1
|
Gazzin S, Bellarosa C, Tiribelli C. Molecular events in brain bilirubin toxicity revisited. Pediatr Res 2024; 95:1734-1740. [PMID: 38378754 DOI: 10.1038/s41390-024-03084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/22/2024]
Abstract
The mechanisms involved in bilirubin neurotoxicity are still far from being fully elucidated. Several different events concur to damage mainly the neurons among which inflammation and alteration of the redox state play a major role. An imbalance of cellular calcium homeostasis has been recently described to be associated with toxic concentrations of bilirubin, and this disequilibrium may in turn elicit an inflammatory reaction. The different and age-dependent sensitivity to bilirubin damage must also be considered in describing the dramatic clinical picture of bilirubin-induced neurological damage (BIND) formerly known as kernicterus spectrum disorder (KSD). This review aims to critically address what is known and what is not in the molecular events of bilirubin neurotoxicity to provide hints for a better diagnosis and more successful treatments. Part of these concepts have been presented at the 38th Annual Audrey K. Brown Kernicterus Symposium of Pediatric American Society, Washington DC, May 1, 2023.
Collapse
Affiliation(s)
- Silvia Gazzin
- Liver-Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Cristina Bellarosa
- Liver-Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Claudio Tiribelli
- Liver-Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149, Trieste, Italy.
| |
Collapse
|
2
|
Zhou J, Liao S, Zhang C, Luo J, Li G, Li H. Expression profiling of N6-methyladenosine-modified mRNA in PC12 cells in response to unconjugated bilirubin. Mol Biol Rep 2023; 50:6703-6715. [PMID: 37378749 PMCID: PMC10374823 DOI: 10.1007/s11033-023-08576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Abnormal methylation of N6-methyladenosine (m6A) is reportedly associated with central nervous system disorders. However, the role of m6A mRNA methylation in unconjugated bilirubin (UCB) neurotoxicity requires further research. METHODS Rat pheochromocytoma PC12 cells treated with UCB were used as in vitro models. After the PC12 cells were treated with UCB (0, 12, 18, and 24 µM) for 24 h, the total RNA m6A levels were measured using an m6A RNA methylation quantification kit. The expression of m6A demethylases and methyltransferases was detected through western blotting. We determined the m6A mRNA methylation profile in PC12 cells exposed to UCB (0 and 18 µM) for 24 h using methylated RNA immunoprecipitation sequencing (MeRIP-seq). RESULTS Compared with the control group, UCB (18 and 24 µM) treatment decreased the expression of the m6A demethylase ALKBH5 and increased the expression of the methyltransferases METTL3 and METTL14, which resulted in an increase in the total m6A levels in PC12 cells. Furthermore, 1533 m6A peaks were significantly elevated and 1331 peaks were reduced in the UCB (18 µM)-treated groups compared with those in the control group. Genes with differential m6A peaks were mainly enriched in protein processing in the endoplasmic reticulum, ubiquitin-mediated proteolysis, cell cycle, and endocytosis. Through combined analysis of the MeRIP-seq and RNA sequencing data, 129 genes with differentially methylated m6A peaks and differentially expressed mRNA levels were identified. CONCLUSION Our study suggests that the modulation of m6A methylation modifications plays a significant role in UCB neurotoxicity.
Collapse
Affiliation(s)
- Jinfu Zhou
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Sining Liao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Chenran Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Jinying Luo
- Obstetrics and Gynecology Department, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Guilin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
3
|
Models of bilirubin neurological damage: lessons learned and new challenges. Pediatr Res 2022:10.1038/s41390-022-02351-x. [PMID: 36302856 DOI: 10.1038/s41390-022-02351-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Jaundice (icterus) is the visible manifestation of the accumulation of bilirubin in the tissue and is indicative of potential toxicity to the brain. Since its very first description more than 2000 years ago, many efforts have been undertaken to understand the molecular determinants of bilirubin toxicity to neuronal cells to reduce the risk of neurological sequelae through the use of available chemicals and in vitro, ex vivo, in vivo, and clinical models. Although several studies have been performed, important questions remain unanswered, such as the reasons for regional sensitivity and the interplay with brain development. The number of new molecular effects identified has increased further, which has added even more complexity to the understanding of the condition. As new research challenges emerged, so does the need to establish solid models of prematurity. METHODS This review critically summarizes the key mechanisms of severe neonatal hyperbilirubinemia and the use of the available models and technologies for translational research. IMPACT We critically review the conceptual dogmas and models used for studying bilirubin-induced neurotoxicity. We point out the pitfalls and translational gaps, and suggest new clinical research challenges. We hope to inform researchers on the pro and cons of the models used, and to help direct their experimental focus in a most translational research.
