1
|
Stuparu AD, Capri JR, Meyer CAL, Le TM, Evans-Axelsson SL, Current K, Lennox M, Mona CE, Fendler WP, Calais J, Eiber M, Dahlbom M, Czernin J, Radu CG, Lückerath K, Slavik R. Mechanisms of Resistance to Prostate-Specific Membrane Antigen-Targeted Radioligand Therapy in a Mouse Model of Prostate Cancer. J Nucl Med 2021; 62:989-995. [PMID: 33277393 PMCID: PMC8882874 DOI: 10.2967/jnumed.120.256263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/11/2020] [Indexed: 01/19/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) is effective against prostate cancer (PCa), but all patients relapse eventually. Poor understanding of the underlying resistance mechanisms represents a key barrier to development of more effective RLT. We investigate the proteome and phosphoproteome in a mouse model of PCa to identify signaling adaptations triggered by PSMA RLT. Methods: Therapeutic efficacy of PSMA RLT was assessed by tumor volume measurements, time to progression, and survival in C4-2 or C4-2 TP53-/- tumor-bearing nonobese diabetic scid γ-mice. Two days after RLT, the proteome and phosphoproteome were analyzed by mass spectrometry. Results: PSMA RLT significantly improved disease control in a dose-dependent manner. Proteome and phosphoproteome datasets revealed activation of genotoxic stress response pathways, including deregulation of DNA damage/replication stress response, TP53, androgen receptor, phosphatidylinositol-3-kinase/AKT, and MYC signaling. C4-2 TP53-/- tumors were less sensitive to PSMA RLT than were parental counterparts, supporting a role for TP53 in mediating RLT responsiveness. Conclusion: We identified signaling alterations that may mediate resistance to PSMA RLT in a PCa mouse model. Our data enable the development of rational synergistic RLT-combination therapies to improve outcomes for PCa patients.
Collapse
Affiliation(s)
| | - Joseph R Capri
- AstraZeneca, Chemical Biology Group, Waltham, Massachusetts
| | - Catherine A L Meyer
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Susan L Evans-Axelsson
- Department of Translational Medicine, Division of Urological Cancers, Skåne University Hospital Malmö, Lund University, Lund, Sweden
| | - Kyle Current
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Mark Lennox
- School of Electronics, Electrical Engineering, and Computer Science, Queen's University Belfast, Belfast, United Kingdom
| | - Christine E Mona
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Urology, Institute of Urologic Oncology, UCLA, Los Angeles, California; and
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Jeremie Calais
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Urology, Institute of Urologic Oncology, UCLA, Los Angeles, California; and
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Matthias Eiber
- Clinic for Nuclear Medicine, Technical University Munich, Munich, Germany
| | - Magnus Dahlbom
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Urology, Institute of Urologic Oncology, UCLA, Los Angeles, California; and
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Katharina Lückerath
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California;
- Department of Urology, Institute of Urologic Oncology, UCLA, Los Angeles, California; and
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Roger Slavik
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
2
|
Motifs enable communication efficiency and fault-tolerance in transcriptional networks. Sci Rep 2020; 10:9628. [PMID: 32541819 PMCID: PMC7296022 DOI: 10.1038/s41598-020-66573-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Analysis of the topology of transcriptional regulatory networks (TRNs) is an effective way to study the regulatory interactions between the transcription factors (TFs) and the target genes. TRNs are characterized by the abundance of motifs such as feed forward loops (FFLs), which contribute to their structural and functional properties. In this paper, we focus on the role of motifs (specifically, FFLs) in signal propagation in TRNs and the organization of the TRN topology with FFLs as building blocks. To this end, we classify nodes participating in FFLs (termed motif central nodes) into three distinct roles (namely, roles A, B and C), and contrast them with TRN nodes having high connectivity on the basis of their potential for information dissemination, using metrics such as network efficiency, path enumeration, epidemic models and standard graph centrality measures. We also present the notion of a three tier architecture and how it can help study the structural properties of TRN based on connectivity and clustering tendency of motif central nodes. Finally, we motivate the potential implication of the structural properties of motif centrality in design of efficient protocols of information routing in communication networks as well as their functional properties in global regulation and stress response to study specific disease conditions and identification of drug targets.
