1
|
Chromosome-Level Genome Assemblies Expand Capabilities of Genomics for Conservation Biology. Genes (Basel) 2021; 12:genes12091336. [PMID: 34573318 PMCID: PMC8466942 DOI: 10.3390/genes12091336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022] Open
Abstract
Genome assemblies are in the process of becoming an increasingly important tool for understanding genetic diversity in threatened species. Unfortunately, due to limited budgets typical for the area of conservation biology, genome assemblies of threatened species, when available, tend to be highly fragmented, represented by tens of thousands of scaffolds not assigned to chromosomal locations. The recent advent of high-throughput chromosome conformation capture (Hi-C) enables more contiguous assemblies containing scaffolds spanning the length of entire chromosomes for little additional cost. These inexpensive contiguous assemblies can be generated using Hi-C scaffolding of existing short-read draft assemblies, where N50 of the draft contigs is larger than 0.1% of the estimated genome size and can greatly improve analyses and facilitate visualization of genome-wide features including distribution of genetic diversity in markers along chromosomes or chromosome-length scaffolds. We compared distribution of genetic diversity along chromosomes of eight mammalian species, including six listed as threatened by IUCN, where both draft genome assemblies and newer chromosome-level assemblies were available. The chromosome-level assemblies showed marked improvement in localization and visualization of genetic diversity, especially where the distribution of low heterozygosity across the genomes of threatened species was not uniform.
Collapse
|
2
|
Oleksyk TK, Wolfsberger WW, Weber AM, Shchubelka K, Oleksyk OT, Levchuk O, Patrus A, Lazar N, Castro-Marquez SO, Hasynets Y, Boldyzhar P, Neymet M, Urbanovych A, Stakhovska V, Malyar K, Chervyakova S, Podoroha O, Kovalchuk N, Rodriguez-Flores JL, Zhou W, Medley S, Battistuzzi F, Liu R, Hou Y, Chen S, Yang H, Yeager M, Dean M, Mills RE, Smolanka V. Genome diversity in Ukraine. Gigascience 2021; 10:giaa159. [PMID: 33438729 PMCID: PMC7804371 DOI: 10.1093/gigascience/giaa159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/21/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The main goal of this collaborative effort is to provide genome-wide data for the previously underrepresented population in Eastern Europe, and to provide cross-validation of the data from genome sequences and genotypes of the same individuals acquired by different technologies. We collected 97 genome-grade DNA samples from consented individuals representing major regions of Ukraine that were consented for public data release. BGISEQ-500 sequence data and genotypes by an Illumina GWAS chip were cross-validated on multiple samples and additionally referenced to 1 sample that has been resequenced by Illumina NovaSeq6000 S4 at high coverage. RESULTS The genome data have been searched for genomic variation represented in this population, and a number of variants have been reported: large structural variants, indels, copy number variations, single-nucletide polymorphisms, and microsatellites. To our knowledge, this study provides the largest to-date survey of genetic variation in Ukraine, creating a public reference resource aiming to provide data for medical research in a large understudied population. CONCLUSIONS Our results indicate that the genetic diversity of the Ukrainian population is uniquely shaped by evolutionary and demographic forces and cannot be ignored in future genetic and biomedical studies. These data will contribute a wealth of new information bringing forth a wealth of novel, endemic and medically related alleles.
