1
|
Dekker WJC, Jürgens H, Ortiz-Merino RA, Mooiman C, van den Berg R, Kaljouw A, Mans R, Pronk JT. OUP accepted manuscript. FEMS Yeast Res 2022; 22:6523363. [PMID: 35137036 PMCID: PMC8862043 DOI: 10.1093/femsyr/foac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
While thermotolerance is an attractive trait for yeasts used in industrial ethanol production, oxygen requirements of known thermotolerant species are incompatible with process requirements. Analysis of oxygen-sufficient and oxygen-limited chemostat cultures of the facultatively fermentative, thermotolerant species Ogataea parapolymorpha showed its minimum oxygen requirements to be an order of magnitude larger than those reported for the thermotolerant yeast Kluyveromyces marxianus. High oxygen requirements of O. parapolymorpha coincided with a near absence of glycerol, a key NADH/NAD+ redox-cofactor-balancing product in many other yeasts, in oxygen-limited cultures. Genome analysis indicated absence of orthologs of the Saccharomyces cerevisiae glycerol-3-phosphate-phosphatase genes GPP1 and GPP2. Co-feeding of acetoin, whose conversion to 2,3-butanediol enables reoxidation of cytosolic NADH, supported a 2.5-fold increase of the biomass concentration in oxygen-limited cultures. An O. parapolymorpha strain in which key genes involved in mitochondrial reoxidation of NADH were inactivated did produce glycerol, but transcriptome analysis did not reveal a clear candidate for a responsible phosphatase. Expression of S. cerevisiae GPD2, which encodes NAD+-dependent glycerol-3-phosphate dehydrogenase, and GPP1 supported increased glycerol production by oxygen-limited chemostat cultures of O. parapolymorpha. These results identify dependence on respiration for NADH reoxidation as a key contributor to unexpectedly high oxygen requirements of O. parapolymorpha.
Collapse
Affiliation(s)
- Wijbrand J C Dekker
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Hannes Jürgens
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Raúl A Ortiz-Merino
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christiaan Mooiman
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Remon van den Berg
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Astrid Kaljouw
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Corresponding author: Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands. Tel: +31 15 2783214; E-mail:
| |
Collapse
|
2
|
Dekker WJC, Ortiz-Merino RA, Kaljouw A, Battjes J, Wiering FW, Mooiman C, Torre PDL, Pronk JT. Engineering the thermotolerant industrial yeast Kluyveromyces marxianus for anaerobic growth. Metab Eng 2021; 67:347-364. [PMID: 34303845 DOI: 10.1016/j.ymben.2021.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Current large-scale, anaerobic industrial processes for ethanol production from renewable carbohydrates predominantly rely on the mesophilic yeast Saccharomyces cerevisiae. Use of thermotolerant, facultatively fermentative yeasts such as Kluyveromyces marxianus could confer significant economic benefits. However, in contrast to S. cerevisiae, these yeasts cannot grow in the absence of oxygen. Responses of K. marxianus and S. cerevisiae to different oxygen-limitation regimes were analyzed in chemostats. Genome and transcriptome analysis, physiological responses to sterol supplementation and sterol-uptake measurements identified absence of a functional sterol-uptake mechanism as a key factor underlying the oxygen requirement of K. marxianus. Heterologous expression of a squalene-tetrahymanol cyclase enabled oxygen-independent synthesis of the sterol surrogate tetrahymanol in K. marxianus. After a brief adaptation under oxygen-limited conditions, tetrahymanol-expressing K. marxianus strains grew anaerobically on glucose at temperatures of up to 45 °C. These results open up new directions in the development of thermotolerant yeast strains for anaerobic industrial applications.
Collapse
Affiliation(s)
- Wijbrand J C Dekker
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Raúl A Ortiz-Merino
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Astrid Kaljouw
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Julius Battjes
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Frank W Wiering
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Christiaan Mooiman
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Pilar de la Torre
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands.