Collapse
|
4
|
Bilirubin disrupts calcium homeostasis in neonatal hippocampal neurons: a new pathway of neurotoxicity. Arch Toxicol 2020; 94:845-855. [DOI: 10.1007/s00204-020-02659-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/03/2020] [Indexed: 12/22/2022]
|
5
|
Experimental models assessing bilirubin neurotoxicity. Pediatr Res 2020; 87:17-25. [PMID: 31493769 DOI: 10.1038/s41390-019-0570-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023]
Abstract
The molecular and cellular events leading to bilirubin-induced neurotoxicity, the mechanisms regulating liver and intestine expression in neonates, and alternative pathways of bilirubin catabolism remain incompletely defined. To answer these questions, researchers have developed a number of model systems to closely recapitulate the main characteristics of the disease, ranging from tissue cultures to engineered mouse models. In the present review we describe in vitro, ex vivo, and in vivo models developed to study bilirubin metabolism and neurotoxicity, with a special focus on the use of engineered animal models. In addition, we discussed the most recent studies related to potential therapeutic approaches to treat neonatal hyperbilirubinemia, ranging from anti-inflammatory drugs, activation of nuclear receptor pathways, blockade of bilirubin catabolism, and stimulation of alternative bilirubin-disposal pathways.
Collapse
|
6
|
Le Pichon JB, Riordan SM, Shapiro SM. Hyperbilirubinemia and the Risk for Brain Injury. Neurology 2019. [DOI: 10.1016/b978-0-323-54392-7.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Bilirubin-Induced Oxidative Stress Leads to DNA Damage in the Cerebellum of Hyperbilirubinemic Neonatal Mice and Activates DNA Double-Strand Break Repair Pathways in Human Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1801243. [PMID: 30598724 PMCID: PMC6287157 DOI: 10.1155/2018/1801243] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/19/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022]
Abstract
Unconjugated bilirubin is considered a potent antioxidant when present at moderate levels. However, at high concentrations, it produces severe neurological damage and death associated with kernicterus due to oxidative stress and other mechanisms. While it is widely recognized that oxidative stress by different toxic insults results in severe damage to cellular macromolecules, especially to DNA, no data are available either on DNA damage in the brain triggered by hyperbilirubinemia during the neonatal period or on the activation of DNA repair mechanisms. Here, using a mouse model of neonatal hyperbilirubinemia, we demonstrated that DNA damage occurs in vivo in the cerebellum, the brain region most affected by bilirubin toxicity. We studied the mechanisms associated with potential toxic action of bilirubin on DNA in in vitro models, which showed significant increases in DNA damage when neuronal and nonneuronal cells were treated with 140 nM of free bilirubin (Bf), as determined by γH2AX Western blot and immunofluorescence analyses. Cotreatment of cells with N-acetyl-cysteine, a potent oxidative-stress inhibitor, prevented DNA damage by bilirubin, supporting the concept that DNA damage was caused by bilirubin-induced oxidative stress. Bilirubin treatment also activated the main DNA repair pathways through homologous recombination (HR) and nonhomologous end joining (NHEJ), which may be adaptive responses to repair bilirubin-induced DNA damage. Since DNA damage may be another important factor contributing to neuronal death and bilirubin encephalopathy, these results contribute to the understanding of the mechanisms associated with bilirubin toxicity and may be of relevance in neonates affected with severe hyperbilirubinemia.