Collapse
Affiliation(s)
- Taras K Oleksyk
- Department of Biological Sciences, Uzhhorod National University, 32 Voloshyna Str., Uzhhorod 88000, Ukraine
- Department of Biological Sciences,Oakland University, Dodge Hall, 118 Library Dr., Rochester, MI 48309, USA
- Departamento de Biología, Universidad de Puerto Rico, Mayagüez, PR 00682, USA
| | - Walter W Wolfsberger
- Department of Biological Sciences, Uzhhorod National University, 32 Voloshyna Str., Uzhhorod 88000, Ukraine
- Department of Biological Sciences,Oakland University, Dodge Hall, 118 Library Dr., Rochester, MI 48309, USA
- Departamento de Biología, Universidad de Puerto Rico, Mayagüez, PR 00682, USA
| | - Alexandra M Weber
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Khrystyna Shchubelka
- Department of Biological Sciences,Oakland University, Dodge Hall, 118 Library Dr., Rochester, MI 48309, USA
- Departamento de Biología, Universidad de Puerto Rico, Mayagüez, PR 00682, USA
- Department of Medicine, Uzhhorod National University, Uzhhorod 88000, Ukraine
| | - Olga T Oleksyk
- A. Novak Transcarpathian Regional Clinical Hospital, Uzhhorod 88000, Ukraine
| | | | | | | | - Stephanie O Castro-Marquez
- Department of Biological Sciences,Oakland University, Dodge Hall, 118 Library Dr., Rochester, MI 48309, USA
- Departamento de Biología, Universidad de Puerto Rico, Mayagüez, PR 00682, USA
| | - Yaroslava Hasynets
- Department of Biological Sciences, Uzhhorod National University, 32 Voloshyna Str., Uzhhorod 88000, Ukraine
| | - Patricia Boldyzhar
- Department of Medicine, Uzhhorod National University, Uzhhorod 88000, Ukraine
| | - Mikhailo Neymet
- Velyka Kopanya Family Hospital, Transcarpatia 90330, Ukraine
| | | | | | - Kateryna Malyar
- I.I.Mechnikov Dnipro Regional Clinical Hospital, Dnipro 49000, Ukraine
| | | | | | - Natalia Kovalchuk
- Rivne Regional Specialized Hospital of Radiation Protection, Rivne 33028, Ukraine
| | | | - Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah Medley
- Department of Biological Sciences,Oakland University, Dodge Hall, 118 Library Dr., Rochester, MI 48309, USA
| | - Fabia Battistuzzi
- Department of Biological Sciences,Oakland University, Dodge Hall, 118 Library Dr., Rochester, MI 48309, USA
| | - Ryan Liu
- BGI Shenzhen, Shenzhen, 518083, China
| | - Yong Hou
- BGI Shenzhen, Shenzhen, 518083, China
| | - Siru Chen
- BGI Shenzhen, Shenzhen, 518083, China
| | | | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Volodymyr Smolanka
- Department of Medicine, Uzhhorod National University, Uzhhorod 88000, Ukraine
| |
Collapse
|
3
|
Xie XL, Wei Y, Song YY, Pan GM, Chen LN, Wang G, Zhang SH. Genetic Analysis of Four Sexual Differentiation Process Proteins (isp4/SDPs) in Chaetomium thermophilum and Thermomyces lanuginosus Reveals Their Distinct Roles in Development. Front Microbiol 2020; 10:2994. [PMID: 31969873 PMCID: PMC6956688 DOI: 10.3389/fmicb.2019.02994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022] Open
Abstract
Fungal sexual development requires the involvement of a large number of functional genes. Fungal genes encoding sexual differentiation process proteins (SDPs), isps, have been known for decades. isp4/SDP and its homologs function as oligopeptide transporters (OPTs), yet their roles in reproduction are unknown. Here, we genetically analyzed all four isp4/SDP homologs in the sexual species Chaetomium thermophilum and asexual species Thermomyces lanuginosus. Using single gene deletion mutants, we found that T. lanuginosus SDP (TlSDP) participated in asexual sporulation, whereas the other homologs participated in sexual morphogenesis. In complementary tests, C. thermophilum SDPs (CtSDP1-3) restored sporulation defects in TlSDP deletion strains (ΔTlSDP), and their translated proteins, which were localized onto the cytomembrane, possessed OPT activity. Interestingly, CtSDP2 accumulated at the top of the hyphae played a distinct role in determining the sexual cycle, glutathione transport, and lifespan shortening. A unique 72nt-insertion fragment (72INS) was discovered in CtSDP2. Biological analysis of the 72INS deletion and DsRED-tagged fusion strains implied the involvement of 72INS in fungal growth and development. In contrast to TlSDP, which only contributes to conidial production, the three CtSDPs play important roles in sexual and asexual reproduction, and CtSDP2 harbors a unique functional 72INS that initiates sexual morphogenesis.