| |
Collapse
|
3
|
Buechel ER, Pinkett HW. Transcription factors and ABC transporters: from pleiotropic drug resistance to cellular signaling in yeast. FEBS Lett 2020; 594:3943-3964. [PMID: 33089887 DOI: 10.1002/1873-3468.13964] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Budding yeast Saccharomyces cerevisiae survives in microenvironments utilizing networks of regulators and ATP-binding cassette (ABC) transporters to circumvent toxins and a variety of drugs. Our understanding of transcriptional regulation of ABC transporters in yeast is mainly derived from the study of multidrug resistance protein networks. Over the past two decades, this research has not only expanded the role of transcriptional regulators in pleiotropic drug resistance (PDR) but evolved to include the role that regulators play in cellular signaling and environmental adaptation. Inspection of the gene networks of the transcriptional regulators and characterization of the ABC transporters has clarified that they also contribute to environmental adaptation by controlling plasma membrane composition, toxic-metal sequestration, and oxidative stress adaptation. Additionally, ABC transporters and their regulators appear to be involved in cellular signaling for adaptation of S. cerevisiae populations to nutrient availability. In this review, we summarize the current understanding of the S. cerevisiae transcriptional regulatory networks and highlight recent work in other notable fungal organisms, underlining the expansion of the study of these gene networks across the kingdom fungi.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
Ma S, Liu H, Sun W, Mustafa A, Xi Y, Pu F, Li Y, Han C, Bai L, Hua H. Molecular evolution of the ATP-binding cassette subfamily G member 2 gene subfamily and its paralogs in birds. BMC Evol Biol 2020; 20:85. [PMID: 32664916 PMCID: PMC7362505 DOI: 10.1186/s12862-020-01654-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Background ATP-binding cassette (ABC) transporters are involved in the active transportation of various endogenous or exogenous substances. Two ABCG2 gene subfamily members have been identified in birds. A detailed comparative study of the ABCG2 and ABCG2-like genes aid our understanding of their evolutionary history at the molecular level and provide a theoretical reference for studying the specific functions of ABCG2 and ABCG2-like genes in birds. Results We first identified 77 ABCG2/ABCG2-like gene sequences in the genomes of 41 birds. Further analysis showed that both the nucleic acid and amino acid sequences of ABCG2 and ABCG2-like genes were highly conserved and exhibited high homology in birds. However, significant differences in the N-terminal structure were found between the ABCG2 and ABCG2-like amino acid sequences. A selective pressure analysis showed that the ABCG2 and ABCG2-like genes were affected by purifying selection during the process of bird evolution. Conclusions We believe that multiple members of the ABCG2 gene subfamily exist on chromosome 4 in the ancestors of birds. Over the long course of evolution, only the ABCG2 gene was retained on chromosome 4 in birds. The ABCG2-like gene on chromosome 6 might have originated from chromosome replication or fusion. The structural differences between the N terminus of ABCG2 protein and those of ABCG2-like proteins might lead to functional differences between the corresponding genes.
Collapse
Affiliation(s)
- Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Ahsan Mustafa
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Fajun Pu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Yanying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - He Hua
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| |
Collapse
|
5
|
Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory: Focus on MDR/MXR Transporters. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:1-35. [PMID: 30911887 DOI: 10.1007/978-3-030-13035-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The contemporary approach of physiological genomics is vital in providing the indispensable holistic understanding of the complexity of the molecular targets, signalling pathways and molecular mechanisms underlying the responses and tolerance to stress, a topic of paramount importance in biology and biotechnology. This chapter focuses on the toxicity and tolerance to relevant stresses in the cell factory and eukaryotic model yeast Saccharomyces cerevisiae. Emphasis is given to the function and regulation of multidrug/multixenobiotic resistance (MDR/MXR) transporters. Although these transporters have been considered drug/xenobiotic efflux pumps, the exact mechanism of their involvement in multistress resistance is still open to debate, as highlighted in this chapter. Given the conservation of transport mechanisms from S. cerevisiae to less accessible eukaryotes such as plants, this chapter also provides a proof of concept that validates the relevance of the exploitation of the experimental yeast model to uncover the function of novel MDR/MXR transporters in the plant model Arabidopsis thaliana. This knowledge can be explored for guiding the rational design of more robust yeast strains with improved performance for industrial biotechnology, for overcoming and controlling the deleterious activities of spoiling yeasts in the food industry, for developing efficient strategies to improve crop productivity in agricultural biotechnology.
Collapse
|
6
|
Godinho CP, Dias PJ, Ponçot E, Sá-Correia I. The Paralogous Genes PDR18 and SNQ2, Encoding Multidrug Resistance ABC Transporters, Derive From a Recent Duplication Event, PDR18 Being Specific to the Saccharomyces Genus. Front Genet 2018; 9:476. [PMID: 30374366 PMCID: PMC6196229 DOI: 10.3389/fgene.2018.00476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023] Open
Abstract
Pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters play a key role in the simultaneous acquisition of resistance to a wide range of structurally and functionally unrelated cytotoxic compounds in yeasts. Saccharomyces cerevisiae Pdr18 was proposed to transport ergosterol at the plasma membrane, contributing to the maintenance of adequate ergosterol content and decreased levels of stress-induced membrane disorganization and permeabilization under multistress challenge leading to resistance to ethanol, acetic acid and the herbicide 2,4-D, among other compounds. PDR18 is a paralog of SNQ2, first described as a determinant of resistance to the chemical mutagen 4-NQO. The phylogenetic and neighborhood analysis performed in this work to reconstruct the evolutionary history of ScPDR18 gene in Saccharomycetaceae yeasts was focused on the 214 Pdr18/Snq2 homologs from the genomes of 117 strains belonging to 29 yeast species across that family. Results support the idea that a single duplication event occurring in the common ancestor of the Saccharomyces genus yeasts was at the origin of PDR18 and SNQ2, and that by chromosome translocation PDR18 gained a subtelomeric region location in chromosome XIV. The multidrug/multixenobiotic phenotypic profiles of S. cerevisiae pdr18Δ and snq2Δ deletion mutants were compared, as well as the susceptibility profile for Candida glabrata snq2Δ deletion mutant, given that this yeast species has diverged previously to the duplication event on the origin of PDR18 and SNQ2 genes and encode only one Pdr18/Snq2 homolog. Results show a significant overlap between ScSnq2 and CgSnq2 roles in multidrug/multixenobiotic resistance (MDR/MXR) as well as some overlap in azole resistance between ScPdr18 and CgSnq2. The fact that ScSnq2 and ScPdr18 confer resistance to different sets of chemical compounds with little overlapping is consistent with the subfunctionalization and neofunctionalization of these gene copies. The elucidation of the real biological role of ScSNQ2 will enlighten this issue. Remarkably, PDR18 is only found in Saccharomyces genus genomes and is present in almost all the recently available 1,000 deep coverage genomes of natural S. cerevisiae isolates, consistent with the relevant encoded physiological function.
