1
|
Zhang W, Liu L, Zhou M, Su S, Dong L, Meng X, Li X, Wang C. Assessing Population Structure and Signatures of Selection in Wanbei Pigs Using Whole Genome Resequencing Data. Animals (Basel) 2022; 13:ani13010013. [PMID: 36611624 PMCID: PMC9817800 DOI: 10.3390/ani13010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Wanbei pig (WBP) is one of the indigenous pig resources in China and has many germplasm characteristics. However, research on its genome is lacking. To assess the genomic variation, population structure, and selection signatures, we resequenced 18 WBP for the first time and performed a comprehensive analysis with resequenced data of 10 Asian wild boars. In total, 590.03 Gb of data and approximately 41 million variants were obtained. Polymorphism level (θπ) ratio and genetic differentiation (fixation index)-based cross approaches were applied, and 539 regions, which harbored 176 genes, were selected. Functional analysis of the selected genes revealed that they were associated with lipid metabolism (SCP2, APOA1, APOA4, APOC3, CD36, BCL6, ADCY8), backfat thickness (PLAG1, CACNA2D1), muscle (MYOG), and reproduction (CABS1). Overall, our results provide a valuable resource for characterizing the uniqueness of WBP and a basis for future breeding.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Linqing Liu
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shiguang Su
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Lin Dong
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xinxin Meng
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xueting Li
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Correspondence:
| |
Collapse
|
2
|
Zhang W, Li X, Jiang Y, Zhou M, Liu L, Su S, Xu C, Li X, Wang C. Genetic architecture and selection of Anhui autochthonous pig population revealed by whole genome resequencing. Front Genet 2022; 13:1022261. [PMID: 36324508 PMCID: PMC9618877 DOI: 10.3389/fgene.2022.1022261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
The genetic resources among pigs in Anhui Province are diverse, but their value and potential have yet to be discovered. To illustrate the genetic diversity and population structure of the Anhui pigs population, we resequenced the genome of 150 pigs from six representative Anhui pigs populations and analyzed this data together with the sequencing data from 40 Asian wild boars and commercial pigs. Our results showed that Anhui pigs were divided into two distinct types based on ancestral descent: Wannan Spotted pig (WSP) and Wannan Black pig (WBP) origins from the same ancestor and the other four populations origins from another ancestor. We also identified several potential selective sweep regions associated with domestication characteristics among Anhui pigs, including reproduction-associated genes (CABS1, INSL6, MAP3K12, IGF1R, INSR, LIMK2, PATZ1, MAPK1), lipid- and meat-related genes (SNX19, MSTN, MC5R, PRKG1, CREBBP, ADCY9), and ear size genes (MSRB3 and SOX5). Therefore, these findings expand the catalogue and how these genetic differences among pigs and this newly generated data will be a valuable resource for future genetic studies and for improving genome-assisted breeding of pigs and other domesticated animals.
Collapse
|
3
|
Zhang W, Yang M, Zhou M, Wang Y, Wu X, Zhang X, Ding Y, Zhao G, Yin Z, Wang C. Identification of Signatures of Selection by Whole-Genome Resequencing of a Chinese Native Pig. Front Genet 2020; 11:566255. [PMID: 33093844 PMCID: PMC7527633 DOI: 10.3389/fgene.2020.566255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/20/2020] [Indexed: 12/03/2022] Open
Abstract
Identification of genomic signatures of selection that help reveal genetic mechanisms underlying traits in domesticated pigs is of importance. Anqing six-end-white pig (ASP), a representative of the native breeds in China, has many distinguishing phenotypic characteristics. To identify the genomic signatures of selection of the ASP, whole-genome sequencing of 20 ASPs produced 469.01 Gb of sequence data and more than 26 million single-nucleotide polymorphisms. Combining these data with the available whole genomes of 13 Chinese wild boars, 157 selected regions harboring 48 protein-coding genes were identified by applying the polymorphism levels (θπ) and genetic differentiation (FST) based cross approaches. The genes found to be positively selected in ASP are involved in crucial biological processes such as coat color (MC1R), salivary secretion (STATH), reproduction (SPIRE2, OSBP2, LIMK2, FANCA, and CABS1), olfactory transduction (OR5K4), and growth (NPY1R, NPY5R, and SELENOM). Our research increased the knowledge of ASP phenotype-related genes and help to improve our understanding of the underlying biological mechanisms and provide valuable genetic resources that enable effective use of pigs in agricultural production.