Collapse
|
8
|
Schiavon E, Smalley JL, Newton S, Greig NH, Forsythe ID. Neuroinflammation and ER-stress are key mechanisms of acute bilirubin toxicity and hearing loss in a mouse model. PLoS One 2018; 13:e0201022. [PMID: 30106954 PMCID: PMC6091913 DOI: 10.1371/journal.pone.0201022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/07/2018] [Indexed: 12/01/2022] Open
Abstract
Hyperbilirubinemia (jaundice) is caused by raised levels of unconjugated bilirubin in the blood. When severe, susceptible brain regions including the cerebellum and auditory brainstem are damaged causing neurological sequelae such as ataxia, hearing loss and kernicterus. The mechanism(s) by which bilirubin exerts its toxic effect have not been completely understood to date. In this study we investigated the acute mechanisms by which bilirubin causes the neurotoxicity that contributes to hearing loss. We developed a novel mouse model that exhibits the neurological features seen in human Bilirubin-Induced Neurological Dysfunction (BIND) syndrome that we assessed with a behavioural score and auditory brainstem responses (ABR). Guided by initial experiments applying bilirubin to cultured cells in vitro, we performed whole genome gene expression measurements on mouse brain tissue (cerebellum and auditory brainstem) following bilirubin exposure to gain mechanistic insights into biochemical processes affected, and investigated further using immunoblotting. We then compared the gene changes induced by bilirubin to bacterial lipopolysaccharide (LPS), a well characterized inducer of neuroinflammation, to assess the degree of similarity between them. Finally, we examined the extent to which genetic perturbation of inflammation and both known and novel anti-inflammatory drugs could protect hearing from bilirubin-induced toxicity. The in vitro results indicated that bilirubin induces changes in gene expression consistent with endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). These gene changes were similar to the gene expression signature of thapsigargin–a known ER stress inducer. It also induced gene expression changes associated with inflammation and NF-κB activation. The in vivo model showed behavioural impairment and a raised auditory threshold. Whole genome gene expression analysis confirmed inflammation as a key mechanism of bilirubin neurotoxicity in the auditory pathway and shared gene expression hallmarks induced by exposure to bacterial lipopolysaccharide (LPS) a well-characterized inducer of neuroinflammation. Interestingly, bilirubin caused more severe damage to the auditory system than LPS in this model, but consistent with our hypothesis of neuroinflammation being a primary part of bilirubin toxicity, the hearing loss was protected by perturbing the inflammatory response. This was carried out genetically using lipocalin-2 (LCN2)-null mice, which is an inflammatory cytokine highly upregulated in response to bilirubin. Finally, we tested known and novel anti-inflammatory compounds (interfering with NF-κB and TNFα signalling), and also demonstrated protection of the auditory system from bilirubin toxicity. We have developed a novel, reversible, model for jaundice that shows movement impairment and auditory loss consistent with human symptoms. We used this model to establish ER-stress and inflammation as major contributors to bilirubin toxicity. Because of the rapid and reversible onset of toxicity in this novel model it represents a system to screen therapeutic compounds. We have demonstrated this by targeting inflammation genetically and with anti-inflammatory small molecules that offered protection against bilirubin toxicity. This also suggests that anti-inflammatory drugs could be of therapeutic use in hyperbilirubinemia.
Collapse
Affiliation(s)
- Emanuele Schiavon
- Department Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, Leicestershire, United Kingdom
| | - Joshua L. Smalley
- Department Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, Leicestershire, United Kingdom
| | - Sherylanne Newton
- Department Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, Leicestershire, United Kingdom
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States of America
| | - Ian D. Forsythe
- Department Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, Leicestershire, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Vodret S, Bortolussi G, Iaconcig A, Martinelli E, Tiribelli C, Muro AF. Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. Brain Behav Immun 2018; 70:166-178. [PMID: 29458193 DOI: 10.1016/j.bbi.2018.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 01/21/2023] Open
Abstract
All pre-term newborns and a high proportion of term newborns develop neonatal jaundice. Neonatal jaundice is usually a benign condition and self-resolves within few days after birth. However, a combination of unfavorable complications may lead to acute hyperbilirubinemia. Excessive hyperbilirubinemia may be toxic for the developing nervous system leading to severe neurological damage and death by kernicterus. Survivors show irreversible neurological deficits such as motor, sensitive and cognitive abnormalities. Current therapies rely on the use of phototherapy and, in unresponsive cases, exchange transfusion, which is performed only in specialized centers. During bilirubin-induced neurotoxicity different molecular pathways are activated, ranging from oxidative stress to endoplasmic reticulum (ER) stress response and inflammation, but the contribution of each pathway in the development of the disease still requires further investigation. Thus, to increase our understanding of the pathophysiology of bilirubin neurotoxicity, encephalopathy and kernicterus, we pharmacologically modulated neurodegeneration and neuroinflammation in a lethal mouse model of neonatal hyperbilirubinemia. Treatment of mutant mice with minocycline, a second-generation tetracycline with anti-inflammatory and neuroprotective properties, resulted in a dose-dependent rescue of lethality, due to reduction of neurodegeneration and neuroinflammation, without affecting plasma bilirubin levels. In particular, rescued mice showed normal motor-coordination capabilities and behavior, as determined by the accelerating rotarod and open field tests, respectively. From the molecular point of view, rescued mice showed a dose-dependent reduction in apoptosis of cerebellar neurons and improvement of dendritic arborization of Purkinje cells. Moreover, we observed a decrease of bilirubin-induced M1 microglia activation at the sites of damage with a reduction in oxidative and ER stress markers in these cells. Collectively, these data indicate that neurodegeneration and neuro-inflammation are key factors of bilirubin-induced neonatal lethality and neuro-behavioral abnormalities. We propose that the application of pharmacological treatments having anti-inflammatory and neuroprotective effects, to be used in combination with the current treatments, may significantly improve the management of acute neonatal hyperbilirubinemia, protecting from bilirubin-induced neurological damage and death.