Collapse
Affiliation(s)
- Cláudia P Godinho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo J Dias
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Elise Ponçot
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Godinho CP, Prata CS, Pinto SN, Cardoso C, Bandarra NM, Fernandes F, Sá-Correia I. Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order. Sci Rep 2018; 8:7860. [PMID: 29777118 PMCID: PMC5959924 DOI: 10.1038/s41598-018-26128-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae has the ability to become less sensitive to a broad range of chemically and functionally unrelated cytotoxic compounds. Among multistress resistance mechanisms is the one mediated by plasma membrane efflux pump proteins belonging to the ABC superfamily, questionably proposed to enhance the kinetics of extrusion of all these compounds. This study provides new insights into the biological role and impact in yeast response to acetic acid stress of the multistress resistance determinant Pdr18 proposed to mediate ergosterol incorporation in plasma membrane. The described coordinated activation of the transcription of PDR18 and of several ergosterol biosynthetic genes (ERG2-4, ERG6, ERG24) during the period of adaptation to acetic acid inhibited growth provides further support to the involvement of Pdr18 in yeast response to maintain plasma membrane ergosterol content in stressed cells. Pdr18 role in ergosterol homeostasis helps the cell to counteract acetic acid-induced decrease of plasma membrane lipid order, increase of the non-specific membrane permeability and decrease of transmembrane electrochemical potential. Collectively, our results support the notion that Pdr18-mediated multistress resistance is closely linked to the status of plasma membrane lipid environment related with ergosterol content and the associated plasma membrane properties.
Collapse
Affiliation(s)
- Cláudia P Godinho
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Catarina S Prata
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Sandra N Pinto
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Centro de Química-Física Molecular, Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Carlos Cardoso
- DivAV, IPMA - Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho 6, 1495-006, Lisbon, Portugal
| | - Narcisa M Bandarra
- DivAV, IPMA - Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho 6, 1495-006, Lisbon, Portugal
| | - Fábio Fernandes
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Centro de Química-Física Molecular, Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
8
|
Luo C, Li Y, Guo L, Zhang F, Liu H, Zhang J, Zheng J, Zhang J, Guo S. Graphene Quantum Dots Downregulate Multiple Multidrug-Resistant Genes via Interacting with Their C-Rich Promoters. Adv Healthc Mater 2017; 6. [PMID: 28748603 DOI: 10.1002/adhm.201700328] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/15/2017] [Indexed: 01/04/2023]
Abstract
Multidrug resistance (MDR) is the major factor in the failure of many forms of chemotherapy, mostly due to the increased efflux of anticancer drugs that mediated by ATP-binding cassette (ABC) transporters. Therefore, inhibiting ABC transporters is one of effective methods of overcoming MDR. However, high enrichment of ABC transporters in cells and their broad substrate spectra made to circumvent MDR are almost insurmountable by a single specific ABC transporter inhibitor. Here, this study demonstrates that graphene quantum dots (GQDs) could downregulate the expressions of P-glycoprotein, multidrug resistance protein MRP1, and breast cancer resistance protein genes via interacting with C-rich regions of their promoters. This is the first example that a single reagent could suppress multiple MDR genes, suggesting that it will be possible to target multiple ABC transporters simultaneously with a single reagent. The inhibitory ability of the GQDs to these drug-resistant genes is validated further by reversing the doxorubicin resistance of MCF-7/ADR cells. Notably, GQDs have superb chemical and physical properties, unique structure, low toxicity, and high biocompatibility; hence, their capability of inhibiting multiple drug-resistant genes holds great potential in cancer therapy.
Collapse
Affiliation(s)
- Chao Luo
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Yanfang Li
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Lijuan Guo
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Fangwei Zhang
- School of Electronic Information and Electrical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Rd. Shanghai 200240 P. R. China
| | - Hui Liu
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Jiali Zhang
- School of Electronic Information and Electrical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Rd. Shanghai 200240 P. R. China
| | - Jing Zheng
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Jingyan Zhang
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Shouwu Guo
- School of Electronic Information and Electrical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Rd. Shanghai 200240 P. R. China
| |
Collapse
|
9
|
Palma M, Münsterkötter M, Peça J, Güldener U, Sá-Correia I. Genome sequence of the highly weak-acid-tolerant Zygosaccharomyces bailii IST302, amenable to genetic manipulations and physiological studies. FEMS Yeast Res 2017; 17:3786350. [PMID: 28460089 PMCID: PMC5812536 DOI: 10.1093/femsyr/fox025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022] Open
Abstract
Zygosaccharomyces bailii is one of the most problematic spoilage yeast species found in the food and beverage industry particularly in acidic products, due to its exceptional resistance to weak acid stress. This article describes the annotation of the genome sequence of Z. bailii IST302, a strain recently proven to be amenable to genetic manipulations and physiological studies. The work was based on the annotated genomes of strain ISA1307, an interspecies hybrid between Z. bailii and a closely related species, and the Z. bailii reference strain CLIB 213T. The resulting genome sequence of Z. bailii IST302 is distributed through 105 scaffolds, comprising a total of 5142 genes and a size of 10.8 Mb. Contrasting with CLIB 213T, strain IST302 does not form cell aggregates, allowing its manipulation in the laboratory for genetic and physiological studies. Comparative cell cycle analysis with the haploid and diploid Saccharomyces cerevisiae strains BY4741 and BY4743, respectively, suggests that Z. bailii IST302 is haploid. This is an additional trait that makes this strain attractive for the functional analysis of non-essential genes envisaging the elucidation of mechanisms underlying its high tolerance to weak acid food preservatives, or the investigation and exploitation of the potential of this resilient yeast species as cell factory.