Collapse
|
3
|
Differential expression patterns of GATA3 in usual and differentiated types of vulvar intraepithelial neoplasia: potential diagnostic implications. Mod Pathol 2018; 31:1131-1140. [PMID: 29434343 DOI: 10.1038/s41379-018-0021-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023]
Abstract
The two main precursors of vulvar squamous cell carcinoma, usual and differentiated vulvar intraepithelial neoplasia (VIN), have distinctive etiology, pathogenesis, and natural history. Usual type VIN is often associated with high-risk HPV and differentiated VIN has de novo p53 genetic alterations that are unrelated to HPV infection. GATA-binding protein 3 (GATA3) is a tumor suppressor that shows increased expression in several types of human malignancies including breast and bladder carcinomas. Little is known regarding the expression of GATA3 in vulvar squamous neoplasms. We have systematically examined the expression of GATA3 in 119 vulvar lesions and neoplasms including 20 cases of lichen sclerosus, 12 cases of lichen simplex chronicus, 30 cases of usual type VIN, 34 cases of differentiated VIN, and 23 cases of squamous cell carcinoma. Similar to adjacent non-neoplastic epidermis, moderate to strong GATA3 expression was retained in all cases of lichen sclerosus, lichen simplex chronicus, and usual type VIN. However, in comparison, the GATA3 immunostaining pattern in differentiated VIN was distinct. Partial/complete loss of GATA3 expression in the basal layer with or without loss in the parabasal layer was observed in 30/34 (88%) of differentiated VIN cases. Significant loss of GATA3 expression was also observed in all (7/7) squamous cell carcinomas associated with usual type VIN and in 13/16 (81%) of those associated with differentiated VIN. There was no significant correlation between loss of GATA3 expression and overexpression of p53 in differentiated VIN. Our study shows that loss of GATA3 expression is seen in the vast majority (87%) of vulvar squamous cell carcinomas. Downregulation of GATA3 may be an early event during tumorigenesis in differentiated VIN but not in HPV-related usual type VIN. Our data suggests that application of GATA3 immunohistochemistry along with p53 may be a useful tool in facilitating the accurate diagnosis of VIN.
Collapse
|
4
|
Nikitaki Z, Holá M, Donà M, Pavlopoulou A, Michalopoulos I, Angelis KJ, Georgakilas AG, Macovei A, Balestrazzi A. Integrating plant and animal biology for the search of novel DNA damage biomarkers. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 775:21-38. [DOI: 10.1016/j.mrrev.2018.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
|
5
|
Barbollat-Boutrand L, Joly-Tonetti N, Dos Santos M, Metral E, Boher A, Masse I, Berthier-Vergnes O, Bertolino P, Damour O, Lamartine J. MicroRNA-23b-3p regulates human keratinocyte differentiation through repression of TGIF1 and activation of the TGF-ß-SMAD2 signalling pathway. Exp Dermatol 2016; 26:51-57. [DOI: 10.1111/exd.13119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Laetitia Barbollat-Boutrand
- Université de Lyon; Lyon France
- Université Lyon 1; Lyon France
- CNRS; UMR5534; Centre de Génétique et de Physiologie Moléculaires et Cellulaires; Villeurbanne France
| | - Nicolas Joly-Tonetti
- Université de Lyon; Lyon France
- Université Lyon 1; Lyon France
- CNRS; UMR5534; Centre de Génétique et de Physiologie Moléculaires et Cellulaires; Villeurbanne France
| | | | - Elodie Metral
- Banque de Tissus et Cellules; Hospices Civiles de Lyon; Lyon France
| | | | - Ingrid Masse
- Université de Lyon; Lyon France
- Université Lyon 1; Lyon France
- CNRS; UMR5534; Centre de Génétique et de Physiologie Moléculaires et Cellulaires; Villeurbanne France
| | - Odile Berthier-Vergnes
- Université de Lyon; Lyon France
- Université Lyon 1; Lyon France
- CNRS; UMR5534; Centre de Génétique et de Physiologie Moléculaires et Cellulaires; Villeurbanne France
| | | | - Odile Damour
- Banque de Tissus et Cellules; Hospices Civiles de Lyon; Lyon France
| | - Jérôme Lamartine
- Université de Lyon; Lyon France
- Université Lyon 1; Lyon France
- CNRS; UMR5534; Centre de Génétique et de Physiologie Moléculaires et Cellulaires; Villeurbanne France
| |
Collapse
|
6
|
A genotoxic stress-responsive miRNA, miR-574-3p, delays cell growth by suppressing the enhancer of rudimentary homolog gene in vitro. Int J Mol Sci 2014; 15:2971-90. [PMID: 24566139 PMCID: PMC3958894 DOI: 10.3390/ijms15022971] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/13/2014] [Indexed: 12/17/2022] Open
Abstract
MicroRNA (miRNA) is a type of non-coding RNA that regulates the expression of its target genes by interacting with the complementary sequence of the target mRNA molecules. Recent evidence has shown that genotoxic stress induces miRNA expression, but the target genes involved and role in cellular responses remain unclear. We examined the role of miRNA in the cellular response to X-ray irradiation by studying the expression profiles of radio-responsive miRNAs and their target genes in cultured human cell lines. We found that expression of miR-574-3p was induced in the lung cancer cell line A549 by X-ray irradiation. Overexpression of miR-574-3p caused delayed growth in A549 cells. A predicted target site was detected in the 3′-untranslated region of the enhancer of the rudimentary homolog (ERH) gene, and transfected cells showed an interaction between the luciferase reporter containing the target sequences and miR-574-3p. Overexpression of miR-574-3p suppressed ERH protein production and delayed cell growth. This delay was confirmed by knockdown of ERH expression. Our study suggests that miR-574-3p may contribute to the regulation of the cell cycle in response to X-ray irradiation via suppression of ERH protein production.