Collapse
Affiliation(s)
- Simone Vodret
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy.
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Elena Martinelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato, AREA Science Park, Campus Basovizza, Trieste, Italy
| | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy.
| |
Collapse
|
10
|
The activation of autophagy protects neurons and astrocytes against bilirubin-induced cytotoxicity. Neurosci Lett 2017; 661:96-103. [PMID: 28965934 DOI: 10.1016/j.neulet.2017.09.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
Unconjugated bilirubin (UCB) neurotoxicity involves oxidative stress, calcium signaling and ER-stress. The same insults can also induce autophagy, a process of "self-eating", with both a pro-survival or a pro-apoptotic role. Our aim was to study the outcome of autophagy activation by UCB in the highly sensitive neuronal SH-SY5Y cells and in the resistant astrocytoma U87 cells. Upon treatment with a toxic dose of UCB, the conversion of LC3-I to LC3-II was detected in both cell lines. Inhibition of autophagy by E64d before UCB treatment increased SH-SY5Y cell mortality and made U87 cells sensitive to UCB. In SH-SY5Y autophagy related genes ATG8 (5 folds), ATG18 (5 folds), p62 (3 folds) and FAM 129A (4.5 folds) were induced 8h after UCB treatment while DDIT4 upregulation (13 folds) started at 4h. mTORC1 inactivation by UCB was confirmed by phosphorylation of 4EBP1. UCB induced LC3-II conversion was completely prevented by pretreating cells with the calcium chelator BAPTA and reduced by 65% using the ER-stress inhibitor 4-PBA. Pretreatment with the PKC inhibitor reduced LC3 mRNA by 70% as compared to cells exposed to UCB alone. Finally, autophagy induction by Trifluoroperazine (TFP) increased the cell viability of rat hippocampal primary neurons upon UCB treatment from 60% to 80%. In SH-SY5Y cells, TFP pretreatment blocked the UCB-induced cleaved caspase-3 protein expression, decreased LDH release from 50% to 23%, reduced the UCB-induction of HO1, CHOP and IL-8 mRNAs by 85%, 70% and 97%. Collectively these data indicate that the activation of autophagy protects neuronal cells from UCB cytotoxicity. The mechanisms of autophagy activation by UCB involves mTOR/ER-stress/PKC/calcium signaling.
Collapse
|
11
|
Vodret S, Bortolussi G, Jašprová J, Vitek L, Muro AF. Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1 -/- mouse model. J Neuroinflammation 2017; 14:64. [PMID: 28340583 PMCID: PMC5366125 DOI: 10.1186/s12974-017-0838-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/12/2017] [Indexed: 12/14/2022] Open
Abstract
Background Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced neurological damage and eventually death by kernicterus. Bilirubin neurotoxicity is characterized by a wide array of neurological deficits, including irreversible abnormalities in motor, sensitive and cognitive functions, due to bilirubin accumulation in the brain. Despite the abundant literature documenting the in vitro and in vivo toxic effects of bilirubin, it is unclear which molecular and cellular events actually characterize bilirubin-induced neurodegeneration in vivo. Methods We used a mouse model of neonatal hyperbilirubinemia to temporally and spatially define the response of the developing cerebellum to the bilirubin insult. Results We showed that the exposure of developing cerebellum to sustained bilirubin levels induces the activation of oxidative stress, ER stress and inflammatory markers at the early stages of the disease onset. In particular, we identified TNFα and NFKβ as key mediators of bilirubin-induced inflammatory response. Moreover, we reported that M1 type microglia is increasingly activated during disease progression. Failure to counteract this overwhelming stress condition resulted in the induction of the apoptotic pathway and the generation of the glial scar. Finally, bilirubin induced the autophagy pathway in the stages preceding death of the animals. Conclusions This study demonstrates that inflammation is a key contributor to bilirubin damage that cooperates with ER stress in the onset of neurotoxicity. Pharmacological modulation of the inflammatory pathway may be a potential intervention target to ameliorate neonatal lethality in Ugt1-/- mice. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0838-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Vodret
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149, Trieste, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149, Trieste, Italy.