Collapse
Affiliation(s)
- Margarida Palma
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - João Peça
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
- Chair of Genome-oriented Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
10
|
Palma M, Dias PJ, Roque FDC, Luzia L, Guerreiro JF, Sá-Correia I. The Zygosaccharomyces bailii transcription factor Haa1 is required for acetic acid and copper stress responses suggesting subfunctionalization of the ancestral bifunctional protein Haa1/Cup2. BMC Genomics 2017; 18:75. [PMID: 28086780 PMCID: PMC5234253 DOI: 10.1186/s12864-016-3443-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022] Open
Abstract
Background The food spoilage yeast species Zygosaccharomyces bailii exhibits an extraordinary capacity to tolerate weak acids, in particular acetic acid. In Saccharomyces cerevisiae, the transcription factor Haa1 (ScHaa1) is considered the main player in genomic expression reprogramming in response to acetic acid stress, but the role of its homologue in Z. bailii (ZbHaa1) is unknown. Results In this study it is demonstrated that ZbHaa1 is a ScHaa1 functional homologue by rescuing the acetic acid susceptibility phenotype of S. cerevisiae haa1Δ. The disruption of ZbHAA1 in Z. bailii IST302 and the expression of an extra ZbHAA1 copy confirmed ZbHAA1 as a determinant of acetic acid tolerance. ZbHaa1 was found to be required for acetic acid stress-induced transcriptional activation of Z. bailii genes homologous to ScHaa1-target genes. An evolutionary analysis of the Haa1 homologues identified in 28 Saccharomycetaceae species genome sequences, including Z bailii, was carried out using phylogenetic and gene neighbourhood approaches. Consistent with previous studies, this analysis revealed a group containing pre-whole genome duplication species Haa1/Cup2 single orthologues, including ZbHaa1, and two groups containing either Haa1 or Cup2 orthologues from post-whole genome duplication species. S. cerevisiae Cup2 (alias Ace1) is a transcription factor involved in response and tolerance to copper stress. Taken together, these observations led us to hypothesize and demonstrate that ZbHaa1 is also involved in copper-induced transcriptional regulation and copper tolerance. Conclusions The transcription factor ZbHaa1 is required for adaptive response and tolerance to both acetic acid and copper stresses. The subfunctionalization of the single ancestral Haa1/Cup2 orthologue that originated Haa1 and Cup2 paralogues after whole genome duplication is proposed. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3443-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Margarida Palma
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Paulo Jorge Dias
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Filipa de Canaveira Roque
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Laura Luzia
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Joana Fernandes Guerreiro
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| |
Collapse
|
11
|
Tekaia F. Inferring Orthologs: Open Questions and Perspectives. GENOMICS INSIGHTS 2016; 9:17-28. [PMID: 26966373 PMCID: PMC4778853 DOI: 10.4137/gei.s37925] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/30/2015] [Accepted: 01/02/2016] [Indexed: 01/25/2023]
Abstract
With the increasing number of sequenced genomes and their comparisons, the detection of orthologs is crucial for reliable functional annotation and evolutionary analyses of genes and species. Yet, the dynamic remodeling of genome content through gain, loss, transfer of genes, and segmental and whole-genome duplication hinders reliable orthology detection. Moreover, the lack of direct functional evidence and the questionable quality of some available genome sequences and annotations present additional difficulties to assess orthology. This article reviews the existing computational methods and their potential accuracy in the high-throughput era of genome sequencing and anticipates open questions in terms of methodology, reliability, and computation. Appropriate taxon sampling together with combination of methods based on similarity, phylogeny, synteny, and evolutionary knowledge that may help detecting speciation events appears to be the most accurate strategy. This review also raises perspectives on the potential determination of orthology throughout the whole species phylogeny.
Collapse
Affiliation(s)
- Fredj Tekaia
- Institut Pasteur, Unit of Structural Microbiology, CNRS URA 3528 and University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
12
|
Casal M, Queirós O, Talaia G, Ribas D, Paiva S. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:229-251. [PMID: 26721276 DOI: 10.1007/978-3-319-25304-6_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.