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Min Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yuanlang Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xudong Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Guiying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
4
|
Lee SH, Seo DW, Cho ES, Choi BH, Kim YM, Hong JK, Han HD, Jung YB, Kim DJ, Choi TJ, Lee SH. Genetic Diversity and Ancestral Study for Korean Native Pigs Using 60K SNP Chip. Animals (Basel) 2020; 10:ani10050760. [PMID: 32349346 PMCID: PMC7277343 DOI: 10.3390/ani10050760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Assessing and understanding the genetic resources of indigenous livestock populations is necessary to address issues associated with conservation and domestic supply, etc. This study examined the Korean native pig (KNP; Sus scrofa coreanus), which is among the native porcine breeds in South Korea, in terms of its overall genetic diversity and ancestry. According to 60K single-nucleotide polymorphism (SNP) BeadChip analyses, the KNP pig showed similarity to Western breeds than to Chinese breeds. This conclusion runs contrary to popular belief as a Chinese origin of KNP pigs, as suggested by previous historical and genetic studies. We also describe the possibility of potential biases in the analysis results. Abstract The Korean native pig (KNP; Sus scrofa coreanus) is an indigenous porcine breed in South Korea considered as a valuable but dwindling genetic resource. Studies using diverse methodologies and genetic markers suggest that this population originated from the Manchu province of Northeastern China and migrated approximately 3000 years ago into the Korean peninsula. This study aimed to verify those findings by performing diversity and ancestral analyses using the 60K single-nucleotide polymorphism (SNP) BeadChip on 891 pigs of 47 breeds worldwide. We also performed principal component analysis (PCA), ancestry analyses, phylogenetic tree analysis using SNPhylo, and linkage disequilibrium analysis. Furthermore, we generated heatmap, obtained Nei’s genetic distance and FST values, and explored the heterozygosity of commercial and native Korean pigs. The results demonstrated that KNP pigs are more closely related to European breeds than to Chinese breeds. In addition, as previous studies have suggested, our admixture analyses indicated that KNP pigs showed distinguishable genetic structure.
Collapse
Affiliation(s)
- Soo Hyun Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (S.H.L.); (D.W.S.)
| | - Dong Won Seo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (S.H.L.); (D.W.S.)
| | - Eun Seok Cho
- Swine Science division, National Institute of Animal Science, RDA, Seonghwan 31000, Korea; (E.S.C.); (Y.M.K.); (J.K.H.)
| | - Bong Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, WanJu 55365, Korea;
| | - Yong Min Kim
- Swine Science division, National Institute of Animal Science, RDA, Seonghwan 31000, Korea; (E.S.C.); (Y.M.K.); (J.K.H.)
| | - Joon Ki Hong
- Swine Science division, National Institute of Animal Science, RDA, Seonghwan 31000, Korea; (E.S.C.); (Y.M.K.); (J.K.H.)
| | - Hyo Dong Han
- Research and Development Division, Korea Institute for Animal Products Quality Evaluation, Areumseo-gil 21, Sejong 30100, Korea; (H.D.H.); (Y.B.J.); (D.J.K.)
| | - Yeon Bok Jung
- Research and Development Division, Korea Institute for Animal Products Quality Evaluation, Areumseo-gil 21, Sejong 30100, Korea; (H.D.H.); (Y.B.J.); (D.J.K.)
| | - Dong Jun Kim
- Research and Development Division, Korea Institute for Animal Products Quality Evaluation, Areumseo-gil 21, Sejong 30100, Korea; (H.D.H.); (Y.B.J.); (D.J.K.)
| | - Tae Jeong Choi
- Swine Science division, National Institute of Animal Science, RDA, Seonghwan 31000, Korea; (E.S.C.); (Y.M.K.); (J.K.H.)
- Correspondence: (T.J.C.); (S.H.L.); Tel.: +82-42-821-5878 (S.H.L.)
| | - Seung Hwan Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (S.H.L.); (D.W.S.)