Collapse
|
7
|
Macovei A, Tuteja N. Different expression of miRNAs targeting helicases in rice in response to low and high dose rate γ-ray treatments. PLANT SIGNALING & BEHAVIOR 2013; 8:25128. [PMID: 23733055 PMCID: PMC4024056 DOI: 10.4161/psb.25128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 05/19/2023]
Abstract
Ionizing radiation currently represents an important tool to generate genetic variability that does not exist in nature, especially in plants. Even so, the radiological protection still represents a subject of regulatory concern. In plants, few reports dealing with the effects of γ-rays, in terms of dose rate (rate of energy deposition) and total dose (energy absorbed per unit mass), are available. In addition, plants are known to be more radioresistant than animals. The use of ionizing radiations for studying various aspects of transcription regulation may help elucidate some of the unanswered questions regarding DNA repair in plants. Under these premises, microRNAs have emerged as molecules involved in gene regulation in response to various environmental conditions as well as in other aspects of plant development. Currently, no report on the changes in microRNAs expression patterns in response to γ-ray treatments exists in plants, even if this subject is extensively studies in human cells. The present study deals with the expression profiles of three miRNAs, namely osa-miR414, osa-miR164e and osa-miR408 and their targeted helicase genes (OsABP, OsDBH and OsDSHCT) in response to different doses of γ-rays delivered both at low and high dose rates. The irradiated rice seeds were grown both in the presence of water and 100 mM NaCl solution. DNA damage and reactive species accumulation were registered, but no dose- or time-dependent expression was observed in response to these treatments.
Collapse
Affiliation(s)
- Anca Macovei
- International Center for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
- Department of Biology and Biotechnology “L. Spallanzani”; University of Pavia; Pavia, Italy
| | - Narendra Tuteja
- International Center for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
- Correspondence to: Narendra Tuteja,
| |
Collapse
|
8
|
Joly-Tonetti N, Viñuelas J, Gandrillon O, Lamartine J. Differential miRNA expression profiles in proliferating or differentiated keratinocytes in response to gamma irradiation. BMC Genomics 2013; 14:184. [PMID: 23496899 PMCID: PMC3610249 DOI: 10.1186/1471-2164-14-184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 03/08/2013] [Indexed: 11/23/2022] Open
Abstract
Background MicroRNAs (miRNAs), a group of short non-coding RNAs that negatively regulate gene expression, have recently emerged as potential modulators of cellular response to ionizing radiations both in vitro and in vivo in various cell types and tissues. However, in epidermal cells, the involvement of the miRNA machinery in the cellular response to ionizing radiations remains to be clarified. Indeed, understanding the mechanisms of cutaneous radiosensitivity is an important issue since skin is the most exposed organ to ionizing radiations and among the most sensitive. Results We settled up an expression study of miRNAs in primary human skin keratinocytes using a microfluidic system of qPCR assay, which permits to assess the expression of almost 700 annotated miRNAs. The keratinocytes were cultured to a proliferative or a differentiated state mimicking basal or suprabasal layers of human epidermis. These cells were irradiated at 10 mGy or 6 Gy and RNA was extracted 3 hours after irradiation. We found that proliferative cells irradiated at 6 Gy display a global fall of miRNA expression whereas differentiated cells exposed to the same dose display a global increase of miRNAs expression. We identified twenty miRNAs weakly but significantly modulated after 6 Gy irradiation, whereas only 2 miRNAs were modulated after low-dose irradiation in proliferating cells. To go further into the biological meaning of this miRNA response, we over-expressed some of the responding miRNA in proliferating cells: we observed a significant decrease of cell viability 72 hours after irradiation. Functional annotation of their predicted targets revealed that G-protein related pathways might be regulated by these responding miRNAs. Conclusions Our results reveal that human primary keratinocytes exposed to ionizing irradiation expressed a miRNA pattern strongly related to the differentiation status of irradiated cells. We also demonstrate that some miRNAs play a role in the radiation response to ensure the short-term survival of irradiated keratinocytes.