Collapse
Affiliation(s)
- Margarida Casal
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Odília Queirós
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Gabriel Talaia
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - David Ribas
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sandra Paiva
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
13
|
Saha J, Sengupta A, Gupta K, Gupta B. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress. Comput Biol Chem 2014; 54:18-32. [PMID: 25531538 DOI: 10.1016/j.compbiolchem.2014.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/14/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
ATP-binding cassette (ABC) transporter is a large gene superfamily that utilizes the energy released from ATP hydrolysis for transporting myriad of substrates across the biological membranes. Although many investigations have been done on the structural and functional analysis of the ABC transporters in Oryza sativa, much less is known about molecular phylogenetic and global expression pattern of the complete ABC family in rice. In this study, we have carried out a comprehensive phylogenetic analysis constructing neighbor-joining and maximum-likelihood trees based on various statistical methods of different ABC protein subfamily of five plant lineages including Chlamydomonas reinhardtii (green algae), Physcomitrella patens (moss), Selaginella moellendorffii (lycophyte), Arabidopsis thaliana (dicot) and O. sativa (monocot) to explore the origin and evolutionary patterns of these ABC genes. We have identified several conserved motifs in nucleotide binding domain (NBD) of ABC proteins among all plant lineages during evolution. Amongst the different ABC protein subfamilies, 'ABCE' has not yet been identified in lower plant genomes (algae, moss and lycophytes). The result indicated that gene duplication and diversification process acted upon these genes as a major operative force creating new groups and subgroups and functional divergence during evolution. We have demonstrated that rice ABCI subfamily consists of only half size transporters that represented highly dynamic members showing maximum sequence variations among the other rice ABC subfamilies. The evolutionary and the expression analysis contribute to a deep insight into the evolution and diversity of rice ABC proteins and their roles in response to salt stress that facilitate our further understanding on rice ABC transporters.
Collapse
Affiliation(s)
- Jayita Saha
- Department of Biological Sciences (Section Botany), Presidency University, 86/1 College Street, Kolkata 700073, India; Department of Biological Sciences (Section Biotechnology), Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Atreyee Sengupta
- Department of Biological Sciences (Section Botany), Presidency University, 86/1 College Street, Kolkata 700073, India; Department of Biological Sciences (Section Biotechnology), Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Kamala Gupta
- Department of Biological Sciences (Section Botany), Presidency University, 86/1 College Street, Kolkata 700073, India.
| | - Bhaskar Gupta
- Department of Biological Sciences (Section Biotechnology), Presidency University, 86/1 College Street, Kolkata 700073, India.
| |
Collapse
|
14
|
Phylogenetic relationships matter: antifungal susceptibility among clinically relevant yeasts. Antimicrob Agents Chemother 2013; 58:1575-85. [PMID: 24366735 DOI: 10.1128/aac.01799-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The objective of this study was 2-fold: to evaluate whether phylogenetically closely related yeasts share common antifungal susceptibility profiles (ASPs) and whether these ASPs can be predicted from phylogeny. To address this question, 9,627 yeast strains were collected and tested for their antifungal susceptibility. Isolates were reidentified by considering recent changes in taxonomy and nomenclature. A phylogenetic (PHYLO) code based on the results of multilocus sequence analyses (large-subunit rRNA, small-subunit rRNA, translation elongation factor 1α, RNA polymerase II subunits 1 and 2) and the classification of the cellular neutral sugar composition of coenzyme Q and 18S ribosomal DNA was created to group related yeasts into PHYLO groups. The ASPs were determined for fluconazole, itraconazole, and voriconazole in each PHYLO group. The majority (95%) of the yeast strains were Ascomycetes. After reclassification, a total of 23 genera and 54 species were identified, resulting in an increase of 64% of genera and a decrease of 5% of species compared with the initial identification. These taxa were assigned to 17 distinct PHYLO groups (Ascomycota, n=13; Basidiomycota, n=4). ASPs for azoles were similar among members of the same PHYLO group and different between the various PHYLO groups. Yeast phylogeny may be an additional tool to significantly enhance the assessment of MIC values and to predict antifungal susceptibility, thereby more rapidly initiating appropriate patient management.