- Correspondence: (T.J.C.); (S.H.L.); Tel.: +82-42-821-5878 (S.H.L.)
| |
Collapse
|
5
|
Ghosh M, Sodhi SS, Sharma N, Mongre RK, Kim N, Singh AK, Lee SJ, Kim DC, Kim SW, Lee HK, Song KD, Jeong DK. An integrated in silico approach for functional and structural impact of non- synonymous SNPs in the MYH1 gene in Jeju Native Pigs. BMC Genet 2016; 17:35. [PMID: 26847462 PMCID: PMC4741023 DOI: 10.1186/s12863-016-0341-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/25/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND This study was performed to identify the non- synonymous polymorphisms in the myosin heavy chain 1 gene (MYH1) association with skeletal muscle development in economically important Jeju Native Pig (JNP) and Berkshire breeds. Herein, we present an in silico analysis, with a focus on (a) in silico approaches to predict the functional effect of non-synonymous SNP (nsSNP) in MYH1 on growth, and (b) molecular docking and dynamic simulation of MYH1 to predict the effects of those nsSNP on protein-protein association. RESULTS The NextGENe (V 2.3.4.) tool was used to identify the variants in MYH1 from JNP and Berkshire using RNA seq. Gene ontology analysis of MYH1 revealed significant association with muscle contraction and muscle organ development. The 95 % confidence intervals clearly indicate that the mRNA expression of MYH1 is significantly higher in the Berkshire longissimus dorsi muscle samples than JNP breed. Concordant in silico analysis of MYH1, the open-source software tools identified 4 potential nsSNP (L884T, K972C, N981G, and Q1285C) in JNP and 1 nsSNP (H973G) in Berkshire pigs. Moreover, protein-protein interactions were studied to investigate the effect of MYH1 mutations on association with hub proteins, and MYH1 was found to be closely associated with the protein myosin light chain, phosphorylatable, fast skeletal muscle MYLPF. The results of molecular docking studies on MYH1 (native and 4 mutants) and MYLFP demonstrated that the native complex showed higher electrostatic energy (-466.5 Kcal mol(-1)), van der Walls energy (-87.3 Kcal mol(-1)), and interaction energy (-835.7 Kcal mol(-1)) than the mutant complexes. Furthermore, the molecular dynamic simulation revealed that the native complex yielded a higher root-mean-square deviation (0.2-0.55 nm) and lower root-mean-square fluctuation (approximately 0.08-0.3 nm) as compared to the mutant complexes. CONCLUSIONS The results suggest that the variants at L884T, K972C, N981G, and Q1285C in MYH1 in JNP might represent a cause for the poor growth performance for this breed. This study is a pioneering in-depth in silico analysis of polymorphic MYH1 and will serve as a valuable resource for further targeted molecular diagnosis and population-based studies conducted for improving the growth performance of JNP.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Simrinder Singh Sodhi
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Neelesh Sharma
- Sher-e-Kashmir University of Agricultural Sciences and Technology, R.S. Pura, Jammu, India.
| | - Raj Kumar Mongre
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Nameun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Amit Kumar Singh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Dae Cheol Kim
- Livestock Promotion Institute, Jeju Special Self-governing Province, Jeju-Do, 690-756, Republic of Korea.
| | - Sung Woo Kim
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Administration, Namwon, Republic of Korea.
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| |
Collapse
|
6
|
Kang H, Wang H, Fan Z, Zhao P, Khan A, Yin Z, Wang J, Bao W, Wang A, Zhang Q, Liu JF. Resequencing diverse Chinese indigenous breeds to enrich the map of genomic variations in swine. Genomics 2015; 106:286-94. [PMID: 26296457 DOI: 10.1016/j.ygeno.2015.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
To enrich the map of genomic variations in swine, we randomly sequenced 13 domestic and wild individuals from China and Europe. We detected approximately 28.1 million single nucleotide variants (SNVs) and 3.6 million short insertions and deletions (INDELs), of which 2,530,248 SNVs and 3,456,626 INDELs were firstly identified compared with dbSNP 143. Moreover, 208,687 SNVs and 24,161 INDELs were uniquely observed in Chinese pigs, potentially accounting for phenotypic differences between Chinese and European pigs. Furthermore, significantly high correlation between SNV and INDEL was witnessed, which indicated that these two distinct variants may share similar etiologies. We also predicted loss of function genes and found that they were under weaker evolutionary constraints. This study gives interesting insights into the genomic features of the Chinese pig breeds. These data would be useful in the establishment of high-density SNP map and would lay a foundation for facilitating pig functional genomics study.