Collapse
Affiliation(s)
- Xiang-Li Xie
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yan-Yue Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Guan-Ming Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Li-Na Chen
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
Abstract
The early radiation of Neoaves has been hypothesized to be an intractable “hard polytomy”. We explore the fundamental properties of insertion/deletion alleles (indels), an under-utilized form of genomic data with the potential to help solve this. We scored >5 million indels from >7000 pan-genomic intronic and ultraconserved element (UCE) loci in 48 representatives of all neoavian orders. We found that intronic and UCE indels exhibited less homoplasy than nucleotide (nt) data. Gene trees estimated using indel data were less resolved than those estimated using nt data. Nevertheless, Accurate Species TRee Algorithm (ASTRAL) species trees estimated using indels were generally similar to nt-based ASTRAL trees, albeit with lower support. However, the power of indel gene trees became clear when we combined them with nt gene trees, including a striking result for UCEs. The individual UCE indel and nt ASTRAL trees were incongruent with each other and with the intron ASTRAL trees; however, the combined indel+nt ASTRAL tree was much more congruent with the intronic trees. Finally, combining indel and nt data for both introns and UCEs provided sufficient power to reduce the scope of the polytomy that was previously proposed for several supraordinal lineages of Neoaves.
Collapse
|
5
|
Kolchanova S, Kliver S, Komissarov A, Dobrinin P, Tamazian G, Grigorev K, Wolfsberger WW, Majeske AJ, Velez-Valentin J, Valentin de la Rosa R, Paul-Murphy JR, Guzman DSM, Court MH, Rodriguez-Flores JL, Martínez-Cruzado JC, Oleksyk TK. Genomes of Three Closely Related Caribbean Amazons Provide Insight for Species History and Conservation. Genes (Basel) 2019; 10:E54. [PMID: 30654561 PMCID: PMC6356210 DOI: 10.3390/genes10010054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 11/17/2022] Open
Abstract
Islands have been used as model systems for studies of speciation and extinction since Darwin published his observations about finches found on the Galapagos. Amazon parrots inhabiting the Greater Antillean Islands represent a fascinating model of species diversification. Unfortunately, many of these birds are threatened as a result of human activity and some, like the Puerto Rican parrot, are now critically endangered. In this study we used a combination of de novo and reference-assisted assembly methods, integrating it with information obtained from related genomes to perform genome reconstruction of three amazon species. First, we used whole genome sequencing data to generate a new de novo genome assembly for the Puerto Rican parrot (Amazona vittata). We then improved the obtained assembly using transcriptome data from Amazona ventralis and used the resulting sequences as a reference to assemble the genomes Hispaniolan (A. ventralis) and Cuban (Amazona leucocephala) parrots. Finally, we, annotated genes and repetitive elements, estimated genome sizes and current levels of heterozygosity, built models of demographic history and provided interpretation of our findings in the context of parrot evolution in the Caribbean.
Collapse
Affiliation(s)
- Sofiia Kolchanova
- Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA.
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany.
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Sergei Kliver
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Aleksei Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Pavel Dobrinin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Gaik Tamazian
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Kirill Grigorev
- Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA.
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| | - Walter W Wolfsberger
- Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA.
- Department of Biological Sciences, Oakland University, 118 Library Drive, Rochester, MI 48309, USA.
- Department of Biological Sciences, Uzhhorod National University, 88000 Uzhhorod, Ukraine.
| | - Audrey J Majeske
- Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA.