Collapse
|
15
|
Dias PJ, Sá-Correia I. The drug:H⁺ antiporters of family 2 (DHA2), siderophore transporters (ARN) and glutathione:H⁺ antiporters (GEX) have a common evolutionary origin in hemiascomycete yeasts. BMC Genomics 2013; 14:901. [PMID: 24345006 PMCID: PMC3890622 DOI: 10.1186/1471-2164-14-901] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Saccharomyces cerevisiae 14-spanner Drug:H+ Antiporter family 2 (DHA2) are transporters of the Major Facilitator Superfamily (MFS) involved in multidrug resistance (MDR). Although poorly characterized, DHA2 family members were found to participate in the export of structurally and functionally unrelated compounds or in the uptake of amino acids into the vacuole or the cell. In S. cerevisiae, the four ARN/SIT family members encode siderophore transporters and the two GEX family members encode glutathione extrusion pumps. The evolutionary history of DHA2, ARN and GEX genes, encoding 14-spanner MFS transporters, is reconstructed in this study. RESULTS The translated ORFs of 31 strains from 25 hemiascomycetous species, including 10 pathogenic Candida species, were compared using a local sequence similarity algorithm. The constraining and traversing of a network representing the pairwise similarity data gathered 355 full size proteins and retrieved ARN and GEX family members together with DHA2 transporters, suggesting the existence of a close phylogenetic relationship among these 14-spanner major facilitators. Gene neighbourhood analysis was combined with tree construction methodologies to reconstruct their evolutionary history and 7 DHA2 gene lineages, 5 ARN gene lineages, and 1 GEX gene lineage, were identified. The S. cerevisiae DHA2 proteins Sge1, Azr1, Vba3 and Vba5 co-clustered in a large phylogenetic branch, the ATR1 and YMR279C genes were proposed to be paralogs formed during the Whole Genome Duplication (WGD) whereas the closely related ORF YOR378W resides in its own lineage. Homologs of S. cerevisiae DHA2 vacuolar proteins Vba1, Vba2 and Vba4 occur widespread in the Hemiascomycetes. Arn1/Arn2 homologs were only found in species belonging to the Saccharomyces complex and are more abundant in the pre-WGD species. Arn4 homologs were only found in sub-telomeric regions of species belonging to the Sacharomyces sensu strictu group (SSSG). Arn3 type siderophore transporters are abundant in the Hemiascomycetes and form an ancient gene lineage extending to the filamentous fungi. CONCLUSIONS The evolutionary history of DHA2, ARN and GEX genes was reconstructed and a common evolutionary root shared by the encoded proteins is hypothesized. A new protein family, denominated DAG, is proposed to span these three phylogenetic subfamilies of 14-spanner MFS transporters.
Collapse
Affiliation(s)
| | - Isabel Sá-Correia
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais, 1049-001, Lisboa, Portugal.
| |
Collapse
|
16
|
Genomes of Ashbya fungi isolated from insects reveal four mating-type loci, numerous translocations, lack of transposons, and distinct gene duplications. G3-GENES GENOMES GENETICS 2013; 3:1225-39. [PMID: 23749448 PMCID: PMC3737163 DOI: 10.1534/g3.112.002881] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The filamentous fungus Ashbya gossypii is a cotton pathogen transmitted by insects. It is readily grown and manipulated in the laboratory and is commercially exploited as a natural overproducer of vitamin B2. Our previous genome analysis of A. gossypii isolate ATCC10895, collected in Trinidad nearly 100 years ago, revealed extensive synteny with the Saccharomyces cerevisiae genome, leading us to use it as a model organism to understand the evolution of filamentous growth. To further develop Ashbya as a model system, we have investigated the ecological niche of A. gossypii and isolated additional strains and a sibling species, both useful in comparative analysis. We isolated fungi morphologically similar to A. gossypii from different plant-feeding insects of the suborder Heteroptera, generated a phylogenetic tree based on rDNA-ITS sequences, and performed high coverage short read sequencing with one A. gossypii isolate from Florida, a new species, Ashbya aceri, isolated in North Carolina, and a genetically marked derivative of ATCC10895 intensively used for functional studies. In contrast to S. cerevisiae, all strains carry four not three mating type loci, adding a new puzzle in the evolution of Ashbya species. Another surprise was the genome identity of 99.9% between the Florida strain and ATCC10895, isolated in Trinidad. The A. aceri and A. gossypii genomes show conserved gene orders rearranged by eight translocations, 90% overall sequence identity, and fewer tandem duplications in the A. aceri genome. Both species lack transposable elements. Finally, our work identifies plant-feeding insects of the suborder Heteroptera as the most likely natural reservoir of Ashbya, and that infection of cotton and other plants may be incidental to the growth of the fungus in its insect host.
Collapse
|
17
|
Prasad R, Goffeau A. Yeast ATP-Binding Cassette Transporters Conferring Multidrug Resistance. Annu Rev Microbiol 2012; 66:39-63. [DOI: 10.1146/annurev-micro-092611-150111] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rajendra Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India;
| | - Andre Goffeau
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, 1349 Belgium;
| |
Collapse
|
18
|
Dias O, Gombert AK, Ferreira EC, Rocha I. Genome-wide metabolic (re-) annotation of Kluyveromyces lactis. BMC Genomics 2012; 13:517. [PMID: 23025710 PMCID: PMC3508617 DOI: 10.1186/1471-2164-13-517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. RESULTS In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG's annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. CONCLUSIONS The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is currently being finished.
Collapse
Affiliation(s)
- Oscar Dias
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | |
Collapse
|
19
|
Gaillardin C. Hemiascomycetous Yeasts. Yeast 2012. [DOI: 10.1002/9783527659180.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
20
|
Identification of conserved gene clusters in multiple genomes based on synteny and homology. BMC Bioinformatics 2011; 12 Suppl 9:S18. [PMID: 22151970 PMCID: PMC3283307 DOI: 10.1186/1471-2105-12-s9-s18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Uncovering the relationship between the conserved chromosomal segments and the functional relatedness of elements within these segments is an important question in computational genomics. We build upon the series of works on gene teams and homology teams. Results Our primary contribution is a local sliding-window SYNS (SYNtenic teamS) algorithm that refines an existing family structure into orthologous sub-families by analyzing the neighborhoods around the members of a given family with a locally sliding window. The neighborhood analysis is done by computing conserved gene clusters. We evaluate our algorithm on the existing homologous families from the Genolevures database over five genomes of the Hemyascomycete phylum. Conclusions The result is an efficient algorithm that works on multiple genomes, considers paralogous copies of genes and is able to uncover orthologous clusters even in distant genomes. Resulting orthologous clusters are comparable to those obtained by manual curation.