Collapse
Affiliation(s)
- Huimin Kang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Haifei Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ziyao Fan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Pengju Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Amjad Khan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Jiafu Wang
- School of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Aiguo Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Qin Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Molnár J, Nagy T, Stéger V, Tóth G, Marincs F, Barta E. Genome sequencing and analysis of Mangalica, a fatty local pig of Hungary. BMC Genomics 2014; 15:761. [PMID: 25193519 PMCID: PMC4162939 DOI: 10.1186/1471-2164-15-761] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/02/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mangalicas are fatty type local/rare pig breeds with an increasing presence in the niche pork market in Hungary and in other countries. To explore their genetic resources, we have analysed data from next-generation sequencing of an individual male from each of three Mangalica breeds along with a local male Duroc pig. Structural variations, such as SNPs, INDELs and CNVs, were identified and particular genes with SNP variations were analysed with special emphasis on functions related to fat metabolism in pigs. RESULTS More than 60 Gb of sequence data were generated for each of the sequenced individuals, resulting in 11× to 19× autosomal median coverage. After stringent filtering, around six million SNPs, of which approximately 10% are novel compared to the dbSNP138 database, were identified in each animal. Several hundred thousands of INDELs and about 1,000 CNV gains were also identified. The functional annotation of genes with exonic, non-synonymous SNPs, which are common in all three Mangalicas but are absent in either the reference genome or the sequenced Duroc of this study, highlighted 52 genes in lipid metabolism processes. Further analysis revealed that 41 of these genes are associated with lipid metabolic or regulatory pathways, 49 are in fat-metabolism and fatness-phenotype QTLs and, with the exception of ACACA, ANKRD23, GM2A, KIT, MOGAT2, MTTP, FASN, SGMS1, SLC27A6 and RETSAT, have not previously been associated with fat-related phenotypes. CONCLUSIONS Genome analysis of Mangalica breeds revealed that local/rare breeds could be a rich source of sequence variations not present in cosmopolitan/industrial breeds. The identified Mangalica variations may, therefore, be a very useful resource for future studies of agronomically important traits in pigs.
Collapse
Affiliation(s)
| | | | | | | | - Ferenc Marincs
- Agricultural Genomics and Bioinformatics Group, Agricultural Biotechnology Institute, NARIC, Gödöllő, Hungary.
| | | |
Collapse
|
8
|
[Association between gene polymorphisms of propanoate metabolism pathway and meat quality as well as carcass traits in pigs]. YI CHUAN = HEREDITAS 2012; 34:872-8. [PMID: 22805213 DOI: 10.3724/sp.j.1005.2012.00872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In order to gain more extensive insight into detailed genetic control mechanisms of porcine meat quality and mine novel candidate genes, this study focused on the relationship between the genes of propanpate metabolism pathway and porcine meat quality as well as carcass traits based on the candidate gene set approach. Thirty-seven DLY pigs were tested in this study. A total of 36 SNPs within 7 candidate genes of propanoate metabolism pathway were genotyped and association analysis was conducted via Least Squares method, Multivariate multiple regression model, and a model-based multifactor dimensionality reduction method (MB-MDR). As a result, four SNPs in genes PCCB, MUT, MCEE, and ACSS1 were significantly associated with DLY pig meat quality or carcass traits (P<0.05). Results of MB-MDR analysis demonstrated that the interactions between multiple SNPs were significantly associated with the backfat thickness, water content, and fat content (P<0.05). ACSS2 was significantly associated with fat content; MCEE and MUT significantly influenced backfat thickness; and PCCB was related to fat weight. Moreover, the interactions between the genes in the propanoate metabolism pathway had remarkable influence in porcine meat quality and carcass traits.