- Beaumont BioBank, William Beaumont Hospital, Royal Oak, MI 48073, USA.
| | - Jafet Velez-Valentin
- Conservation Program of the Puerto Rican Parrot, U.S. Fish and Wildlife Service, Rio Grande, PR 00745, USA.
| | - Ricardo Valentin de la Rosa
- The Recovery Program of the Puerto Rican Parrot at the Rio Abajo State Forest, Departamento de Recursos Naturales y Ambientales de Puerto Rico, Arecibo, PR 00613, USA.
| | - Joanne R Paul-Murphy
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | - David Sanchez-Migallon Guzman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, 100 Grimes Way, Pullman, WA 99164, USA.
| | | | | | - Taras K Oleksyk
- Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA.
- Department of Biological Sciences, Oakland University, 118 Library Drive, Rochester, MI 48309, USA.
- Department of Biological Sciences, Uzhhorod National University, 88000 Uzhhorod, Ukraine.
| |
Collapse
|
6
|
Grigorev K, Kliver S, Dobrynin P, Komissarov A, Wolfsberger W, Krasheninnikova K, Afanador-Hernández YM, Brandt AL, Paulino LA, Carreras R, Rodríguez LE, Núñez A, Brandt JR, Silva F, Hernández-Martich JD, Majeske AJ, Antunes A, Roca AL, O'Brien SJ, Martínez-Cruzado JC, Oleksyk TK. Innovative assembly strategy contributes to understanding the evolution and conservation genetics of the endangered Solenodon paradoxus from the island of Hispaniola. Gigascience 2018; 7:4931057. [PMID: 29718205 PMCID: PMC6009670 DOI: 10.1093/gigascience/giy025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/26/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022] Open
Abstract
Solenodons are insectivores that live in Hispaniola and Cuba. They form an isolated branch in the tree of placental mammals that are highly divergent from other eulipothyplan insectivores The history, unique biology, and adaptations of these enigmatic venomous species could be illuminated by the availability of genome data. However, a whole genome assembly for solenodons has not been previously performed, partially due to the difficulty in obtaining samples from the field. Island isolation and reduced numbers have likely resulted in high homozygosity within the Hispaniolan solenodon (Solenodon paradoxus). Thus, we tested the performance of several assembly strategies on the genome of this genetically impoverished species. The string graph-based assembly strategy seemed a better choice compared to the conventional de Bruijn graph approach due to the high levels of homozygosity, which is often a hallmark of endemic or endangered species. A consensus reference genome was assembled from sequences of 5 individuals from the southern subspecies (S. p. woodi). In addition, we obtained an additional sequence from 1 sample of the northern subspecies (S. p. paradoxus). The resulting genome assemblies were compared to each other and annotated for genes, with an emphasis on venom genes, repeats, variable microsatellite loci, and other genomic variants. Phylogenetic positioning and selection signatures were inferred based on 4,416 single-copy orthologs from 10 other mammals. We estimated that solenodons diverged from other extant mammals 73.6 million years ago. Patterns of single-nucleotide polymorphism variation allowed us to infer population demography, which supported a subspecies split within the Hispaniolan solenodon at least 300 thousand years ago.