Collapse
|
9
|
Snijders AM, Marchetti F, Bhatnagar S, Duru N, Han J, Hu Z, Mao JH, Gray JW, Wyrobek AJ. Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility. PLoS One 2012; 7:e45394. [PMID: 23077491 PMCID: PMC3471924 DOI: 10.1371/journal.pone.0045394] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/22/2012] [Indexed: 11/18/2022] Open
Abstract
High dose ionizing radiation (IR) is a well-known risk factor for breast cancer but the health effects after low-dose (LD, <10 cGy) exposures remain highly uncertain. We explored a systems approach that compared LD-induced chromosome damage and transcriptional responses in strains of mice with genetic differences in their sensitivity to radiation-induced mammary cancer (BALB/c and C57BL/6) for the purpose of identifying mechanisms of mammary cancer susceptibility. Unirradiated mammary and blood tissues of these strains differed significantly in baseline expressions of DNA repair, tumor suppressor, and stress response genes. LD exposures of 7.5 cGy (weekly for 4 weeks) did not induce detectable genomic instability in either strain. However, the mammary glands of the sensitive strain but not the resistant strain showed early transcriptional responses involving: (a) diminished immune response, (b) increased cellular stress, (c) altered TGFβ-signaling, and (d) inappropriate expression of developmental genes. One month after LD exposure, the two strains showed opposing responses in transcriptional signatures linked to proliferation, senescence, and microenvironment functions. We also discovered a pre-exposure expression signature in both blood and mammary tissues that is predictive for poor survival among human cancer patients (p = 0.0001), and a post-LD-exposure signature also predictive for poor patient survival (p<0.0001). There is concordant direction of expression in the LD-exposed sensitive mouse strain, in biomarkers of human DCIS and in biomarkers of human breast tumors. Our findings support the hypothesis that genetic mechanisms that determine susceptibility to LD radiation induced mammary cancer in mice are similar to the tissue mechanisms that determine poor-survival in breast cancer patients. We observed non-linearity of the LD responses providing molecular evidence against the LNT risk model and obtained new evidence that LD responses are strongly influenced by genotype. Our findings suggest that the biological assumptions concerning the mechanisms by which LD radiation is translated into breast cancer risk should be reexamined and suggest a new strategy to identify genetic features that predispose or protect individuals from LD-induced breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrew J. Wyrobek
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
10
|
Masse I, Barbollat-Boutrand L, Molina M, Berthier-Vergnes O, Joly-Tonetti N, Martin MT, Caron de Fromentel C, Kanitakis J, Lamartine J. Functional interplay between p63 and p53 controls RUNX1 function in the transition from proliferation to differentiation in human keratinocytes. Cell Death Dis 2012; 3:e318. [PMID: 22673192 PMCID: PMC3388234 DOI: 10.1038/cddis.2012.62] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interfollicular epidermis is continuously renewed, thanks to a regulated balance between proliferation and differentiation. The ΔNp63 transcription factor has a key role in the control of this process. It has been shown that ΔNp63 directly regulates Runt-related transcription factor 1 (RUNX1) transcription factor expression in mouse keratinocytes. The present study showed for the first time that RUNX1 is expressed in normal human interfollicular epidermis and that its expression is tightly regulated during the transition from proliferation to differentiation. It demonstrated that ΔNp63 directly binds two different RUNX1 regulatory DNA sequences and modulates RUNX1 expression differentially in proliferative or differentiated human keratinocytes. It also showed that the regulation of RUNX1 expression by ΔNp63 is dependent on p53 and that this coregulation relies on differential binding and activation of RUNX1 regulatory sequences by ΔNp63 and p53. We also found that RUNX1 inhibits keratinocyte proliferation and activates directly the expression of KRT1, a critical actor in early keratinocyte differentiation. Finally, we described that RUNX1 expression, similar to ΔNp63 and p53, was strongly expressed and downregulated in basal cell carcinomas and squamous cell carcinomas respectively. Taken together, these data shed light on the importance of tight control of the functional interplay between ΔNp63 and p53 in regulating RUNX1 transcription factor expression for proper regulation of interfollicular epidermal homeostasis.