Collapse
|
9
|
Lee KT, Byun MJ, Kang KS, Hwang H, Park EW, Kim JM, Kim TH, Lee SH. Single nucleotide polymorphism association study for backfat and intramuscular fat content in the region between SW2098 and SW1881 on pig chromosome 6. J Anim Sci 2011; 90:1081-7. [PMID: 21984723 DOI: 10.2527/jas.2011-4228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was carried out to identify SNP associated with fatness traits on pig chromosome 6. In total, 11,067 putative genomic variations were detected in 125 complete bacterial artificial chromosome sequences corresponding to the region between SW2098 and SW1881, which harbors multiple QTL affecting intramuscular fat content (IMF) and backfat thickness (BFT). Among 173 putative SNP validated by MassArray, 120 SNP were used in an association study on 541 offspring produced by a cross of Korean native pig and Landrace breeds. The significance level of each SNP was determined using single marker regression analysis. Further, significant threshold values were determined using a false discovery rate. Nine out of 120 SNP showed significant effects on BFT or IMF or both. Of the 9 significant SNP, 4 were significantly associated with IMF, 7 were significantly related to BFT, and 2 SNP (Kps8172 and Kps6413) showed significant effects on both traits. Moreover, multiple regression analysis considering all significant SNP was used to correct spurious false positives due to linkage disequilibrium. Consequently, only 1 SNP (Kps6413) was significant for IMF, whereas 4 SNP including Kps6413 showed significant effects on BFT. The significant SNP had generally additive effects and on average explained 1.72% of the genetic variation for IMF and 3.92% for BFT, respectively. These markers can potentially be applied in pig breeding programs for improving IMF and BFT traits after validation in other populations.
Collapse
Affiliation(s)
- K T Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Gwonsun-gu, Suwon, Korea 441-706
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nie Q, Fang M, Jia X, Zhang W, Zhou X, He X, Zhang X. Analysis of muscle and ovary transcriptome of Sus scrofa: assembly, annotation and marker discovery. DNA Res 2011; 18:343-51. [PMID: 21729922 PMCID: PMC3190955 DOI: 10.1093/dnares/dsr021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pig (Sus scrofa) is an important organism for both agricultural and medical purpose. This study aims to investigate the S. scrofa transcriptome by the use of Roche 454 pyrosequencing. We obtained a total of 558 743 and 528 260 reads for the back-leg muscle and ovary tissue each. The overall 1 087 003 reads give rise to 421 767 341 bp total residues averaging 388 bp per read. The de novo assemblies yielded 11 057 contigs and 60 270 singletons for the back-leg muscle, 12 204 contigs and 70 192 singletons for the ovary and 18 938 contigs and 102 361 singletons for combined tissues. The overall GC content of S. scrofa transcriptome is 42.3% for assembled contigs. Alternative splicing was found within 4394 contigs, giving rise to 1267 isogroups or genes. A total of 56 589 transcripts are involved in molecular function (40 916), biological process (38 563), cellular component (35 787) by further gene ontology analyses. Comparison analyses showed that 336 and 553 genes had significant higher expression in the back-leg muscle and ovary each. In addition, we obtained a total of 24 214 single-nucleotide polymorphisms and 11 928 simple sequence repeats. These results contribute to the understanding of the genetic makeup of S. scrofa transcriptome and provide useful information for functional genomic research in future.
Collapse
Affiliation(s)
- Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang C, Plastow G. Genomic Diversity in Pig (Sus scrofa) and its Comparison with Human and other Livestock. Curr Genomics 2011; 12:138-46. [PMID: 21966252 PMCID: PMC3129048 DOI: 10.2174/138920211795564386] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 11/22/2022] Open
Abstract
We have reviewed the current pig (Sus scrofa) genomic diversity within and between sites and compared them with human and other livestock. The current Porcine 60K single nucleotide polymorphism (SNP) panel has an average SNP distance in a range of 30 - 40 kb. Most of genetic variation was distributed within populations, and only a small proportion of them existed between populations. The average heterozygosity was lower in pig than in human and other livestock. Genetic inbreeding coefficient (F(IS)), population differentiation (F(ST)), and Nei's genetic distance between populations were much larger in pig than in human and other livestock. Higher average genetic distance existed between European and Asian populations than between European or between Asian populations. Asian breeds harboured much larger variability and higher average heterozygosity than European breeds. The samples of wild boar that have been analyzed displayed more extensive genetic variation than domestic breeds. The average linkage disequilibrium (LD) in improved pig breeds extended to 1 - 3 cM, much larger than that in human (~ 30 kb) and cattle (~ 100 kb), but smaller than that in sheep (~ 10 cM). European breeds showed greater LD that decayed more slowly than Asian breeds. We briefly discuss some processes for maintaining genomic diversity in pig, including migration, introgression, selection, and drift. We conclude that, due to the long time of domestication, the pig possesses lower heterozygosity, higher F(IS), and larger LD compared with human and cattle. This implies that a smaller effective population size and less informative markers are needed in pig for genome wide association studies.