Collapse
Affiliation(s)
- Kirill Grigorev
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
| | - Sergey Kliver
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Pavel Dobrynin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksey Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Walter Wolfsberger
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
- Biology Department, Uzhhorod National University, Uzhhorod, Ukraine
| | - Ksenia Krasheninnikova
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | | | - Adam L Brandt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Division of Natural Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Liz A Paulino
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic
| | - Rosanna Carreras
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic
| | - Luis E Rodríguez
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic
| | - Adrell Núñez
- Department of Conservation and Science, Parque Zoologico Nacional (ZOODOM), Santo Domingo, Dominican Republic
| | - Jessica R Brandt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biology, Marian University, Fond du Lac, Wisconsin, USA
| | - Filipe Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto. Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - J David Hernández-Martich
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Audrey J Majeske
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto. Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
- Oceanographic Center, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | - Taras K Oleksyk
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
- Biology Department, Uzhhorod National University, Uzhhorod, Ukraine
| |
Collapse
|
7
|
Veerappa AM, Vishweswaraiah S, Lingaiah K, Murthy NM, Suresh RV, Belur K, Ramachandra NB, Tejaswini, Patel NB, Gowda PKS. Insertion-deletions burden in copy number polymorphisms of the Tibetan population. INDIAN JOURNAL OF HUMAN GENETICS 2014; 20:166-74. [PMID: 25400346 PMCID: PMC4228569 DOI: 10.4103/0971-6866.142888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND: Many studies have been conducted to identify either insertions-deletions (inDels) or copy number variations (CNVs) in humans, but few studies have been conducted to identify both of these forms coexisting in the same region. AIMS AND OBJECTIVES: To map the functionally significant sites within human genes that are likely to influence human traits and diseases. MATERIALS AND METHODS: In this report, we describe an inDel map in the 1051 Tibetan CNV regions obtained through CNV genotyping using Affymetrix Genome-wide single nucleotide polymorphism 6.0 chip. InDel polymorphisms in these copy number polymorphism regions were identified with a computational approach using the 2500 deoxyribonucleic acid sequences obtained from the 1000 Genome Project. RESULTS: The study identified a total of 95935 inDels that range from 1 bp to several bps in length which were found scattered across regulatory regions, exons and in introns of genes underlying the CNVs. A study on the distribution of inDels revealed that the majority of inDels were found in coding regions of the genome than the noncoding, while within the genes, inDels in intron regions were more followed by exonic regions and finally the regulatory regions. CONCLUSION: Study of inDels in CNV regions contribute to the enhanced understanding of the role played by the two variations and their collective influence on the genome. Further, a collection of these inDel genetic markers will aid in genetic mapping, further understanding of the phenotypic variability, identification of disease genes and in detecting novel CNVs.
Collapse
Affiliation(s)
| | | | - Kusuma Lingaiah
- Department of Neurology, JSS Hospital, Mysore, Karnataka, India
| | - N Megha Murthy
- Department of Neurology, JSS Hospital, Mysore, Karnataka, India
| | | | - Keshava Belur
- Department of Neurology, JSS Hospital, Mysore, Karnataka, India
| | - Nallur B Ramachandra
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Tejaswini
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Niveditha B Patel
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - P K Supriya Gowda
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| |
Collapse
|
8
|
Bailey J. Lessons from chimpanzee-based research on human disease: the implications of genetic differences. Altern Lab Anim 2012; 39:527-40. [PMID: 22243397 DOI: 10.1177/026119291103900608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Assertions that the use of chimpanzees to investigate human diseases is valid scientifically are frequently based on a reported 98-99% genetic similarity between the species. Critical analyses of the relevance of chimpanzee studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for the chimpanzee to constitute a good model for research, and furthermore, that chimpanzee data do not translate well to progress in clinical practice for humans. Leading examples include the minimal citations of chimpanzee research that is relevant to human medicine, the highly different pathology of HIV/AIDS and hepatitis C virus infection in the two species, the lack of correlation in the efficacy of vaccines and treatments between chimpanzees and humans, and the fact that chimpanzees are not useful for research on human cancer. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and chimpanzee genetic sequences is of little consequence for biomedical research. The extrapolation of biomedical data from the chimpanzee to the human is therefore highly unreliable, and the use of the chimpanzee must be considered of little value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to science.
