID: PMC7115901 DOI: 10.1111/1755-0998.13070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 06/30/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Whole genome sequences (WGS) greatly increase our ability to precisely infer population genetic parameters, demographic processes, and selection signatures. However, WGS may still be not affordable for a representative number of individuals/populations. In this context, our goal was to assess the efficiency of several SNP genotyping strategies by testing their ability to accurately estimate parameters describing neutral diversity and to detect signatures of selection. We analysed 110 WGS at 12× coverage for four different species, i.e., sheep, goats and their wild counterparts. From these data we generated 946 data sets corresponding to random panels of 1K to 5M variants, commercial SNP chips and exome capture, for sample sizes of five to 48 individuals. We also extracted low-coverage genome resequencing of 1×, 2× and 5× by randomly subsampling reads from the 12× resequencing data. Globally, 5K to 10K random variants were enough for an accurate estimation of genome diversity. Conversely, commercial panels and exome capture displayed strong ascertainment biases. Besides the characterization of neutral diversity, the detection of the signature of selection and the accurate estimation of linkage disequilibrium (LD) required high-density panels of at least 1M variants. Finally, genotype likelihoods increased the quality of variant calling from low coverage resequencing but proportions of incorrect genotypes remained substantial, especially for heterozygote sites. Whole genome resequencing coverage of at least 5× appeared to be necessary for accurate assessment of genomic variations. These results have implications for studies seeking to deploy low-density SNP collections or genome scans across genetically diverse populations/species showing similar genetic characteristics and patterns of LD decay for a wide variety of purposes.
Collapse
Affiliation(s)
- Badr Benjelloun
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, 23000 Beni-Mellal, Morocco
| | - Frédéric Boyer
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Wahid Zamani
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 46417-76489 Noor, Mazandaran, Iran
| | - Stefan Engelen
- CEA - Institut de biologie François-Jacob, Genoscope, 2 Rue Gaston Cremieux 91057 Evry Cedex, France
| | - Adriana Alberti
- CEA - Institut de biologie François-Jacob, Genoscope, 2 Rue Gaston Cremieux 91057 Evry Cedex, France
| | - Florian J. Alberto
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Mohamed BenBati
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, 23000 Beni-Mellal, Morocco
| | - Mustapha Ibnelbachyr
- National Institute of Agronomic Research (INRA Maroc), CRRA Errachidia, 52000 Errachidia, Morocco
| | - Mouad Chentouf
- National Institute of Agronomic Research (INRA Maroc), CRRA Tangier, 90010 Tangier, Morocco
| | - Abdelmajid Bechchari
- National Institute of Agronomic Research (INRA Maroc), CRRA Oujda, 60000 Oujda, Morocco
| | - Hamid R. Rezaei
- Department of Environmental Sci, Gorgan University of Agricultural Sciences & Natural Resources, 41996-13776 Gorgan, Iran
| | - Saeid Naderi
- Environmental Sciences Department, Natural Resources Faculty, University of Guilan, 49138-15749 Guilan, Iran
| | - Alessandra Stella
- PTP Science Park, Bioinformatics Unit, Via Einstein-Loc. Cascina Codazza, 26900 Lodi, Italy
| | - Abdelkader Chikhi
- National Institute of Agronomic Research (INRA Maroc), CRRA Errachidia, 52000 Errachidia, Morocco
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - James Kijas
- Commonwealth Scientific and Industrial Research Organisation Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Pierre Taberlet
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - François Pompanon
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| |
Collapse
|
13
|
Linkage disequilibrium in the estimation of genetic and demographic parameters of extensively raised chicken populations. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933915002202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Berihulay H, Islam R, Jiang L, Ma Y. Genome-Wide Linkage Disequilibrium and the Extent of Effective Population Sizes in Six Chinese Goat Populations Using a 50K Single Nucleotide Polymorphism Panel. Animals (Basel) 2019; 9:ani9060350. [PMID: 31200540 PMCID: PMC6617254 DOI: 10.3390/ani9060350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Information on linkage disequilibrium (LD) and the extent of effective population size (Ne) has important implications for exploring the degree of biological diversity, for predicting underlying selection pressure, and for designing animal breeding programs. In this study, we assessed LD, Ne, and the distribution of minor allele frequency in six goat populations. Accordingly, the results of LD and Ne using a single nucleotide polymorphism (SNP) panel (Caprine SNP 50K BeadChip, Lincoln, NE, USA) are helpful for the sustainable conservation, proper management, and utilization of Chinese goat populations. Abstract Genome-wide linkage disequilibrium is a useful parameter to study quantitative trait locus (QTL) mapping and genetic selection. In many genomic methodologies, effective population size is an important genetic parameter because of its relationship to the loss of genetic variation, increases in inbreeding, the accumulation of mutations, and the effectiveness of selection. In this study, a total of 193 individuals were genotyped to assess the extent of LD and Ne in six Chinese goat populations using the SNP 50K BeadChip. Across the determined autosomal chromosomes, we found an average of 0.02 and 0.23 for r2 and D’ values, respectively. The average r2 between all the populations varied little and ranged from 0.055 r2 for the Jining Grey to 0.128 r2 for the Guangfeng, with an overall mean of 0.083. Across the 29 autosomal chromosomes, minor allele frequency (MAF) was highest on chromosome 1 (0.321) and lowest on chromosome 25 (0.309), with an average MAF of 0.317, and showing the lowest (25.5% for Louping) and highest (28.8% for Qingeda) SNP proportions at MAF values > 0.3. The inbreeding coefficient ranged from 0.064 to 0.085, with a mean of 0.075 for all the autosomes. The Jining Grey and Qingeda populations showed higher Ne estimates, highlighting that these animals could have been influenced by artificial selection. Furthermore, a declining recent Ne was distinguished for the Arbas Cashmere and Guangfeng populations, and their estimated values were closer to 64 and 95, respectively, 13 generations ago, which indicates that these breeds were exposed to strong selection. This study provides an insight into valuable genetic information and will open up the opportunity for further genomic selection analysis of Chinese goat populations.
Collapse
Affiliation(s)
- Haile Berihulay
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Rabiul Islam
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
15
|
Mastrangelo S, Biscarini F, Tolone M, Auzino B, Ragatzu M, Spaterna A, Ciampolini R. Genomic characterization of the Braque Français type Pyrénées dog and relationship with other breeds. PLoS One 2018; 13:e0208548. [PMID: 30517199 PMCID: PMC6281230 DOI: 10.1371/journal.pone.0208548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/18/2018] [Indexed: 01/16/2023] Open
Abstract
The evaluation of genetic variability is a useful research tool for the correct management of selection and conservation strategies in dog breeds. In addition to pedigree genealogies, genomic data allow a deeper knowledge of the variability and genetic structure of populations. To date, many dog breeds, such as small regional breeds, still remain uncharacterized. Braque Français type Pyrénées (BRA) is a dog breed originating from a very old type of gun-dog used for pointing the location of game birds to hunters. Despite the ancient background, the knowledge about levels of genetic diversity, degree of inbreeding and population structure is scarce. This may raise concerns on the possibility that few inbred bloodlines may dominate the breed, and on its future health. The aim of this work was therefore to provide a high-resolution representation of the genome-wide diversity and population structure of BRA dogs, using the 170K genome-wide SNP array. Genome-wide polymorphisms in BRA were compared with those of other worldwide dog breeds. Between-dog relationships estimated from genomic data were very similar to pedigree relationships (Pearson correlation rg,a = 0.92). Results showed that BRA generally presents moderate levels of genetic diversity when compared with the major canine breeds. The estimated effective population size (recent Ne = 51) shows a similar declining pattern over generations as all other dog breeds, pointing at a common demographic history of modern canine breeds, clearly different from the demography of feral wolves. Multidimensional scaling (MDS), Bayesian clustering and Neighbor Joining tree were used to visualize and explore the genetic relationships among breeds, and revealed that BRA was highly differentiated and presented only low levels of admixture with other breeds. Brittany Spaniel, English Setter, Gordon Setter and Weimaraner dogs are the closest breeds to BRA. The exact reason for BRA being so divergent from other dog breeds, based on these results, is not yet clear. Further studies including additional ≪braccoid≫ breeds will be needed to refine the results presented here and to investigate the origin of the BRA breed. Nonetheless, the genome-wide characterization reported here provides a comprehensive insight into the genome diversity and population structure of the Braque Français, type Pyrénées breed.