Collapse
|
21
|
Tanabe K, Lamping E, Nagi M, Okawada A, Holmes AR, Miyazaki Y, Cannon RD, Monk BC, Niimi M. Chimeras of Candida albicans Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function. Mol Microbiol 2011; 82:416-33. [PMID: 21895791 DOI: 10.1111/j.1365-2958.2011.07820.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Members of the pleiotropic drug resistance (PDR) family of ATP binding cassette (ABC) transporters consist of two homologous halves, each containing a nucleotide binding domain (NBD) and a transmembrane domain (TMD). The PDR transporters efflux a variety of hydrophobic xenobiotics and despite the frequent association of their overexpression with the multidrug resistance of fungal pathogens, the transport mechanism of these transporters is poorly understood. Twenty-eight chimeric constructs between Candida albicans Cdr1p (CaCdr1p) and Cdr2p (CaCdr2p), two closely related but functionally distinguishable PDR transporters, were expressed in Saccharomyces cerevisiae. All chimeras expressed equally well, localized properly at the plasma membrane, retained their transport ability, but their substrate and inhibitor specificities differed significantly between individual constructs. A detailed characterization of these proteins revealed structural features that contribute to their substrate specificities and their transport mechanism. It appears that most transmembrane spans of CaCdr1p and CaCdr2p provide or affect multiple, probably overlapping, substrate and inhibitor binding site(s) similar to mammalian ABC transporters. The NBDs, in particular NBD1 and/or the ∼150 amino acids N-terminal to NBD1, can also modulate the substrate specificities of CaCdr1p and CaCdr2p.
Collapse
Affiliation(s)
- Koichi Tanabe
- Department of Bioactive Molecules, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Seret ML, Baret PV. IONS: Identification of Orthologs by Neighborhood and Similarity-an Automated Method to Identify Orthologs in Chromosomal Regions of Common Evolutionary Ancestry and its Application to Hemiascomycetous Yeasts. Evol Bioinform Online 2011; 7:123-33. [PMID: 21918595 PMCID: PMC3169350 DOI: 10.4137/ebo.s7465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Comparative sequence analysis is widely used to infer gene function and study genome evolution and requires proper ortholog identification across different genomes. We have developed a program for the Identification of Orthologs in one-to-one relationship by Neighborhood and Similarity (IONS) between closely related species. The algorithm combines two levels of evidence to determine co-ancestrality at the genome scale: sequence similarity and shared neighborhood. The method was initially designed to provide anchor points for syntenic blocks within the Génolevures project concerning nine hemiascomycetous yeasts (about 50,000 genes) and is applicable to different input databases. Comparison based on use of a Rand index shows that the results are highly consistent with the pillars of the Yeast Gene Order Browser, a manually curated database. Compared with SYNERGY, another algorithm reporting homology relationships, our method’s main advantages are its automation and the absence of dataset-dependent parameters, facilitating consistent integration of newly released genomes.
Collapse
Affiliation(s)
- Marie-Line Seret
- Université Catholique de Louvain, Earth and Life Institute (ELI), 1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
23
|
Florio AR, Ferrari S, De Carolis E, Torelli R, Fadda G, Sanguinetti M, Sanglard D, Posteraro B. Genome-wide expression profiling of the response to short-term exposure to fluconazole in Cryptococcus neoformans serotype A. BMC Microbiol 2011; 11:97. [PMID: 21569340 PMCID: PMC3119188 DOI: 10.1186/1471-2180-11-97] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/11/2011] [Indexed: 12/31/2022] Open
Abstract
Background Fluconazole (FLC), a triazole antifungal drug, is widely used for the maintenance therapy of cryptococcal meningoencephalitis, the most common opportunistic infection in AIDS patients. In this study, we examined changes in the gene expression profile of the C. neoformans reference strain H99 (serotype A) following FLC treatment in order to investigate the adaptive cellular responses to drug stress. Results Simultaneous analysis of over 6823 transcripts revealed that 476 genes were responsive to FLC. As expected up-regulation of genes involved in ergosterol biosynthesis was observed, including the azole target gene ERG11 and ERG13, ERG1, ERG7, ERG25, ERG2, ERG3 and ERG5. In addition, SRE1 which is a gene encoding a well-known regulator of sterol homeostasis in C. neoformans was up-regulated. Several other genes such as those involved in a variety of important cellular processes (i.e. lipid and fatty acid metabolism, cell wall maintenance, stress and virulence) were found to be up-regulated in response to FLC treatment. Conversely, expression of AFR1, the major transporter of azoles in C. neoformans, was not regulated by FLC. Conclusions Short-term exposure of C. neoformans to FLC resulted in a complex altered gene expression profile. Some of the observed changes could represent specific adaptive responses to the antifungal agent in this pathogenic yeast.