| | - Jana Jašprová
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, 120 00, Prague, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, 120 00, Prague, Czech Republic.,Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University, 120 00, Prague, Czech Republic
| | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149, Trieste, Italy.
| |
Collapse
|
12
|
Qaisiya M, Brischetto C, Jašprová J, Vitek L, Tiribelli C, Bellarosa C. Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells. Arch Toxicol 2016; 91:1847-1858. [PMID: 27578021 DOI: 10.1007/s00204-016-1835-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023]
Abstract
Unconjugated bilirubin (UCB) in newborns may lead to bilirubin neurotoxicity. Few studies investigated the activation of endoplasmic reticulum stress (ER stress) by UCB. We performed an in vitro comparative study using undifferentiated SH-SY5Y, differentiated GI-ME-N neuronal cells and human U87 astrocytoma cells. ER stress and its contribution to inflammation and apoptosis induced by UCB were analyzed. Cytotoxicity, ER stress and inflammation were observed only in neuronal cells, despite intracellular UCB accumulation in all three cell types. UCB toxicity was enhanced in undifferentiated SH-SY5Y cells and correlated with a higher mRNA expression of pro-apoptotic CHOP. Mouse embryonic fibroblast knockout for CHOP and CHOP siRNA-silenced SH-SY5Y increased cells viability upon UCB exposure. In SH-SY5Y, ER stress inhibition by 4-phenylbutyric acid reduced UCB-induced apoptosis and decreased the cleaved forms of caspase-3 and PARP proteins. Reporter gene assay and PERK siRNA showed that IL-8 induction by UCB is transcriptionally regulated by NFкB and PERK signaling. These data suggest that ER stress has an important role in the UCB-induced inflammation and apoptosis, and that targeting ER stress may represent a potential therapeutic approach to decrease UCB-induced neurotoxicity.
Collapse
Affiliation(s)
- Mohammed Qaisiya
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, AREA Science Park Basovizza Bldg Q, 34149, Trieste, Italy.
| | - Cristina Brischetto
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, AREA Science Park Basovizza Bldg Q, 34149, Trieste, Italy
| | - Jana Jašprová
- Institute of Medical Biochemistry and Laboratory Medicine, 1st Faculty of Medicine, Charles University in Prague, 12000, Prague, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Medicine, 1st Faculty of Medicine, Charles University in Prague, 12000, Prague, Czech Republic.,4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague, 12000, Prague, Czech Republic
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, AREA Science Park Basovizza Bldg Q, 34149, Trieste, Italy.,Department of Medical Sciences, University of Trieste, 34149, Trieste, Italy
| | - Cristina Bellarosa
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, AREA Science Park Basovizza Bldg Q, 34149, Trieste, Italy
| |
Collapse
|
13
|
Riordan SM, Bittel DC, Le Pichon JB, Gazzin S, Tiribelli C, Watchko JF, Wennberg RP, Shapiro SM. A Hypothesis for Using Pathway Genetic Load Analysis for Understanding Complex Outcomes in Bilirubin Encephalopathy. Front Neurosci 2016; 10:376. [PMID: 27587993 PMCID: PMC4988977 DOI: 10.3389/fnins.2016.00376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/02/2016] [Indexed: 01/18/2023] Open
Abstract
Genetic-based susceptibility to bilirubin neurotoxicity and chronic bilirubin encephalopathy (kernicterus) is still poorly understood. Neonatal jaundice affects 60–80% of newborns, and considerable effort goes into preventing this relatively benign condition from escalating into the development of kernicterus making the incidence of this potentially devastating condition very rare in more developed countries. The current understanding of the genetic background of kernicterus is largely comprised of mutations related to alterations of bilirubin production, elimination, or both. Less is known about mutations that may predispose or protect against CNS bilirubin neurotoxicity. The lack of a monogenetic source for this risk of bilirubin neurotoxicity suggests that disease progression is dependent upon an overall decrease in the functionality of one or more essential genetically controlled metabolic pathways. In other words, a “load” is placed on key pathways in the form of multiple genetic variants that combine to create a vulnerable phenotype. The idea of epistatic interactions creating a pathway genetic load (PGL) that affects the response to a specific insult has been previously reported as a PGL score. We hypothesize that the PGL score can be used to investigate whether increased susceptibility to bilirubin-induced CNS damage in neonates is due to a mutational load being placed on key genetic pathways important to the central nervous system's response to bilirubin neurotoxicity. We propose a modification of the PGL score method that replaces the use of a canonical pathway with custom gene lists organized into three tiers with descending levels of evidence combined with the utilization of single nucleotide polymorphism (SNP) causality prediction methods. The PGL score has the potential to explain the genetic background of complex bilirubin induced neurological disorders (BIND) such as kernicterus and could be the key to understanding ranges of outcome severity in complex diseases. We anticipate that this method could be useful for improving the care of jaundiced newborns through its use as an at-risk screen. Importantly, this method would also be useful in uncovering basic knowledge about this and other polygenetic diseases whose genetic source is difficult to discern through traditional means such as a genome-wide association study.