Collapse
Affiliation(s)
| | - Graham Plastow
- 1400 College Plaza, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8, Canada
| |
Collapse
|
12
|
Fan B, Gorbach DM, Rothschild MF. The pig genome project has plenty to squeal about. Cytogenet Genome Res 2011; 134:9-18. [PMID: 21304247 DOI: 10.1159/000324043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
Significant progress on pig genetics and genomics research has been witnessed in recent years due to the integration of advanced molecular biology techniques, bioinformatics and computational biology, and the collaborative efforts of researchers in the swine genomics community. Progress on expanding the linkage map has slowed down, but the efforts have created a higher-resolution physical map integrating the clone map and BAC end sequence. The number of QTL mapped is still growing and most of the updated QTL mapping results are available through PigQTLdb. Additionally, expression studies using high-throughput microarrays and other gene expression techniques have made significant advancements. The number of identified non-coding RNAs is rapidly increasing and their exact regulatory functions are being explored. A publishable draft (build 10) of the swine genome sequence was available for the pig genomics community by the end of December 2010. Build 9 of the porcine genome is currently available with Ensembl annotation; manual annotation is ongoing. These drafts provide useful tools for such endeavors as comparative genomics and SNP scans for fine QTL mapping. A recent community-wide effort to create a 60K porcine SNP chip has greatly facilitated whole-genome association analyses, haplotype block construction and linkage disequilibrium mapping, which can contribute to whole-genome selection. The future 'systems biology' that integrates and optimizes the information from all research levels can enhance the pig community's understanding of the full complexity of the porcine genome. These recent technological advances and where they may lead are reviewed.
Collapse
Affiliation(s)
- B Fan
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
13
|
Davoli R, Gandolfi G, Braglia S, Comella M, Zambonelli P, Buttazzoni L, Russo V. New SNP of the porcine perilipin 2 (PLIN2) gene, association with carcass traits and expression analysis in skeletal muscle. Mol Biol Rep 2010; 38:1575-83. [PMID: 20842447 DOI: 10.1007/s11033-010-0266-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
PLIN2 (perilipin 2) is a cytosolic protein that promotes the formation and stabilization of the intracellular lipid droplets, organelles involved in the storage of lipid depots. Porcine PLIN2 gene represents a biological and positional candidate for fat deposition, a polygenic trait that affects carcass and meat quality. The aim of the present study was to screen PLIN2 gene for polymorphisms, to evaluate the association with carcass quality traits, and to investigate the gene expression in skeletal muscle. Six new single nucleotide polymorphisms (SNP) were detected by sequencing 32 samples from five pig breeds (Italian Large White, Italian Duroc, Italian Landrace, Belgian Landrace, Pietrain). Two SNP localized in introns, two in the 3'-untranslated region (UTR), and two missense SNP were found in exons. A 3'-UTR mutation (GU461317:g.98G>A), genotyped in 290 Italian Duroc pigs by High Resolution Melting, resulted significantly associated (P < 0.01) with average daily gain, feed conversion ratio, lean cuts and hams weight estimated breeding values. PLIN2 gene expression analysis in skeletal muscle of Italian Large White and Italian Duroc pigs divergent for backfat thickness and visible intermuscular fat showed a trend of higher expression level in pigs with higher intermuscular fat. These results suggest that PLIN2 can be a marker for carcass quality in pigs. Further investigation at both gene and protein level could elucidate its role on fat deposition.