Collapse
Affiliation(s)
- Ada Rita Florio
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dias PJ, Seret ML, Goffeau A, Correia IS, Baret PV. Evolution of the 12-Spanner Drug:H+ Antiporter DHA1 Family in Hemiascomycetous Yeasts. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:701-10. [DOI: 10.1089/omi.2010.0104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Paulo Jorge Dias
- IBB—Institute for Biotechnology and Bioengineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | - Marie-Line Seret
- Genetics, Reproduction, Population—Earth and Life Institute (ELI), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - André Goffeau
- Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Isabel Sá Correia
- IBB—Institute for Biotechnology and Bioengineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | - Philippe V. Baret
- Genetics, Reproduction, Population—Earth and Life Institute (ELI), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
25
|
Guan W, Jiang H, Guo X, Mancera E, Xu L, Li Y, Steinmetz L, Li Y, Gu Z. Antagonistic changes in sensitivity to antifungal drugs by mutations of an important ABC transporter gene in a fungal pathogen. PLoS One 2010; 5:e11309. [PMID: 20593017 PMCID: PMC2892482 DOI: 10.1371/journal.pone.0011309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 05/11/2010] [Indexed: 11/18/2022] Open
Abstract
Fungal pathogens can be lethal, especially among immunocompromised populations, such as patients with AIDS and recipients of tissue transplantation or chemotherapy. Prolonged usage of antifungal reagents can lead to drug resistance and treatment failure. Understanding mechanisms that underlie drug resistance by pathogenic microorganisms is thus vital for dealing with this emerging issue. In this study, we show that dramatic sequence changes in PDR5, an ABC (ATP-binding cassette) efflux transporter protein gene in an opportunistic fungal pathogen, caused the organism to become hypersensitive to azole, a widely used antifungal drug. Surprisingly, the same mutations conferred growth advantages to the organism on polyenes, which are also commonly used antimycotics. Our results indicate that Pdr5p might be important for ergosterol homeostasis. The observed remarkable sequence divergence in the PDR5 gene in yeast strain YJM789 may represent an interesting case of adaptive loss of gene function with significant clinical implications.
Collapse
Affiliation(s)
- Wenjun Guan
- College of Life Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Huifeng Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Xiaoxian Guo
- College of Life Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | | | - Lin Xu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Yudong Li
- College of Life Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lars Steinmetz
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yongquan Li
- College of Life Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
26
|
Kovalchuk A, Driessen AJM. Phylogenetic analysis of fungal ABC transporters. BMC Genomics 2010; 11:177. [PMID: 20233411 PMCID: PMC2848647 DOI: 10.1186/1471-2164-11-177] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/16/2010] [Indexed: 12/22/2022] Open
Abstract
Background The superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied. Results We performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe. Conclusions Data obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions.
Collapse
Affiliation(s)
- Andriy Kovalchuk
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
| | | |
Collapse
|
27
|
Despons L, Baret PV, Frangeul L, Louis VL, Durrens P, Souciet JL. Genome-wide computational prediction of tandem gene arrays: application in yeasts. BMC Genomics 2010; 11:56. [PMID: 20092627 PMCID: PMC2822764 DOI: 10.1186/1471-2164-11-56] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 01/21/2010] [Indexed: 11/10/2022] Open
Abstract
Background This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality. Results Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs. The frequency of TGAs with degenerated gene copies means that a significant fraction of tandem duplicated genes follows the birth-and-death model of evolution. A comparison of sequence identity distributions between sets of homologous gene pairs shows that the different copies of tandem arrayed paralogs are less divergent than copies of dispersed paralogs in yeast genomes. It suggests that paralogs included in tandem structures are more recent or more subject to the gene conversion mechanism than other paralogs. Conclusion The method reported here is a useful computational tool to provide a database of TGAs composed of functional or nonfunctional gene copies. Such a database has obvious applications in the fields of structural and comparative genomics. Notably, a detailed study of the TGA catalog will make it possible to tackle the fundamental questions of the origin and evolution of tandem gene clusters.
Collapse
|
28
|
Abstract
Members of the Alphapapillomavirus genus are the causative agent for virtually all cases of cervical cancer. However, strains (commonly referred to as types) within this genus span the entire range of pathogenicity from highly carcinogenic (e.g., HPV16, odds ratio = 281.9, responsible for 50% of all cervical cancers), moderately carcinogenic (e.g., HPV31) to not carcinogenic (e.g., HPV71). The persistent expression of the viral oncoproteins (E6 and E7) from HPV16 has been shown to be necessary and sufficient to transform primary human keratinocytes in vitro. A plethora of functions have been described for both oncoproteins, and through functional comparisons between HPV16 and HPV6, a subset of these functions have been suggested to be oncogenic. However, extrapolating functional differences from these comparisons is unlikely to tease apart the fine details. In this review, we argue that a thorough understanding of the molecular mechanisms differentiating oncogenic from nononcogenic types should be obtained by performing functional assays in an evolutionary and epidemiological framework. We continue by interpreting some recent results using this paradigm and end by suggesting directions for future inquiries.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- Department of Microbiology and Immunology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, USA
| | | |
Collapse
|