Collapse
|
9
|
Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MAM, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MPC, Silva A, O'Brien SJ, Pecon-Slattery J. A molecular phylogeny of living primates. PLoS Genet 2011; 7:e1001342. [PMID: 21436896 PMCID: PMC3060065 DOI: 10.1371/journal.pgen.1001342] [Citation(s) in RCA: 896] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/16/2011] [Indexed: 12/13/2022] Open
Abstract
Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species. Advances in human biomedicine, including those focused on changes in genes triggered or disrupted in development, resistance/susceptibility to infectious disease, cancers, mechanisms of recombination, and genome plasticity, cannot be adequately interpreted in the absence of a precise evolutionary context or hierarchy. However, little is known about the genomes of other primate species, a situation exacerbated by a paucity of nuclear molecular sequence data necessary to resolve the complexities of primate divergence over time. We overcome this deficiency by sequencing 54 nuclear gene regions from DNA samples representing ∼90% of the diversity present in living primates. We conduct a phylogenetic analysis to determine the origin, evolution, patterns of speciation, and unique features in genome divergence among primate lineages. The resultant phylogenetic tree is remarkably robust and unambiguously resolves many long-standing issues in primate taxonomy. Our data provide a strong foundation for illuminating those genomic differences that are uniquely human and provide new insights on the breadth and richness of gene evolution across all primate lineages.
Collapse
Affiliation(s)
- Polina Perelman
- Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Warren E. Johnson
- Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Hector N. Seuánez
- Division of Genetics, Instituto Nacional de Câncer and Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julie E. Horvath
- Department of Evolutionary Anthropology and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Miguel A. M. Moreira
- Division of Genetics, Instituto Nacional de Câncer and Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bailey Kessing
- SAIC–Frederick, Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Joan Pontius
- SAIC–Frederick, Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Melody Roelke
- SAIC–Frederick, Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Yves Rumpler
- Physiopathologie et Médecine Translationnelle, Faculté de Médecine, Université Louis Pasteur, Strasbourg, France
| | | | | | - Stephen J. O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Tolstorukov MY, Volfovsky N, Stephens RM, Park PJ. Impact of chromatin structure on sequence variability in the human genome. Nat Struct Mol Biol 2011; 18:510-5. [PMID: 21399641 DOI: 10.1038/nsmb.2012] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/10/2010] [Indexed: 02/02/2023]
Abstract
DNA sequence variations in individual genomes give rise to different phenotypes within the same species. One mechanism in this process is the alteration of chromatin structure due to sequence variation that influences gene regulation. We composed a high-confidence collection of human single-nucleotide polymorphisms and indels based on analysis of publicly available sequencing data and investigated whether the DNA loci associated with stable nucleosome positions are protected against mutations. We addressed how the sequence variation reflects the occupancy profiles of nucleosomes bearing different epigenetic modifications on genome scale. We found that indels are depleted around nucleosome positions of all considered types, whereas single-nucleotide polymorphisms are enriched around the positions of bulk nucleosomes but depleted around the positions of epigenetically modified nucleosomes. These findings indicate an increased level of conservation for the sequences associated with epigenetically modified nucleosomes, highlighting complex organization of the human chromatin.
Collapse
Affiliation(s)
- Michael Y Tolstorukov
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
11
|
Liang Q, Ding J, Xu R, Xu Z, Zheng S. The novel human endogenous retrovirus-related gene, psiTPTE22-HERV, is silenced by DNA methylation in cancers. Int J Cancer 2010; 127:1833-43. [PMID: 20112338 DOI: 10.1002/ijc.25213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The psiTPTE22 gene has been designated as a TPTE pseudogene. Our study found that the 5' part of psiTPTE22 has no sequence similarity to TPTE and contains a 3.8-kb human endogenous retrovirus (HERV) element. Because of the HERV element, the 5' part of psiTPTE22 (psiTPTE22-HERV) expresses independently as a gene. Comparison between the DNA sequences of humans and chimps indicated that psiTPTE22-HERV is human specific. We identified 3 alternatively spliced transcript variants from psiTPTE22-HERV by a PCR-based strategy, which use the transcriptional termination signal contained in the HERV element. A 402-nt ORF was contained in the 2 longer transcripts. Western blotting using antibodies produced with chemically synthesized peptide confirmed that a 15-kDa protein was translated from this ORF. RT-PCR results indicated that the ORF-containing transcripts were mainly expressed in psiTPTE22-HERV-expressing samples. Real-time quantitative RT-PCR results showed that expression of the 402-nt ORF was upregulated in normal tissues of kidney, liver, stomach, and lung but downregulated in corresponding tumor tissues. This gene is located near the centromere of chromosome 22 and has a high GC content around the promoter region. Bisulfite sequencing PCR results indicated that it is silenced in cancers by DNA methylation. The expression of psiTPTE22-HERV can be recovered in cancer cells using DNA methylation and histone deacetylase inhibitors. These results suggest psiTPTE22-HERV is regulated epigenetically by DNA methylation. Our study paved the way for further study on an interesting HERV-related human-specific gene, which is silenced in cancers by DNA methylation.