Collapse
Affiliation(s)
- Roberta Davoli
- DIPROVAL, Sezione di Allevamenti Zootecnici, Faculty of Agriculture, University of Bologna, Via F.lli Rosselli 107, 42100 Reggio, Emilia, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Amaral AJ, Megens HJ, Kerstens HHD, Heuven HCM, Dibbits B, Crooijmans RPMA, den Dunnen JT, Groenen MAM. Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome. BMC Genomics 2009; 10:374. [PMID: 19674453 PMCID: PMC2739861 DOI: 10.1186/1471-2164-10-374] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 08/12/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the Illumina 1 G Genome Analyzer generates billions of base pairs of sequence data, challenges arise in sequence selection due to the varying sequence quality. Therefore, in the framework of the International Porcine SNP Chip Consortium, this pilot study aimed to evaluate the impact of the quality level of the sequenced bases on mapping quality and identification of true SNPs on a large scale. RESULTS DNA pooled from five animals from a commercial boar line was digested with DraI; 150-250-bp fragments were isolated and end-sequenced using the Illumina 1 G Genome Analyzer, yielding 70,348,064 sequences 36-bp long. Rules were developed to select sequences, which were then aligned to unique positions in a reference genome. Sequences were selected based on quality, and three thresholds of sequence quality (SQ) were compared. The highest threshold of SQ allowed identification of a larger number of SNPs (17,489), distributed widely across the pig genome. In total, 3,142 SNPs were validated with a success rate of 96%. The correlation between estimated minor allele frequency (MAF) and genotyped MAF was moderate, and SNPs were highly polymorphic in other pig breeds. Lowering the SQ threshold and maintaining the same criteria for SNP identification resulted in the discovery of fewer SNPs (16,768), of which 259 were not identified using higher SQ levels. Validation of SNPs found exclusively in the lower SQ threshold had a success rate of 94% and a low correlation between estimated MAF and genotyped MAF. Base change analysis suggested that the rate of transitions in the pig genome is likely to be similar to that observed in humans. Chromosome X showed reduced nucleotide diversity relative to autosomes, as observed for other species. CONCLUSION Large numbers of SNPs can be identified reliably by creating strict rules for sequence selection, which simultaneously decreases sequence ambiguity. Selection of sequences using a higher SQ threshold leads to more reliable identification of SNPs. Lower SQ thresholds can be used to guarantee sufficient sequence coverage, resulting in high success rate but less reliable MAF estimation. Nucleotide diversity varies between porcine chromosomes, with the X chromosome showing less variation as observed in other species.
Collapse
Affiliation(s)
- Andreia J Amaral
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen 6700 AH, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ramos AM, Crooijmans RPMA, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TPL, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, Groenen MAM. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 2009; 4:e6524. [PMID: 19654876 PMCID: PMC2716536 DOI: 10.1371/journal.pone.0006524] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 06/21/2009] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. METHODOLOGY/PRINCIPAL FINDINGS A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. CONCLUSIONS/SIGNIFICANCE Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs.
Collapse
Affiliation(s)
- Antonio M. Ramos
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, The Netherlands
| | | | - Nabeel A. Affara
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Andreia J. Amaral
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, The Netherlands
| | - Alan L. Archibald
- Division of Genetics and Genomics, The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin Midlothian, United Kingdom
| | - Jonathan E. Beever
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | | | - Carol Churcher
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Richard Clark
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Patrick Dehais
- INRA, Laboratoire de Génétique Cellulaire, Castanet Tolosan, France
| | - Mark S. Hansen
- Illumina, Inc., San Diego, California, United States of America
| | - Jakob Hedegaard
- Aarhus University, Faculty of Agricultural Sciences, Tjele, Denmark
| | - Zhi-Liang Hu
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Hindrik H. Kerstens
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, The Netherlands
| | - Andy S. Law
- Division of Genetics and Genomics, The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin Midlothian, United Kingdom
| | - Hendrik-Jan Megens
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, The Netherlands
| | - Denis Milan
- INRA, Laboratoire de Génétique Cellulaire, Castanet Tolosan, France
| | - Danny J. Nonneman
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, United States of America
| | - Gary A. Rohrer
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, United States of America
| | - Max F. Rothschild
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Tim P. L. Smith
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, United States of America
| | - Robert D. Schnabel
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Curt P. Van Tassell
- Bovine Functional Genomics Laboratory, U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, Maryland, United States of America
| | - Jeremy F. Taylor
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Ralph T. Wiedmann
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, United States of America
| | - Lawrence B. Schook
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Martien A. M. Groenen
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, The Netherlands
| |
Collapse
|