Collapse
Affiliation(s)
- Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | | | - Marco Tolone
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Barbara Auzino
- Dipartimento di Scienze Veterinarie, Università di Pisa, V.le delle Piagge 2, 56124 Pisa, Italy
| | - Marco Ragatzu
- Club Italiano Braque Français Type Pyrénées, Capalbio, GR, Italy
| | - Andrea Spaterna
- Scuola di Scienze Mediche Veterinarie, University of Camerino, Matelica, MC, Italy
- Centro Interuniversitario di Ricerca e di Consulenza sulla Genetica e la Clinica del cane, Matelica, MC, Italy
| | - Roberta Ciampolini
- Dipartimento di Scienze Veterinarie, Università di Pisa, V.le delle Piagge 2, 56124 Pisa, Italy
- Centro Interuniversitario di Ricerca e di Consulenza sulla Genetica e la Clinica del cane, Matelica, MC, Italy
| |
Collapse
|
16
|
Hiraoka Y, Fukatsu E, Mishima K, Hirao T, Teshima KM, Tamura M, Tsubomura M, Iki T, Kurita M, Takahashi M, Watanabe A. Potential of Genome-Wide Studies in Unrelated Plus Trees of a Coniferous Species, Cryptomeria japonica (Japanese Cedar). FRONTIERS IN PLANT SCIENCE 2018; 9:1322. [PMID: 30254658 PMCID: PMC6141754 DOI: 10.3389/fpls.2018.01322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
A genome-wide association study (GWAS) was conducted on more than 30,000 single nucleotide polymorphisms (SNPs) in unrelated first-generation plus tree genotypes from three populations of Japanese cedar Cryptomeria japonica D. Don with genomic prediction for traits of growth, wood properties and male fecundity. Among the assessed populations, genetic characteristics including the extent of linkage disequilibrium (LD) and genetic structure differed and these differences are considered to be due to differences in genetic background. Through population-independent GWAS, several significant SNPs found close to the regions associated with each of these traits and shared in common across the populations were identified. The accuracies of genomic predictions were dependent on the traits and populations and reflected the genetic architecture of traits and genetic characteristics. Prediction accuracies using SNPs selected based on GWAS results were similar to those using all SNPs for several combinations of traits and populations. We discussed the application of genome-wide studies for C. japonica improvement.
Collapse
Affiliation(s)
- Yuichiro Hiraoka
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Eitaro Fukatsu
- Kyushu Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Kumamoto, Japan
| | - Kentaro Mishima
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Tomonori Hirao
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | | | - Miho Tamura
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Miyoko Tsubomura
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Taiichi Iki
- Tohoku Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Takizawa, Japan
| | - Manabu Kurita
- Kyushu Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Kumamoto, Japan
| | - Makoto Takahashi
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | | |
Collapse
|
17
|
Genome-wide analyses of the Jeju, Thoroughbred, and Jeju crossbred horse populations using the high density SNP array. Genes Genomics 2018; 40:1249-1258. [PMID: 30099720 DOI: 10.1007/s13258-018-0722-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022]
Abstract
The Jeju horse is an indigenous Korean horse breed that is currently registered with the Food and Agriculture Organization of the United Nations. However, there is severe lack of genomic studies on Jeju horse. This study was conducted to investigate genetic characteristics of horses including Jeju horse, Thoroughbred and Jeju crossbred (Jeju × Thoroughbred) populations. We compared the genomes of three horse populations using the Equine SNP70 Beadchip array. Short-range Linkage disequilibrium was the highest in Thoroughbred, whereas r2 values were lowest in Jeju horse. Expected heterozygosity was the highest in Jeju crossbred (0.351), followed by the Thoroughbred (0.337) and Jeju horse (0.311). The level of inbreeding was slightly higher in Thoroughbred (- 0.009) than in Jeju crossbred (- 0.035) and Jeju horse (- 0.038). FST value was the highest between Jeju horse and Thoroughbred (0.113), whereas Jeju crossbred and Thoroughbred showed the lowest value (0.031). The genetic relationship was further assessed by principal component analysis, suggesting that Jeju crossbred is more genetically similar to Thoroughbred than Jeju horse population. Additionally, we detected potential selection signatures, for example, in loci located on LCORL/NCAPG and PROP1 genes that are known to influence body. Genome-wide analyses of the three horse populations showed that all the breeds had somewhat a low level of inbreeding within each population. In the population structure analysis, we found that Jeju crossbred was genetically closer to Thoroughbred than Jeju horse. Furthermore, we identified several signatures of selection which might be associated with traits of interest. To our current knowledge, this study is the first genomic research, analyzing genetic relationships of Jeju horse, Thoroughbred and Jeju crossbred.
Collapse
|
18
|
RAD Sequencing and a Hybrid Antarctic Fur Seal Genome Assembly Reveal Rapidly Decaying Linkage Disequilibrium, Global Population Structure and Evidence for Inbreeding. G3-GENES GENOMES GENETICS 2018; 8:2709-2722. [PMID: 29954843 PMCID: PMC6071602 DOI: 10.1534/g3.118.200171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent advances in high throughput sequencing have transformed the study of wild organisms by facilitating the generation of high quality genome assemblies and dense genetic marker datasets. These resources have the potential to significantly advance our understanding of diverse phenomena at the level of species, populations and individuals, ranging from patterns of synteny through rates of linkage disequilibrium (LD) decay and population structure to individual inbreeding. Consequently, we used PacBio sequencing to refine an existing Antarctic fur seal (Arctocephalus gazella) genome assembly and genotyped 83 individuals from six populations using restriction site associated DNA (RAD) sequencing. The resulting hybrid genome comprised 6,169 scaffolds with an N50 of 6.21 Mb and provided clear evidence for the conservation of large chromosomal segments between the fur seal and dog (Canis lupus familiaris). Focusing on the most extensively sampled population of South Georgia, we found that LD decayed rapidly, reaching the background level by around 400 kb, consistent with other vertebrates but at odds with the notion that fur seals experienced a strong historical bottleneck. We also found evidence for population structuring, with four main Antarctic island groups being resolved. Finally, appreciable variance in individual inbreeding could be detected, reflecting the strong polygyny and site fidelity of the species. Overall, our study contributes important resources for future genomic studies of fur seals and other pinnipeds while also providing a clear example of how high throughput sequencing can generate diverse biological insights at multiple levels of organization.
Collapse
|
19
|
Alvarenga AB, Rovadoscki GA, Petrini J, Coutinho LL, Morota G, Spangler ML, Pinto LFB, Carvalho GGP, Mourão GB. Linkage disequilibrium in Brazilian Santa Inês breed, Ovis aries. Sci Rep 2018; 8:8851. [PMID: 29892085 PMCID: PMC5995818 DOI: 10.1038/s41598-018-27259-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
For genomic selection to be successful, there must be sufficient linkage disequilibrium between the markers and the causal mutations. The objectives of this study were to evaluate the extent of LD in ovine using the Santa Inês breed and to infer the minimum number of markers required to reach reasonable prediction accuracy. In total, 38,168 SNPs and 395 samples were used. The mean LD between adjacent marker pairs measured by r2 and |D′| were 0.166 and 0.617, respectively. LD values between adjacent marker pairs ranged from 0.135 to 0.194 and from 0.568 to 0.650 for r2 for |D′| across all chromosomes. The average r2 between all pairwise SNPs on each chromosome was 0.018. SNPs separated by between 0.10 to 0.20 Mb had an estimated average r2 equal to 0.1033. The identified haplotype blocks consisted of 2 to 21 markers. Moreover, estimates of average coefficients of inbreeding and effective population size were 0.04 and 96, respectively. LD estimated in this study was lower than that reported in other species and was characterized by short haplotype blocks. Our results suggest that the use of a higher density SNP panel is recommended for the implementation of genomic selection in the Santa Inês breed.