Collapse
Affiliation(s)
- Sean M Riordan
- Division of Child Neurology, Department of Pediatrics, Children's Mercy HospitalKansas City, MO, USA; Department of Neurology, University of Kansas Medical CenterKansas City, KS, USA
| | - Douglas C Bittel
- Ward Family Heart Center, Children's Mercy HospitalKansas City, MO, USA; Department of Pediatrics, University of Missouri-Kansas City School of MedicineKansas City, MO, USA
| | - Jean-Baptiste Le Pichon
- Division of Child Neurology, Department of Pediatrics, Children's Mercy HospitalKansas City, MO, USA; Department of Neurology, University of Kansas Medical CenterKansas City, KS, USA; Department of Pediatrics, University of Missouri-Kansas City School of MedicineKansas City, MO, USA; Department of Pediatrics, University of Kansas Medical CenterKansas City, KS, USA
| | - Silvia Gazzin
- Italian Liver Foundation, Centro Studi Fegato (CSF) Trieste, Italy
| | - Claudio Tiribelli
- Italian Liver Foundation, Centro Studi Fegato (CSF)Trieste, Italy; Department of Medical Sciences, University of TriesteTrieste, Italy
| | - Jon F Watchko
- Division of Newborn Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | | | - Steven M Shapiro
- Division of Child Neurology, Department of Pediatrics, Children's Mercy HospitalKansas City, MO, USA; Department of Neurology, University of Kansas Medical CenterKansas City, KS, USA; Department of Pediatrics, University of Missouri-Kansas City School of MedicineKansas City, MO, USA; Department of Pediatrics, University of Kansas Medical CenterKansas City, KS, USA
| |
Collapse
|
14
|
Changes in the NMR Metabolic Profile of Live Human Neuron-Like SH-SY5Y Cells Exposed to Interferon-α2. J Neuroimmune Pharmacol 2015; 11:142-52. [DOI: 10.1007/s11481-015-9641-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/27/2015] [Indexed: 12/29/2022]
|
15
|
Müllebner A, Moldzio R, Redl H, Kozlov AV, Duvigneau JC. Heme Degradation by Heme Oxygenase Protects Mitochondria but Induces ER Stress via Formed Bilirubin. Biomolecules 2015; 5:679-701. [PMID: 25942605 PMCID: PMC4496691 DOI: 10.3390/biom5020679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/08/2015] [Accepted: 04/16/2015] [Indexed: 01/16/2023] Open
Abstract
Heme oxygenase (HO), in conjunction with biliverdin reductase, degrades heme to carbon monoxide, ferrous iron and bilirubin (BR); the latter is a potent antioxidant. The induced isoform HO-1 has evoked intense research interest, especially because it manifests anti-inflammatory and anti-apoptotic effects relieving acute cell stress. The mechanisms by which HO mediates the described effects are not completely clear. However, the degradation of heme, a strong pro-oxidant, and the generation of BR are considered to play key roles. The aim of this study was to determine the effects of BR on vital functions of hepatocytes focusing on mitochondria and the endoplasmic reticulum (ER). The affinity of BR to proteins is a known challenge for its exact quantification. We consider two major consequences of this affinity, namely possible analytical errors in the determination of HO activity, and biological effects of BR due to direct interaction with protein function. In order to overcome analytical bias we applied a polynomial correction accounting for the loss of BR due to its adsorption to proteins. To identify potential intracellular targets of BR we used an in vitro approach involving hepatocytes and isolated mitochondria. After verification that the hepatocytes possess HO activity at a similar level as liver tissue by using our improved post-extraction spectroscopic assay, we elucidated the effects of increased HO activity and the formed BR on mitochondrial function and the ER stress response. Our data show that BR may compromise cellular metabolism and proliferation via induction of ER stress. ER and mitochondria respond differently to elevated levels of BR and HO-activity. Mitochondria are susceptible to hemin, but active HO protects them against hemin-induced toxicity. BR at slightly elevated levels induces a stress response at the ER, resulting in a decreased proliferative and metabolic activity of hepatocytes. However, the proteins that are targeted by BR still have to be identified.