Collapse
Affiliation(s)
- Qiaoyi Liang
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | |
Collapse
|
12
|
Abstract
Uncovering general principles of genome evolution that are time-invariant and that operate in germ and somatic cells has implications for genome-wide association studies (GWAS), gene therapy, and disease genomics. Here we investigate the relationship between structural alterations (e.g., insertions and deletions) and single-nucleotide substitutions by comparing the following genomes that diverged at different times across germ- and somatic-cell lineages: (i) the reference human and chimpanzee genome (in million years), (ii) the reference human and personal genomes (in tens of thousands of years), and (iii) structurally altered regions in cancer and genetically engineered cells (in days). At the species level, genes with structural alteration in nearby regions show increased single-nucleotide changes and tend to evolve faster. In personal genomes, the single-nucleotide substitution rate is higher near sites of structural alteration and decreases with increasing distance. In human cancer cell populations and in cells genetically engineered using zinc-finger nucleases, single-nucleotide changes occur frequently near sites of structural alterations. We present evidence that structural alteration induces single-nucleotide changes in nearby regions and discuss possible molecular mechanisms that contribute to this phenomenon. We propose that the low fidelity of nonreplicative error-prone repair polymerases, which are used during insertion or deletion, result in break-repair-induced single-nucleotide mutations in the vicinity of structural alteration. Thus, in the mutational landscape, structural alterations are linked to single-nucleotide changes across different time scales in both somatic- and germ-cell lineages. We discuss implications for genome evolution, GWAS, disease genomics, and gene therapy and emphasize the need to investigate both types of mutations within a single framework.
Collapse
|
13
|
Touzain F, Denamur E, Médigue C, Barbe V, El Karoui M, Petit MA. Small variable segments constitute a major type of diversity of bacterial genomes at the species level. Genome Biol 2010; 11:R45. [PMID: 20433696 PMCID: PMC2884548 DOI: 10.1186/gb-2010-11-4-r45] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/15/2010] [Accepted: 04/30/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Analysis of large scale diversity in bacterial genomes has mainly focused on elements such as pathogenicity islands, or more generally, genomic islands. These comprise numerous genes and confer important phenotypes, which are present or absent depending on strains. We report that despite this widely accepted notion, most diversity at the species level is composed of much smaller DNA segments, 20 to 500 bp in size, which we call microdiversity. RESULTS We performed a systematic analysis of the variable segments detected by multiple whole genome alignments at the DNA level on three species for which the greatest number of genomes have been sequenced: Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. Among the numerous sites of variability, 62 to 73% were loci of microdiversity, many of which were located within genes. They contribute to phenotypic variations, as 3 to 6% of all genes harbor microdiversity, and 1 to 9% of total genes are located downstream from a microdiversity locus. Microdiversity loci are particularly abundant in genes encoding membrane proteins. In-depth analysis of the E. coli alignments shows that most of the diversity does not correspond to known mobile or repeated elements, and it is likely that they were generated by illegitimate recombination. An intriguing class of microdiversity includes small blocks of highly diverged sequences, whose origin is discussed. CONCLUSIONS This analysis uncovers the importance of this small-sized genome diversity, which we expect to be present in a wide range of bacteria, and possibly also in many eukaryotic genomes.
Collapse
Affiliation(s)
- Fabrice Touzain
- INRA, UMR1319, Micalis, Bat 222, Jouy en Josas, 78350, France
| | | | | | | | | | | |
Collapse
|