Collapse
Affiliation(s)
- Amanda Botelho Alvarenga
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil
| | - Gregori Alberto Rovadoscki
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil
| | - Juliana Petrini
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil
| | - Gota Morota
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | | | | | | | - Gerson Barreto Mourão
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil.
| |
Collapse
|
20
|
Genomic diversity and population structure of three autochthonous Greek sheep breeds assessed with genome-wide DNA arrays. Mol Genet Genomics 2018; 293:753-768. [PMID: 29372305 DOI: 10.1007/s00438-018-1421-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
In the present study, genome-wide genotyping was applied to characterize the genetic diversity and population structure of three autochthonous Greek breeds: Boutsko, Karagouniko and Chios. Dairy sheep are among the most significant livestock species in Greece numbering approximately 9 million animals which are characterized by large phenotypic variation and reared under various farming systems. A total of 96 animals were genotyped with the Illumina's OvineSNP50K microarray beadchip, to study the population structure of the breeds and develop a specialized panel of single-nucleotide polymorphisms (SNPs), which could distinguish one breed from the others. Quality control on the dataset resulted in 46,125 SNPs, which were used to evaluate the genetic structure of the breeds. Population structure was assessed through principal component analysis (PCA) and admixture analysis, whereas inbreeding was estimated based on runs of homozygosity (ROHs) coefficients, genomic relationship matrix inbreeding coefficients (FGRM) and patterns of linkage disequilibrium (LD). Associations between SNPs and breeds were analyzed with different inheritance models, to identify SNPs that distinguish among the breeds. Results showed high levels of genetic heterogeneity in the three breeds. Genetic distances among breeds were modest, despite their different ancestries. Chios and Karagouniko breeds were more genetically related to each other compared to Boutsko. Analysis revealed 3802 candidate SNPs that can be used to identify two-breed crosses and purebred animals. The present study provides, for the first time, data on the genetic background of three Greek indigenous dairy sheep breeds as well as a specialized marker panel that can be applied for traceability purposes as well as targeted genetic improvement schemes and conservation programs.
Collapse
|
21
|
Gutiérrez-Gil B, Esteban-Blanco C, Wiener P, Chitneedi PK, Suarez-Vega A, Arranz JJ. High-resolution analysis of selection sweeps identified between fine-wool Merino and coarse-wool Churra sheep breeds. Genet Sel Evol 2017; 49:81. [PMID: 29115919 PMCID: PMC5674817 DOI: 10.1186/s12711-017-0354-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/19/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND With the aim of identifying selection signals in three Merino sheep lines that are highly specialized for fine wool production (Australian Industry Merino, Australian Merino and Australian Poll Merino) and considering that these lines have been subjected to selection not only for wool traits but also for growth and carcass traits and parasite resistance, we contrasted the OvineSNP50 BeadChip (50 K-chip) pooled genotypes of these Merino lines with the genotypes of a coarse-wool breed, phylogenetically related breed, Spanish Churra dairy sheep. Genome re-sequencing datasets of the two breeds were analyzed to further explore the genetic variation of the regions initially identified as putative selection signals. RESULTS Based on the 50 K-chip genotypes, we used the overlapping selection signals (SS) identified by four selection sweep mapping analyses (that detect genetic differentiation, reduced heterozygosity and patterns of haplotype diversity) to define 18 convergence candidate regions (CCR), five associated with positive selection in Australian Merino and the remainder indicating positive selection in Churra. Subsequent analysis of whole-genome sequences from 15 Churra and 13 Merino samples identified 142,400 genetic variants (139,745 bi-allelic SNPs and 2655 indels) within the 18 defined CCR. Annotation of 1291 variants that were significantly associated with breed identity between Churra and Merino samples identified 257 intragenic variants that caused 296 functional annotation variants, 275 of which were located across 31 coding genes. Among these, four synonymous and four missense variants (NPR2_His847Arg, NCAPG_Ser585Phe, LCORL_Asp1214Glu and LCORL_Ile1441Leu) were included. CONCLUSIONS Here, we report the mapping and genetic variation of 18 selection signatures that were identified between Australian Merino and Spanish Churra sheep breeds, which were validated by an additional contrast between Spanish Merino and Churra genotypes. Analysis of whole-genome sequencing datasets allowed us to identify divergent variants that may be viewed as candidates involved in the phenotypic differences for wool, growth and meat production/quality traits between the breeds analyzed. The four missense variants located in the NPR2, NCAPG and LCORL genes may be related to selection sweep regions previously identified and various QTL reported in sheep in relation to growth traits and carcass composition.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
| | - Cristina Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
- Fundación Centro Supercomputación de Castilla y León, Campus de Vegazana, León, 24071 Spain
| | - Pamela Wiener
- Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Praveen Krishna Chitneedi
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
| | - Aroa Suarez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
| | - Juan-Jose Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
| |
Collapse
|
22
|
Berton MP, de Oliveira Silva RM, Peripolli E, Stafuzza NB, Martin JF, Álvarez MS, Gavinã BV, Toro MA, Banchero G, Oliveira PS, Eler JP, Baldi F, Ferraz JBS. Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate. J Anim Sci Biotechnol 2017; 8:73. [PMID: 28878894 PMCID: PMC5584554 DOI: 10.1186/s40104-017-0190-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/12/2017] [Indexed: 12/26/2022] Open
Abstract
Background The aim of this study was to estimate variance components and to identify genomic regions and pathways associated with resistance to gastrointestinal parasites, particularly Haemonchus contortus, in a breed of sheep adapted to tropical climate. Phenotypes evaluations were performed to verify resistance to gastrointestinal parasites, and were divided into two categories: i) farm phenotypes, assessing body condition score (BCS), degree of anemia assessed by the famacha chart (FAM), fur score (FS) and feces consistency (FC); and ii) lab phenotypes, comprising blood analyses for hematocrit (HCT), white blood cell count (WBC), red blood cell count (RBC), hemoglobin (HGB), platelets (PLT) and transformed (log10) egg per gram of feces (EPGlog). A total of 576 animals were genotyped with the Ovine SNP12k BeadChip (Illumina, Inc.), that contains 12,785 bialleleic SNP markers. The variance components were estimated using a single trait model by single step genomic BLUP procedure. Results The overall linkage disequilibrium (LD) mean between pairs of markers measured by r2 was 0.23. The overall LD mean between markers considering windows up to 10 Mb was 0.07. The mean LD between adjacent SNPs across autosomes ranged from 0.02 to 0.10. Heritability estimates were low for EPGlog (0.11), moderate for RBC (0.18), PLT (0.17) HCT (0.20), HGB (0.16) and WBC (0.22), and high for FAM (0.35). A total of 22, 21, 23, 20, 26, 25 and 23 windows for EPGlog for FAM, WBC, RBC, PLT, HCT and HGB traits were identified, respectively. Among the associated windows, 10 were shown to be common to HCT and HGB traits on OAR1, OAR2, OAR3, OAR5, OAR8 and OAR15. Conclusion The traits indicating gastrointestinal parasites resistance presented an adequate genetic variability to respond to selection in Santa Inês breed, and it is expected a higher genetic gain for FAM trait when compared to the others. The level of LD estimated for markers separated by less than 1 Mb indicated that the Ovine SNP12k BeadChip might be a suitable tool for identifying genomic regions associated with traits related to gastrointestinal parasite resistance. Several candidate genes related to immune system development and activation, inflammatory response, regulation of lymphocytes and leukocytes proliferation were found. These genes may help in the selection of animals with higher resistance to parasites. Electronic supplementary material The online version of this article (doi:10.1186/s40104-017-0190-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariana Piatto Berton
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, SP CEP 14884-900 Brazil
| | - Rafael Medeiros de Oliveira Silva
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, SP CEP 14884-900 Brazil
| | - Elisa Peripolli
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, SP CEP 14884-900 Brazil
| | - Nedenia Bonvino Stafuzza
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, SP CEP 14884-900 Brazil
| | - Jesús Fernández Martin
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria INIA, Crta. de la Coruña, km 7,5 -, 28040 Madrid, Spain
| | - Maria Saura Álvarez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria INIA, Crta. de la Coruña, km 7,5 -, 28040 Madrid, Spain
| | - Beatriz Villanueva Gavinã
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria INIA, Crta. de la Coruña, km 7,5 -, 28040 Madrid, Spain
| | - Miguel Angel Toro
- Departamento de Producción Agraria, School of Agricultural, Food and Byosystems Engineering, Universisdad Politécnica de Madrid, Campus Ciudad Universitaria Avda. Complutense 3 - Avda. Puerta Hierro, 28040 Madrid, Spain
| | - Georgget Banchero
- Instituto Nacional de Investigación Agropecuária (INIA), Ruta 50 Km. 12, Colonia, Uruguay
| | - Priscila Silva Oliveira
- Faculdade de Zootecnia e Engenharia de Alimentos, Nucleo de Apoio à Pesquisa em Melhoramento Animal, Biotecnologia e Transgenia, Universidade de São Paulo, Rua Duque de Caxias Norte, 225, Pirassununga, SP CEP 13635-900 Brazil
| | - Joanir Pereira Eler
- Faculdade de Zootecnia e Engenharia de Alimentos, Nucleo de Apoio à Pesquisa em Melhoramento Animal, Biotecnologia e Transgenia, Universidade de São Paulo, Rua Duque de Caxias Norte, 225, Pirassununga, SP CEP 13635-900 Brazil
| | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, SP CEP 14884-900 Brazil
| | - José Bento Sterman Ferraz