Collapse
Affiliation(s)
- Andrea Müllebner
- Institute for Medical Biochemistry, Veterinary University Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Rudolf Moldzio
- Institute for Medical Biochemistry, Veterinary University Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1200 Vienna, Austria.
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1200 Vienna, Austria.
| | - J Catharina Duvigneau
- Institute for Medical Biochemistry, Veterinary University Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
16
|
Qaisiya M, Coda Zabetta CD, Bellarosa C, Tiribelli C. Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cell Signal 2013; 26:512-20. [PMID: 24308969 DOI: 10.1016/j.cellsig.2013.11.029] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 12/22/2022]
Abstract
Unconjugated bilirubin (UCB) is responsible for neonatal jaundice and high level of free bilirubin (Bf) can lead to kernicterus. Previous studies suggest that oxidative stress is a critical component of UCB-induced neurotoxicity. The Nrf2 pathway is a powerful sensor for cellular redox state and is activated directly by oxidative stress and/or indirectly by stress response protein kinases. Activated Nrf2 translocates to nucleus, binds to Antioxidant Response Element (ARE), and enhances the up-regulation of cytoprotective genes that mediate cell survival. The aim of the present study was to investigate the role of Nrf2 pathway in cell response to bilirubin mediated oxidative stress in the neuroblastoma SH-SY5Y cell line. Cells exposed to a toxic concentration of UCB (140 nM Bf) showed an increased intracellular ROS levels and enhanced nuclear accumulation of Nrf2 protein. UCB stimulated transcriptional induction of ARE-GFP reporter gene and induced mRNA expression of multiple antioxidant response genes as: xCT, Gly1, γGCL-m, γGCL-c, HO-1, NQO1, FTH, ME1, and ATF3. Nrf2 siRNA decreased UCB induced mRNA expression of HO1 (75%), NQO1 (54%), and FTH (40%). The Nrf2-related HO-1 induction was reduced to 60% in cells pre-treated with antioxidant (NAC) or specific signaling pathway inhibitors for PKC, P38α and MEK1/2 (80, 40 and 25%, respectively). In conclusion, we demonstrated that SH-SY5Y cells undergo an adaptive response against UCB-mediated oxidative stress by activation of multiple antioxidant response, in part through Nrf2 pathway.
Collapse
Affiliation(s)
- Mohammed Qaisiya
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, Bldg Q AREA Science Park - Basovizza Campus, 34149 Trieste, Italy.
| | - Carlos Daniel Coda Zabetta
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, Bldg Q AREA Science Park - Basovizza Campus, 34149 Trieste, Italy.
| | - Cristina Bellarosa
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, Bldg Q AREA Science Park - Basovizza Campus, 34149 Trieste, Italy.
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, Bldg Q AREA Science Park - Basovizza Campus, 34149 Trieste, Italy; Department of Medical Sciences, University of Trieste, 34100 Trieste, Italy.
| |
Collapse
|
17
|
Robert MC, Furlan G, Rosso N, Gambaro SE, Apitsionak F, Vianello E, Tiribelli C, Gazzin S. Alterations in the cell cycle in the cerebellum of hyperbilirubinemic Gunn rat: a possible link with apoptosis? PLoS One 2013; 8:e79073. [PMID: 24223883 PMCID: PMC3815147 DOI: 10.1371/journal.pone.0079073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/26/2013] [Indexed: 12/29/2022] Open
Abstract
Severe hyperbilirubinemia causes neurological damage both in humans and rodents. The hyperbilirubinemic Gunn rat shows a marked cerebellar hypoplasia. More recently bilirubin ability to arrest the cell cycle progression in vascular smooth muscle, tumour cells, and, more importantly, cultured neurons has been demonstrated. However, the involvement of cell cycle perturbation in the development of cerebellar hypoplasia was never investigated before. We explored the effect of sustained spontaneous hyperbilirubinemia on cell cycle progression and apoptosis in whole cerebella dissected from 9 day old Gunn rat by Real Time PCR, Western blot and FACS analysis. The cerebellum of the hyperbilirubinemic Gunn rats exhibits an increased cell cycle arrest in the late G0/G1 phase (p < 0.001), characterized by a decrease in the protein expression of cyclin D1 (15%, p < 0.05), cyclin A/A1 (20 and 30%, p < 0.05 and 0.01, respectively) and cyclin dependent kinases2 (25%, p < 0.001). This was associated with a marked increase in the 18 kDa fragment of cyclin E (67%, p < 0.001) which amplifies the apoptotic pathway. In line with this was the increase of the cleaved form of Poly (ADP-ribose) polymerase (54%, p < 0.01) and active Caspase3 (two fold, p < 0.01). These data indicate that the characteristic cerebellar alteration in this developing brain structure of the hyperbilirubinemic Gunn rat may be partly due to cell cycle perturbation and apoptosis related to the high bilirubin concentration in cerebellar tissue mainly affecting granular cells. These two phenomena might be intimately connected.