Collapse
Affiliation(s)
- I Masse
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR5534-Université Lyon I, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gene expression profiles of human melanoma cells with different invasive potential reveal TSPAN8 as a novel mediator of invasion. Br J Cancer 2010; 104:155-65. [PMID: 21081927 PMCID: PMC3039798 DOI: 10.1038/sj.bjc.6605994] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Metastatic melanoma requires early detection, being treatment resistant. However, the earliest events of melanoma metastasis, and especially of dermal invasion, remain ill defined. Results and methods: Gene expression profiles of two clonal subpopulations, selected from the same human melanoma cell line, but differing in ability to cross the dermal–epidermal junction in skin reconstructs, were compared by oligonucleotide microarray. Of 26 496 cDNA probes, 461 were differentially expressed (>2-fold; P< 0.001), only 71 genes being upregulated in invasive cells. Among them, TSPAN8, a tetraspanin not yet described in melanoma, was upregulated at mRNA and protein levels in melanoma cells from the invasive clone, as assessed by RT–PCR, flow cytometry and western blot analysis. Interestingly, TSPAN8 was the only tetraspanin in which overexpression correlated with invasive phenotype. Flow cytometry of well-defined melanoma cell lines confirmed that TSPAN8 was exclusively expressed by invasive, but not non-invasive melanoma cells or normal melanocytes. Immunohistochemistry revealed that TSPAN8 was expressed by melanoma cells in primary melanomas and metastases, but not epidermal cells in healthy skin. The functional role of TSPAN8 was demonstrated by silencing endogenous TSPAN8 with siRNA, reducing invasive outgrowth from tumour spheroids within matrigel without affecting cell proliferation or survival. Conclusion: TSPAN8 expression may enable melanoma cells to cross the cutaneous basement membrane, leading to dermal invasion and progression to metastasis. TSPAN8 could be a promising target in early detection and treatment of melanoma.
Collapse
|
12
|
Ghandhi SA, Ming L, Ivanov VN, Hei TK, Amundson SA. Regulation of early signaling and gene expression in the alpha-particle and bystander response of IMR-90 human fibroblasts. BMC Med Genomics 2010; 3:31. [PMID: 20670442 PMCID: PMC2919438 DOI: 10.1186/1755-8794-3-31] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/29/2010] [Indexed: 01/30/2023] Open
Abstract
Background The existence of a radiation bystander effect, in which non-irradiated cells respond to signals from irradiated cells, is well established. To understand early signaling and gene regulation in bystander cells, we used a bio-informatics approach, measuring global gene expression at 30 minutes and signaling pathways between 30 minutes and 4 hours after exposure to α-particles in IMR-90 fibroblasts. Methods We used whole human genome microarrays and real time quantitative PCR to measure and validate gene expression. Microarray analysis was done using BRB-Array Tools; pathway and ontology analyses were done using Ingenuity Pathway Analysis and PANTHER, respectively. We studied signaling in irradiated and bystander cells using immunoblotting and semi-quantitative image analysis. Results Gene ontology suggested signal transduction and transcriptional regulation responding 30 minutes after treatment affected cell structure, motility and adhesion, and interleukin synthesis. We measured time-dependent expression of genes controlled by the NF-κB pathway; matrix metalloproteinases 1 and 3; chemokine ligands 2, 3 and 5 and interleukins 1β, 6 and 33. There was an increased response of this set of genes 30 minutes after treatment and another wave of induction at 4 hours. We investigated AKT-GSK3β signaling and found both AKT and GSK3β are hyper-phosphorylated 30 minutes after irradiation and this effect is maintained through 4 hours. In bystander cells, a similar response was seen with a delay of 30 minutes. We proposed a network model where the observed decrease in phosphorylation of β-catenin protein after GSK3β dependent inactivation can trigger target gene expression at later times after radiation exposure Conclusions These results are the first to show that the radiation induced bystander signal induces a widespread gene expression response at 30 minutes after treatment and these changes are accompanied by modification of signaling proteins in the PI3K-AKT-GSK3β pathway.
Collapse
Affiliation(s)
- Shanaz A Ghandhi
- Center for Radiological Research, Columbia University, VC11-215, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|