- Faculdade de Zootecnia e Engenharia de Alimentos, Nucleo de Apoio à Pesquisa em Melhoramento Animal, Biotecnologia e Transgenia, Universidade de São Paulo, Rua Duque de Caxias Norte, 225, Pirassununga, SP CEP 13635-900 Brazil
| |
Collapse
|
23
|
Prieur V, Clarke SM, Brito LF, McEwan JC, Lee MA, Brauning R, Dodds KG, Auvray B. Estimation of linkage disequilibrium and effective population size in New Zealand sheep using three different methods to create genetic maps. BMC Genet 2017; 18:68. [PMID: 28732466 PMCID: PMC5521107 DOI: 10.1186/s12863-017-0534-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/11/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Investments in genetic selection have played a major role in the New Zealand sheep industry competitiveness. Selection may erode genetic diversity, which is a crucial factor for the success of breeding programs. Better understanding of linkage disequilibrium (LD) and ancestral effective population size (Ne) through quantifying this diversity and comparison between populations allows for more informed decisions with regards to selective breeding taking population genetic diversity into account. The estimation of N e can be determined via genetic markers and requires knowledge of genetic distances between these markers. Single nucleotide polymorphisms (SNP) data from a sample of 12,597 New Zealand crossbred and purebred sheep genotyped with the Illumina Ovine SNP50 BeadChip was used to perform a genome-wide scan of LD and N e . Three methods to estimate genetic distances were investigated: 1) M1: a ratio fixed across the whole genome of one Megabase per centiMorgan; 2) M2: the ratios of genetic distance (using M3, below) over physical distance fixed for each chromosome; and, 3) M3: a genetic map of inter-SNP distances estimated using CRIMAP software (v2.503). RESULTS The estimates obtained with M2 and M3 showed much less variability between autosomes than those with M1, which tended to give lower N e results and higher LD decay. The results suggest that N e has decreased since the development of sheep breeds in Europe and this reduction in Ne has been accelerated in the last three decades. The N e estimated for five generations in the past ranged from 71 to 237 for Texel and Romney breeds, respectively. A low level of genetic kinship and inbreeding was estimated in those breeds suggesting avoidance of mating close relatives. CONCLUSIONS M3 was considered the most accurate method to create genetic maps for the estimation of LD and Ne. The findings of this study highlight the history of genetic selection in New Zealand crossbred and purebred sheep and these results will be very useful to understand genetic diversity of the population with respect to genetic selection. In addition, it will help geneticists to identify genomic regions which have been preferentially selected within a variety of breeds and populations.
Collapse
Affiliation(s)
- Vincent Prieur
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053 New Zealand
- Current address: France Limousin Sélection, Pôle de Lanaud, 87220 Boisseuil, France
| | - Shannon M. Clarke
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053 New Zealand
| | - Luiz F. Brito
- Centre for Genetic Improvement of Livestock, University of Guelph, N1G2W1, Guelph, Canada
| | - John C. McEwan
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053 New Zealand
| | - Michael A. Lee
- Department of Mathematics and Statistics, University of Otago, Dunedin, 9058 New Zealand
| | - Rudiger Brauning
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053 New Zealand
| | - Ken G. Dodds
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053 New Zealand
| | - Benoît Auvray
- Department of Mathematics and Statistics, University of Otago, Dunedin, 9058 New Zealand
| |
Collapse
|
24
|
Estimates of linkage disequilibrium and effective population sizes in Chinese Merino (Xinjiang type) sheep by genome-wide SNPs. Genes Genomics 2017; 39:733-745. [PMID: 28706593 PMCID: PMC5486679 DOI: 10.1007/s13258-017-0539-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 03/19/2017] [Indexed: 12/14/2022]
Abstract
Knowledge of linkage disequilibrium (LD) is important for effective genome-wide association studies and accurate genomic prediction. Chinese Merino (Xinjiang type) is well-known fine wool sheep breed. However, the extent of LD across the genome remains unexplored. In this study, we calculated autosomal LD based on genome-wide SNPs of 635 Chinese Merino (Xinjiang type) sheep by Illumina Ovine SNP50 BeadChip. A moderate level of LD (r2 ≥ 0.25) across the whole genome was observed at short distances of 0–10 kb. Further, the ancestral effective population size (Ne) was analyzed by extent of LD and found that Ne increased with the increase of generations and declined rapidly within the most recent 50 generations, which is consistent with the history of Chinese Merino sheep breeding, initiated in 1971. We also noted that even when the effective population size was estimated across different single chromosomes, Ne only ranged from 140.36 to 183.33 at five generations in the past, exhibiting a rapid decrease compared with that at ten generations in the past. These results indicated that the genetic diversity in Chinese Merino sheep recently decreased and proper protective measures should be taken to maintain the diversity. Our datasets provided essential genetic information to track molecular variations which potentially contribute to phenotypic variation in Chinese Merino sheep.
Collapse
|
25
|
Genome-wide population structure and evolutionary history of the Frizarta dairy sheep. Animal 2017; 11:1680-1688. [DOI: 10.1017/s1751731117000428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
26
|
Linkage disequilibrium and haplotype block structure in Limousin, Simmental and native Polish Red cattle. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
A genome-wide association study to identify chromosomal regions influencing ovine cortisol response. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Karimi K, Esmailizadeh Koshkoiyeh A, Gondro C. Comparison of linkage disequilibrium levels in Iranian indigenous cattle using whole genome SNPs data. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2015; 57:47. [PMID: 26705480 PMCID: PMC4690407 DOI: 10.1186/s40781-015-0080-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Knowledge of linkage disequilibrium (LD) levels among different populations can be used to detect genetic diversity and to investigate the historical changes in population sizes. Availability of large numbers of SNP through new sequencing technologies has provided opportunities for extensive researches in quantifying LD patterns in cattle breeds. The aim of this study was to compare the extent of linkage disequilibrium among Iranian cattle breeds using high density SNP genotyping data. RESULTS A total of 70 samples, representing seven Iranian indigenous cattle breeds, were genotyped for 777962 SNPs. The average values of LD based on the r(2) criterion were computed by grouping all syntenic SNP pairwises for inter-marker distances from 0 Kb up to 1 Mb using three distance sets. Average r(2) above 0.3 was observed at distances less than 30 Kb for Sistani and Kermani, 20 Kb for Najdi, Taleshi, Kurdi and Sarabi, and 10 Kb for Mazandarani. The LD levels were considerably different among the Iranian cattle breeds and the difference in LD extent was more detectable between the studied breeds at longer distances. Lower level of LD was observed for Mazandarani breed as compared to other breeds indicating larger ancestral population size in this breed. Kermani breed continued to have more slowly LD decay than all of the other breeds after 3 Kb distances. More slowly LD decay was observed in Kurdi and Sarabi breeds at larger distances (>100 Kb) showing that population decline has been more intense in more recent generations for these populations. CONCLUSIONS A wide genetic diversity and different historical background were well reflected in the LD levels among Iranian cattle breeds. More LD fluctuation was observed in the shorter distances (less than 10 Kb) in different cattle populations. Despite of the sample size effects, High LD levels found in this study were in accordance with the presence of inbreeding and population decline in Iranian cattle breeds.
Collapse
Affiliation(s)
- Karim Karimi
- />Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133 Iran
- />Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, PB 76169-133 Iran
| | - Ali Esmailizadeh Koshkoiyeh
- />Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133 Iran
| | - Cedric Gondro
- />School of Environmental and Rural Science, University of New England, Armidale, NSW Australia
| |
Collapse
|
29
|
Kardos M, Husby A, McFarlane SE, Qvarnström A, Ellegren H. Whole-genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations. Mol Ecol Resour 2015; 16:727-41. [PMID: 26649993 DOI: 10.1111/1755-0998.12498] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/18/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022]
Abstract
Dissecting the genetic basis of phenotypic variation in natural populations is a long-standing goal in evolutionary biology. One open question is whether quantitative traits are determined only by large numbers of genes with small effects, or whether variation also exists in large-effect loci. We conducted genomewide association analyses of forehead patch size (a sexually selected trait) on 81 whole-genome-resequenced male collared flycatchers with extreme phenotypes, and on 415 males sampled independent of patch size and genotyped with a 50K SNP chip. No SNPs were genomewide statistically significantly associated with patch size. Simulation-based power analyses suggest that the power to detect large-effect loci responsible for 10% of phenotypic variance was <0.5 in the genome resequencing analysis, and <0.1 in the SNP chip analysis. Reducing the recombination by two-thirds relative to collared flycatchers modestly increased power. Tripling sample size increased power to >0.8 for resequencing of extreme phenotypes (N = 243), but power remained <0.2 for the 50K SNP chip analysis (N = 1245). At least 1 million SNPs were necessary to achieve power >0.8 when analysing 415 randomly sampled phenotypes. However, power of the 50K SNP chip to detect large-effect loci was nearly 0.8 in simulations with a small effective population size of 1500. These results suggest that reliably detecting large-effect trait loci in large natural populations will often require thousands of individuals and near complete sampling of the genome. Encouragingly, far fewer individuals and loci will often be sufficient to reliably detect large-effect loci in small populations with widespread strong linkage disequilibrium.
Collapse
Affiliation(s)
- Marty Kardos
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Arild Husby
- Department of Biosciences, University of Helsinki, PO Box 65, Helsinki, 00014, Finland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - S Eryn McFarlane
- Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| |
Collapse
|
30
|
Al-Mamun HA, Clark SA, Kwan P, Gondro C. Genome-wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep. Genet Sel Evol 2015; 47:90. [PMID: 26602211 PMCID: PMC4659207 DOI: 10.1186/s12711-015-0169-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 11/02/2015] [Indexed: 01/23/2023] Open
Abstract
Background Knowledge of the genetic structure and overall diversity of livestock species is important to maximise the potential of genome-wide association studies and genomic prediction. Commonly used measures such as linkage disequilibrium (LD), effective population size (Ne), heterozygosity, fixation index (FST) and runs of homozygosity (ROH) are widely used and help to improve our knowledge about genetic diversity in animal populations. The development of high-density single nucleotide polymorphism (SNP) arrays and the subsequent genotyping of large numbers of animals have greatly increased the accuracy of these population-based estimates. Methods In this study, we used the Illumina OvineSNP50 BeadChip array to estimate and compare LD (measured by r2 and D′), Ne, heterozygosity, FST and ROH in five Australian sheep populations: three pure breeds, i.e., Merino (MER), Border Leicester (BL), Poll Dorset (PD) and two crossbred populations i.e. F1 crosses of Merino and Border Leicester (MxB) and MxB crossed to Poll Dorset (MxBxP). Results Compared to other livestock species, the sheep populations that were analysed in this study had low levels of LD and high levels of genetic diversity. The rate of LD decay was greater in Merino than in the other pure breeds. Over short distances (<10 kb), the levels of LD were higher in BL and PD than in MER. Similarly, BL and PD had comparatively smaller Ne than MER. Observed heterozygosity in the pure breeds ranged from 0.3 in BL to 0.38 in MER. Genetic distances between breeds were modest compared to other livestock species (highest FST = 0.063) but the genetic diversity within breeds was high. Based on ROH, two chromosomal regions showed evidence of strong recent selection. Conclusions This study shows that there is a large range of genome diversity in Australian sheep breeds, especially in Merino sheep. The observed range of diversity will influence the design of genome-wide association studies and the results that can be obtained from them. This knowledge will also be useful to design reference populations for genomic prediction of breeding values in sheep. Electronic supplementary material The online version of this article (doi:10.1186/s12711-015-0169-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Samuel A Clark
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
| | - Paul Kwan
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia.
| | - Cedric Gondro
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
| |
Collapse
|
31
|
Miller JM, Poissant J, Malenfant RM, Hogg JT, Coltman DW. Temporal dynamics of linkage disequilibrium in two populations of bighorn sheep. Ecol Evol 2015; 5:3401-12. [PMID: 26380673 PMCID: PMC4569035 DOI: 10.1002/ece3.1612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Linkage disequilibrium (LD) is the nonrandom association of alleles at two markers. Patterns of LD have biological implications as well as practical ones when designing association studies or conservation programs aimed at identifying the genetic basis of fitness differences within and among populations. However, the temporal dynamics of LD in wild populations has received little empirical attention. In this study, we examined the overall extent of LD, the effect of sample size on the accuracy and precision of LD estimates, and the temporal dynamics of LD in two populations of bighorn sheep (Ovis canadensis) with different demographic histories. Using over 200 microsatellite loci, we assessed two metrics of multi-allelic LD, D', and χ ('2). We found that both populations exhibited high levels of LD, although the extent was much shorter in a native population than one that was founded via translocation, experienced a prolonged bottleneck post founding, followed by recent admixture. In addition, we observed significant variation in LD in relation to the sample size used, with small sample sizes leading to depressed estimates of the extent of LD but inflated estimates of background levels of LD. In contrast, there was not much variation in LD among yearly cross-sections within either population once sample size was accounted for. Lack of pronounced interannual variability suggests that researchers may not have to worry about interannual variation when estimating LD in a population and can instead focus on obtaining the largest sample size possible.
Collapse
Affiliation(s)
- Joshua M Miller
- Department of Biological Sciences, University of Alberta Edmonton, Alberta, Canada
| | - Jocelyn Poissant
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, UK
| | - René M Malenfant
- Department of Biological Sciences, University of Alberta Edmonton, Alberta, Canada
| | - John T Hogg
- Montana Conservation Science Institute 5200 Upper Miller Creek Road, Missoula, Montana, USA
| | - David W Coltman
- Department of Biological Sciences, University of Alberta Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Ciani E, Lasagna E, D'Andrea M, Alloggio I, Marroni F, Ceccobelli S, Delgado Bermejo JV, Sarti FM, Kijas J, Lenstra JA, Pilla F. Merino and Merino-derived sheep breeds: a genome-wide intercontinental study. Genet Sel Evol 2015; 47:64. [PMID: 26272467 PMCID: PMC4536749 DOI: 10.1186/s12711-015-0139-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/09/2015] [Indexed: 01/27/2023] Open
Abstract
Background Merino and Merino-derived sheep breeds have been widely distributed across the world, both as purebred and admixed populations. They represent an economically and historically important genetic resource which over time has been used as the basis for the development of new breeds. In order to examine the genetic influence of Merino in the context of a global collection of domestic sheep breeds, we analyzed genotype data that were obtained with the OvineSNP50 BeadChip (Illumina) for 671 individuals from 37 populations, including a subset of breeds from the Sheep HapMap dataset. Results Based on a multi-dimensional scaling analysis, we highlighted four main clusters in this dataset, which corresponded to wild sheep, mouflon, primitive North European breeds and modern sheep (including Merino), respectively. The neighbor-network analysis further differentiated North-European and Mediterranean domestic breeds, with subclusters of Merino and Merino-derived breeds, other Spanish breeds and other Italian breeds. Model-based clustering, migration analysis and haplotype sharing indicated that genetic exchange occurred between archaic populations and also that a more recent Merino-mediated gene flow to several Merino-derived populations around the world took place. The close relationship between Spanish Merino and other Spanish breeds was consistent with an Iberian origin for the Merino breed, with possible earlier contributions from other Mediterranean stocks. The Merino populations from Australia, New Zealand and China were clearly separated from their European ancestors. We observed a genetic substructuring in the Spanish Merino population, which reflects recent herd management practices. Conclusions Our data suggest that intensive gene flow, founder effects and geographic isolation are the main factors that determined the genetic makeup of current Merino and Merino-derived breeds. To explain how the current Merino and Merino-derived breeds were obtained, we propose a scenario that includes several consecutive migrations of sheep populations that may serve as working hypotheses for subsequent studies. Electronic supplementary material The online version of this article (doi:10.1186/s12711-015-0139-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie, Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A 70126, Bari, Italy.
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX giugno, 74 06121, Perugia, Italy.
| | - Mariasilvia D'Andrea
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, 86100, Italy.
| | - Ingrid Alloggio
- Dipartimento di Bioscienze, Biotecnologie, Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A 70126, Bari, Italy.
| | - Fabio Marroni
- Dipartimento di Scienze Agrarie e Ambientali, Universita' di Udine, Via delle Scienze 206, 33100, Udine, Italy. .,Istituto di Genomica Applicata (IGA), via J Linussio 51, 33100, Udine, Italy.
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX giugno, 74 06121, Perugia, Italy.
| | - Juan V Delgado Bermejo
- Departamento de Génetica, Universidad de Córdoba, Edificio Méndel C5, Campus Rabanales, 14071, Cordoba, Spain.
| | - Francesca M Sarti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX giugno, 74 06121, Perugia, Italy.
| | - James Kijas
- CSIRO Agriculture Flagship, St Lucia, Brisbane, QLD, Australia.
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands.
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, 86100, Italy.
| | | |
Collapse
|
33
|
Benjelloun B, Alberto FJ, Streeter I, Boyer F, Coissac E, Stucki S, BenBati M, Ibnelbachyr M, Chentouf M, Bechchari A, Leempoel K, Alberti A, Engelen S, Chikhi A, Clarke L, Flicek P, Joost S, Taberlet P, Pompanon F. Characterizing neutral genomic diversity and selection signatures in indigenous populations of Moroccan goats (Capra hircus) using WGS data. Front Genet 2015; 6:107. [PMID: 25904931 PMCID: PMC4387958 DOI: 10.3389/fgene.2015.00107] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/02/2015] [Indexed: 12/15/2022] Open
Abstract
Since the time of their domestication, goats (Capra hircus) have evolved in a large variety of locally adapted populations in response to different human and environmental pressures. In the present era, many indigenous populations are threatened with extinction due to their substitution by cosmopolitan breeds, while they might represent highly valuable genomic resources. It is thus crucial to characterize the neutral and adaptive genetic diversity of indigenous populations. A fine characterization of whole genome variation in farm animals is now possible by using new sequencing technologies. We sequenced the complete genome at 12× coverage of 44 goats geographically representative of the three phenotypically distinct indigenous populations in Morocco. The study of mitochondrial genomes showed a high diversity exclusively restricted to the haplogroup A. The 44 nuclear genomes showed a very high diversity (24 million variants) associated with low linkage disequilibrium. The overall genetic diversity was weakly structured according to geography and phenotypes. When looking for signals of positive selection in each population we identified many candidate genes, several of which gave insights into the metabolic pathways or biological processes involved in the adaptation to local conditions (e.g., panting in warm/desert conditions). This study highlights the interest of WGS data to characterize livestock genomic diversity. It illustrates the valuable genetic richness present in indigenous populations that have to be sustainably managed and may represent valuable genetic resources for the long-term preservation of the species.
Collapse
Affiliation(s)
- Badr Benjelloun
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes Grenoble, France ; Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Grenoble, France ; National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research Beni-Mellal, Morocco
| | - Florian J Alberto
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes Grenoble, France ; Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Grenoble, France
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute Hinxton, UK
| | - Frédéric Boyer
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes Grenoble, France ; Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Grenoble, France
| | - Eric Coissac
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes Grenoble, France ; Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Grenoble, France
| | - Sylvie Stucki
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Mohammed BenBati
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research Beni-Mellal, Morocco
| | - Mustapha Ibnelbachyr
- Regional Centre of Agronomic Research Errachidia, National Institute of Agronomic Research (INRA Maroc) Errachidia, Morocco
| | - Mouad Chentouf
- Regional Centre of Agronomic Research Tangier, National Institute of Agronomic Research (INRA Maroc) Tangier, Morocco
| | - Abdelmajid Bechchari
- Regional Centre of Agronomic Research Oujda, National Institute of Agronomic Research (INRA Maroc) Oujda, Morocco
| | - Kevin Leempoel
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Adriana Alberti
- Centre National de Séquençage, CEA-Institut de Génomique Genoscope, Évry, France
| | - Stefan Engelen
- Centre National de Séquençage, CEA-Institut de Génomique Genoscope, Évry, France
| | - Abdelkader Chikhi
- Regional Centre of Agronomic Research Errachidia, National Institute of Agronomic Research (INRA Maroc) Errachidia, Morocco
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute Hinxton, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute Hinxton, UK
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Pierre Taberlet
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes Grenoble, France ; Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Grenoble, France
| | - François Pompanon
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes Grenoble, France ; Laboratoire d'Ecologie Alpine, Centre National de la Recherche Scientifique Grenoble, France
| | | |
Collapse
|
34
|
Zhao F, Wang G, Zeng T, Wei C, Zhang L, Wang H, Zhang S, Liu R, Liu Z, Du L. Estimations of genomic linkage disequilibrium and effective population sizes in three sheep populations. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Mastrangelo S, Di Gerlando R, Tolone M, Tortorici L, Sardina MT, Portolano B. Genome wide linkage disequilibrium and genetic structure in Sicilian dairy sheep breeds. BMC Genet 2014; 15:108. [PMID: 25928374 PMCID: PMC4197223 DOI: 10.1186/s12863-014-0108-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022] Open
Abstract
Background The recent availability of sheep genome-wide SNP panels allows providing background information concerning genome structure in domestic animals. The aim of this work was to investigate the patterns of linkage disequilibrium (LD), the genetic diversity and population structure in Valle del Belice, Comisana, and Pinzirita dairy sheep breeds using the Illumina Ovine SNP50K Genotyping array. Results Average r2 between adjacent SNPs across all chromosomes was 0.155 ± 0.204 for Valle del Belice, 0.156 ± 0.208 for Comisana, and 0.128 ± 0.188 for Pinzirita breeds, and some variations in LD value across chromosomes were observed, in particular for Valle del Belice and Comisana breeds. Average values of r2 estimated for all pairwise combinations of SNPs pooled over all autosomes were 0.058 ± 0.023 for Valle del Belice, 0.056 ± 0.021 for Comisana, and 0.037 ± 0.017 for Pinzirita breeds. The LD declined as a function of distance and average r2 was lower than the values observed in other sheep breeds. Consistency of results among the several used approaches (Principal component analysis, Bayesian clustering, FST, Neighbor networks) showed that while Valle del Belice and Pinzirita breeds formed a unique cluster, Comisana breed showed the presence of substructure. In Valle del Belice breed, the high level of genetic differentiation within breed, the heterogeneous cluster in Admixture analysis, but at the same time the highest inbreeding coefficient, suggested that the breed had a wide genetic base with inbred individuals belonging to the same flock. The Sicilian breeds were characterized by low genetic differentiation and high level of admixture. Pinzirita breed displayed the highest genetic diversity (He, Ne) whereas the lowest value was found in Valle del Belice breed. Conclusions This study has reported for the first time estimates of LD and genetic diversity from a genome-wide perspective in Sicilian dairy sheep breeds. Our results indicate that breeds formed non-overlapping clusters and are clearly separated populations and that Comisana sheep breed does not constitute a homogenous population. The information generated from this study has important implications for the design and applications of association studies as well as for development of conservation and/or selection breeding programs. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0108-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Salvatore Mastrangelo
- Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy.
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy.
| | - Marco Tolone
- Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy.
| | - Lina Tortorici
- Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy.
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy.
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy.
| | | |
Collapse
|
36
|
Linkage disequilibrium levels in Bos indicus and Bos taurus cattle using medium and high density SNP chip data and different minor allele frequency distributions. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.05.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Kijas JW, Porto-Neto L, Dominik S, Reverter A, Bunch R, McCulloch R, Hayes BJ, Brauning R, McEwan J. Linkage disequilibrium over short physical distances measured in sheep using a high-density SNP chip. Anim Genet 2014; 45:754-7. [PMID: 25040320 DOI: 10.1111/age.12197] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2014] [Indexed: 01/08/2023]
Abstract
The extent of linkage disequilibrium (LD) between genetic loci has implications for both association studies and the accuracy of genomic prediction. To characterise the persistence of LD in diverse sheep breeds, two SNP genotyping platforms were used. First, existing SNP genotypes from 63 breeds obtained using the ovine SNP50 BeadChip (49,034 loci) were used to estimate LD decay in populations with contrasting levels of genetic diversity. Given the paucity of marker pairs separated by short physical distances on the SNP50 BeadChip, genotyping was subsequently performed for four breeds using the recently developed ovine HD BeadChip that assays approximately 600,000 SNPs with an average genomic spacing of 5 kb. This facilitated a highly accurate estimate of LD over short genomic distances (<30 kb) and revealed LD varies considerably between sheep breeds. Further, sheep appear to contain generally lower levels of LD than do other domestic species, likely a reflection of aspects of their past population history.
Collapse
Affiliation(s)
- James W Kijas
- CSIRO Agriculture Flagship, St Lucia, Qld 4067, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Analysis of genetic diversity and differentiation of sheep populations in Jordan. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
39
|
The application of genome-wide SNP genotyping methods in studies on livestock genomes. J Appl Genet 2014; 55:197-208. [PMID: 24566962 DOI: 10.1007/s13353-014-0202-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/14/2014] [Accepted: 02/04/2014] [Indexed: 01/07/2023]
Abstract
Animal genomics is currently undergoing dynamic development, which is driven by the flourishing of high-throughput genome analysis methods. Recently, a large number of animals has been genotyped with the use of whole-genome genotyping assays in the course of genomic selection programmes. The results of such genotyping can also be used for studies on different aspects of livestock genome functioning and diversity. In this article, we review the recent literature concentrating on various aspects of animal genomics, including studies on linkage disequilibrium, runs of homozygosity, selection signatures, copy number variation and genetic differentiation of animal populations. Our work is aimed at providing insight into certain achievements of animal genomics and to arouse interest in basic research on the complexity and structure of the genomes of livestock.
Collapse
|
40
|
Baloche G, Legarra A, Sallé G, Larroque H, Astruc JM, Robert-Granié C, Barillet F. Assessment of accuracy of genomic prediction for French Lacaune dairy sheep. J Dairy Sci 2014; 97:1107-16. [DOI: 10.3168/jds.2013-7135] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022]
|
41
|
Zeng J, Toosi A, Fernando RL, Dekkers JCM, Garrick DJ. Genomic selection of purebred animals for crossbred performance in the presence of dominant gene action. Genet Sel Evol 2013; 45:11. [PMID: 23621868 PMCID: PMC3673865 DOI: 10.1186/1297-9686-45-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/15/2013] [Indexed: 12/03/2022] Open
Abstract
Background Genomic selection is an appealing method to select purebreds for crossbred performance. In the case of crossbred records, single nucleotide polymorphism (SNP) effects can be estimated using an additive model or a breed-specific allele model. In most studies, additive gene action is assumed. However, dominance is the likely genetic basis of heterosis. Advantages of incorporating dominance in genomic selection were investigated in a two-way crossbreeding program for a trait with different magnitudes of dominance. Training was carried out only once in the simulation. Results When the dominance variance and heterosis were large and overdominance was present, a dominance model including both additive and dominance SNP effects gave substantially greater cumulative response to selection than the additive model. Extra response was the result of an increase in heterosis but at a cost of reduced purebred performance. When the dominance variance and heterosis were realistic but with overdominance, the advantage of the dominance model decreased but was still significant. When overdominance was absent, the dominance model was slightly favored over the additive model, but the difference in response between the models increased as the number of quantitative trait loci increased. This reveals the importance of exploiting dominance even in the absence of overdominance. When there was no dominance, response to selection for the dominance model was as high as for the additive model, indicating robustness of the dominance model. The breed-specific allele model was inferior to the dominance model in all cases and to the additive model except when the dominance variance and heterosis were large and with overdominance. However, the advantage of the dominance model over the breed-specific allele model may decrease as differences in linkage disequilibrium between the breeds increase. Retraining is expected to reduce the advantage of the dominance model over the alternatives, because in general, the advantage becomes important only after five or six generations post-training. Conclusion Under dominance and without retraining, genomic selection based on the dominance model is superior to the additive model and the breed-specific allele model to maximize crossbred performance through purebred selection.
Collapse
Affiliation(s)
- Jian Zeng
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, IA, USA
| | | | | | | | | |
Collapse
|
42
|
Rhode C, Vervalle J, Bester-van der Merwe AE, Roodt-Wilding R. Detection of molecular signatures of selection at microsatellite loci in the South African abalone (Haliotis midae) using a population genomic approach. Mar Genomics 2013; 10:27-36. [PMID: 23583728 DOI: 10.1016/j.margen.2013.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 03/12/2013] [Accepted: 03/17/2013] [Indexed: 01/09/2023]
Abstract
Identifying genomic regions that may be under selection is important for elucidating the genetic architecture of complex phenotypes underlying adaptation to heterogeneous environments. A population genomic approach, using a classical neutrality test and various Fst-outlier detection methods was employed to evaluate genome-wide polymorphism data in order to identify loci that may be candidates for selection amongst six populations (three cultured and three wild) of the South African abalone, Haliotis midae. Approximately 9% of the genome-wide microsatellite markers were putatively subject to directional selection, whilst 6-18% of the genome is thought to be influenced by balancing selection. Genetic diversity estimates for candidate loci under directional selection was significantly reduced in comparison to candidate neutral loci, whilst candidate balancing selection loci demonstrated significantly higher levels of genetic diversity (Kruskal-Wallis test, P<0.05). Pairwise Fst estimates based on candidate directional selection loci also demonstrated increased levels of differentiation between study populations. Various candidate loci under selection showed significant inter-chromosomal linkage disequilibrium, suggesting possible gene-networks underling adaptive phenotypes. Furthermore, several loci had significant hits to known genes when performing BLAST searches to NCBI's non-redundant databases, whilst others are known to be derived from expressed sequences even though homology to a known gene could not be established. A number of loci also demonstrated relatively high similarity to transposable elements. The association of these loci to functional and genomically active sequences could in part explain the observed signatures of selection.
Collapse
Affiliation(s)
- Clint Rhode
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | | | |
Collapse
|
43
|
Alhaddad H, Khan R, Grahn RA, Gandolfi B, Mullikin JC, Cole SA, Gruffydd-Jones TJ, Häggström J, Lohi H, Longeri M, Lyons LA. Extent of linkage disequilibrium in the domestic cat, Felis silvestris catus, and its breeds. PLoS One 2013; 8:e53537. [PMID: 23308248 PMCID: PMC3538540 DOI: 10.1371/journal.pone.0053537] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/03/2012] [Indexed: 01/21/2023] Open
Abstract
Domestic cats have a unique breeding history and can be used as models for human hereditary and infectious diseases. In the current era of genome-wide association studies, insights regarding linkage disequilibrium (LD) are essential for efficient association studies. The objective of this study is to investigate the extent of LD in the domestic cat, Felis silvestris catus, particularly within its breeds. A custom illumina GoldenGate Assay consisting of 1536 single nucleotide polymorphisms (SNPs) equally divided over ten 1 Mb chromosomal regions was developed, and genotyped across 18 globally recognized cat breeds and two distinct random bred populations. The pair-wise LD descriptive measure (r2) was calculated between the SNPs in each region and within each population independently. LD decay was estimated by determining the non-linear least-squares of all pair-wise estimates as a function of distance using established models. The point of 50% decay of r2 was used to compare the extent of LD between breeds. The longest extent of LD was observed in the Burmese breed, where the distance at which r2 ≈ 0.25 was ∼380 kb, comparable to several horse and dog breeds. The shortest extent of LD was found in the Siberian breed, with an r2 ≈ 0.25 at approximately 17 kb, comparable to random bred cats and human populations. A comprehensive haplotype analysis was also conducted. The haplotype structure of each region within each breed mirrored the LD estimates. The LD of cat breeds largely reflects the breeds’ population history and breeding strategies. Understanding LD in diverse populations will contribute to an efficient use of the newly developed SNP array for the cat in the design of genome-wide association studies, as well as to the interpretation of results for the fine mapping of disease and phenotypic traits.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Razib Khan
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Robert A. Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - James C. Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shelley A. Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Timothy J. Gruffydd-Jones
- The Feline Centre, School of Veterinary Science, University of Bristol, Langford, Bristol, United Kingdom
| | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hannes Lohi
- Department of Veterinary Biosciences, Research Programs Unit, Molecular Medicine, University of Helsinki, and The Folkhälsan Research Center, Helsinki, Finland
| | - Maria Longeri
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università di Milano, Milano, Italy
| | - Leslie A. Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Sallé G, Jacquiet P, Gruner L, Cortet J, Sauvé C, Prévot F, Grisez C, Bergeaud JP, Schibler L, Tircazes A, François D, Pery C, Bouvier F, Thouly JC, Brunel JC, Legarra A, Elsen JM, Bouix J, Rupp R, Moreno CR. A genome scan for QTL affecting resistance to Haemonchus contortus in sheep1. J Anim Sci 2012; 90:4690-705. [DOI: 10.2527/jas.2012-5121] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- G. Sallé
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes, BP 87614, F-31076 Toulouse, France
| | - P. Jacquiet
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes, BP 87614, F-31076 Toulouse, France
| | - L. Gruner
- INRA, UR1282, Infectiologie Animale et Santé Publique, F-37880 Nouzilly, France
| | - J. Cortet
- INRA, UR1282, Infectiologie Animale et Santé Publique, F-37880 Nouzilly, France
| | - C. Sauvé
- INRA, UR1282, Infectiologie Animale et Santé Publique, F-37880 Nouzilly, France
| | - F. Prévot
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes, BP 87614, F-31076 Toulouse, France
| | - C. Grisez
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes, BP 87614, F-31076 Toulouse, France
| | - J. P. Bergeaud
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes, BP 87614, F-31076 Toulouse, France
| | - L. Schibler
- INRA, UMR1313, Laboratoire de Génétique Biochimique et de Cytogénétique, F-78252 Jouy-en-Josas, France
| | - A. Tircazes
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| | - D. François
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| | - C. Pery
- INRA, UE332, Domaine de la Sapinière, F-18390, Osmoy, France
| | - F. Bouvier
- INRA, UE332, Domaine de la Sapinière, F-18390, Osmoy, France
| | - J. C. Thouly
- INRA, UE332, Domaine de la Sapinière, F-18390, Osmoy, France
| | - J. C. Brunel
- INRA, UE332, Domaine de la Sapinière, F-18390, Osmoy, France
| | - A. Legarra
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| | - J. M. Elsen
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| | - J. Bouix
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| | - R. Rupp
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| | - C. R. Moreno
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| |
Collapse
|
45
|
García-Gámez E, Sahana G, Gutiérrez-Gil B, Arranz JJ. Linkage disequilibrium and inbreeding estimation in Spanish Churra sheep. BMC Genet 2012; 13:43. [PMID: 22691044 PMCID: PMC3431250 DOI: 10.1186/1471-2156-13-43] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/12/2012] [Indexed: 02/02/2023] Open
Abstract
Background Genomic technologies, such as high-throughput genotyping based on SNP arrays, have great potential to decipher the genetic architecture of complex traits and provide background information concerning genome structure in domestic animals, including the extent of linkage disequilibrium (LD) and haplotype blocks. The objective of this study was to estimate LD, the population evolution (past effective population size) and the level of inbreeding in Spanish Churra sheep. Results A total of 43,784 SNPs distributed in the ovine autosomal genome was analyzed in 1,681 Churra ewes. LD was assessed by measuring r2 between all pairs of loci. For SNPs up to 10 kb apart, the average r2 was 0.329; for SNPs separated by 200–500 kb the average r2 was 0.061. When SNPs are separated by more than 50 Mbp, the average r2 is the same as between non-syntenic SNP pairs (0.003). The effective population size has decreased through time, faster from 1,000 to 100 years ago and slower since the selection scheme started (15–25 generations ago). In the last generation, four years ago, the effective population size was estimated to be 128 animals. Inbreeding coefficients, although differed depending on the estimation approaches, were generally low and showed the same trend, which indicates that since 2003, inbreeding has been slightly increasing in the studied resource population. Conclusions The extent of LD in Churra sheep persists over much more limited distances than reported in dairy cattle and seems to be similar to other ovine populations. Churra sheep show a wide genetic base, with a long-term viable effective population size that has been slightly decreasing since selection scheme began in 1986. The genomic dataset analyzed provided useful information for identifying low-level inbreeding in the sample, whereas based on the parameters reported here, a higher marker density than that analyzed here will be needed to successfully conduct accurate mapping of genes underlying production traits and genomic selection prediction in this sheep breed. Although the Ovine Assembly development is still in a draft stage and future refinements will provide a more accurate physical map that will improve LD estimations, this work is a first step towards the understanding of the genetic architecture in sheep.
Collapse
|
46
|
Smith EM, Hoffman JI, Green LE, Amos W. Preliminary association of microsatellite heterozygosity with footrot in domestic sheep. Livest Sci 2012. [DOI: 10.1016/j.livsci.2011.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Andersson LS, Swinburne JE, Meadows JRS, Broström H, Eriksson S, Fikse WF, Frey R, Sundquist M, Tseng CT, Mikko S, Lindgren G. The same ELA class II risk factors confer equine insect bite hypersensitivity in two distinct populations. Immunogenetics 2011; 64:201-8. [PMID: 21947540 PMCID: PMC3276761 DOI: 10.1007/s00251-011-0573-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/09/2011] [Indexed: 11/15/2022]
Abstract
Insect bite hypersensitivity (IBH) is a chronic allergic dermatitis common in horses. Affected horses mainly react against antigens present in the saliva from the biting midges, Culicoides ssp, and occasionally black flies, Simulium ssp. Because of this insect dependency, the disease is clearly seasonal and prevalence varies between geographical locations. For two distinct horse breeds, we genotyped four microsatellite markers positioned within the MHC class II region and sequenced the highly polymorphic exons two from DRA and DRB3, respectively. Initially, 94 IBH-affected and 93 unaffected Swedish born Icelandic horses were tested for genetic association. These horses had previously been genotyped on the Illumina Equine SNP50 BeadChip, which made it possible to ensure that our study did not suffer from the effects of stratification. The second population consisted of 106 unaffected and 80 IBH-affected Exmoor ponies. We show that variants in the MHC class II region are associated with disease susceptibility (praw = 2.34 × 10−5), with the same allele (COR112:274) associated in two separate populations. In addition, we combined microsatellite and sequencing data in order to investigate the pattern of homozygosity and show that homozygosity across the entire MHC class II region is associated with a higher risk of developing IBH (p = 0.0013). To our knowledge this is the first time in any atopic dermatitis suffering species, including man, where the same risk allele has been identified in two distinct populations.
Collapse
Affiliation(s)
- Lisa S Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 597, SE-751 24, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Zhang C, Plastow G. Genomic Diversity in Pig (Sus scrofa) and its Comparison with Human and other Livestock. Curr Genomics 2011; 12:138-46. [PMID: 21966252 PMCID: PMC3129048 DOI: 10.2174/138920211795564386] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 11/22/2022] Open
Abstract
We have reviewed the current pig (Sus scrofa) genomic diversity within and between sites and compared them with human and other livestock. The current Porcine 60K single nucleotide polymorphism (SNP) panel has an average SNP distance in a range of 30 - 40 kb. Most of genetic variation was distributed within populations, and only a small proportion of them existed between populations. The average heterozygosity was lower in pig than in human and other livestock. Genetic inbreeding coefficient (F(IS)), population differentiation (F(ST)), and Nei's genetic distance between populations were much larger in pig than in human and other livestock. Higher average genetic distance existed between European and Asian populations than between European or between Asian populations. Asian breeds harboured much larger variability and higher average heterozygosity than European breeds. The samples of wild boar that have been analyzed displayed more extensive genetic variation than domestic breeds. The average linkage disequilibrium (LD) in improved pig breeds extended to 1 - 3 cM, much larger than that in human (~ 30 kb) and cattle (~ 100 kb), but smaller than that in sheep (~ 10 cM). European breeds showed greater LD that decayed more slowly than Asian breeds. We briefly discuss some processes for maintaining genomic diversity in pig, including migration, introgression, selection, and drift. We conclude that, due to the long time of domestication, the pig possesses lower heterozygosity, higher F(IS), and larger LD compared with human and cattle. This implies that a smaller effective population size and less informative markers are needed in pig for genome wide association studies.
Collapse
Affiliation(s)
| | - Graham Plastow
- 1400 College Plaza, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8, Canada
| |
Collapse
|
50
|
Miller JM, Poissant J, Kijas JW, Coltman DW. A genome-wide set of SNPs detects population substructure and long range linkage disequilibrium in wild sheep. Mol Ecol Resour 2010; 11:314-22. [PMID: 21429138 DOI: 10.1111/j.1755-0998.2010.02918.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development of genomic resources for wild species is still in its infancy. However, cross-species utilization of technologies developed for their domestic counterparts has the potential to unlock the genomes of organisms that currently lack genomic resources. Here, we apply the OvineSNP50 BeadChip, developed for domestic sheep, to two related wild ungulate species: the bighorn sheep (Ovis canadensis) and the thinhorn sheep (Ovis dalli). Over 95% of the domestic sheep markers were successfully genotyped in a sample of fifty-two bighorn sheep while over 90% were genotyped in two thinhorn sheep. Pooling the results from both species identified 868 single-nucleotide polymorphisms (SNPs), 570 were detected in bighorn sheep, while 330 SNPs were identified in thinhorn sheep. The total panel of SNPs was able to discriminate between the two species, assign population of origin for bighorn sheep and detect known relationship classes within one population of bighorn sheep. Using an informative subset of these SNPs (n=308), we examined the extent of genome-wide linkage disequilibrium (LD) within one population of bighorn sheep and found that high levels of LD persist over 4 Mb.
Collapse
Affiliation(s)
- J M Miller
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|