Collapse
Affiliation(s)
- María Celeste Robert
- Fondazione Italiana Fegato (Italian Liver Foundation, Centro Studi Fegato), Trieste, Italy
| | - Giulia Furlan
- Fondazione Italiana Fegato (Italian Liver Foundation, Centro Studi Fegato), Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato (Italian Liver Foundation, Centro Studi Fegato), Trieste, Italy
| | - Sabrina Eliana Gambaro
- Fondazione Italiana Fegato (Italian Liver Foundation, Centro Studi Fegato), Trieste, Italy
| | - Faina Apitsionak
- Fondazione Italiana Fegato (Italian Liver Foundation, Centro Studi Fegato), Trieste, Italy
| | - Eleonora Vianello
- Fondazione Italiana Fegato (Italian Liver Foundation, Centro Studi Fegato), Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato (Italian Liver Foundation, Centro Studi Fegato), Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Silvia Gazzin
- Fondazione Italiana Fegato (Italian Liver Foundation, Centro Studi Fegato), Trieste, Italy
- * E-mail:
| |
Collapse
|
18
|
Bulmer AC, Verkade HJ, Wagner KH. Bilirubin and beyond: a review of lipid status in Gilbert's syndrome and its relevance to cardiovascular disease protection. Prog Lipid Res 2012. [PMID: 23201182 DOI: 10.1016/j.plipres.2012.11.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gilbert's syndrome (GS) is characterized by a benign, mildly elevated bilirubin concentration in the blood. Recent reports show clear protection from cardiovascular disease in this population. Protection of lipids, proteins and other macromolecules from oxidation by bilirubin represents the most commonly accepted mechanism contributing to protection in this group. However, a recent meta-analysis estimated that bilirubin only accounts for ~34% of the cardioprotective effects within analysed studies. To reveal the additional contributing variables we have explored circulating cholesterol and triacylglycerol concentrations, which appear to be decreased in hyperbilirubinemic individuals/animals, and are accompanied by lower body mass index in highly powered studies. These results suggest that bilirubin could be responsible for the development of a lean and hypolipidemic state in GS. Here we also discuss the possible contributing mechanisms that might reduce circulating cholesterol and triacylglycerol concentrations in individuals with syndromes affecting bilirubin metabolism/excretion, which we hope will stimulate future research in the area. In summary, this article is the first review of lipid status in animal and human studies of hyperbilirubinemia and explores possible mechanisms that could contribute to lowering circulating lipid parameters and further explain cardiovascular protection in Gilbert's syndrome.
Collapse
Affiliation(s)
- A C Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Australia
| | | | | |
Collapse
|
19
|
Dennery PA. Evaluating the beneficial and detrimental effects of bile pigments in early and later life. Front Pharmacol 2012; 3:115. [PMID: 22737125 PMCID: PMC3381237 DOI: 10.3389/fphar.2012.00115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/29/2012] [Indexed: 12/28/2022] Open
Abstract
The heme degradation pathway has been conserved throughout phylogeny and allows for the removal of a pro-oxidant and the generation of unique molecules including bile pigments with important cellular functions. The impact of bile pigments on health and disease are reviewed, as is the special circumstance of neonatal hyperbilirubinemia. In addition, the importance of promoter polymorphisms in the UDP-glucuronosyl transferase gene (UGTA1), which is key to the elimination of excess bilirubin and to the prevention of its toxicity, are discussed. Overall, the duality of bile pigments as either cytoprotective or toxic molecules is highlighted.
Collapse
Affiliation(s)
- Phyllis A Dennery
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| |
Collapse
|
20
|
ER Stress, Mitochondrial Dysfunction and Calpain/JNK Activation are Involved in Oligodendrocyte Precursor Cell Death by Unconjugated Bilirubin. Neuromolecular Med 2012; 14:285-302. [DOI: 10.1007/s12017-012-8187-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/01/2012] [Indexed: 12/24/2022]
|
21
|
Brites D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol 2012; 3:88. [PMID: 22661946 PMCID: PMC3361682 DOI: 10.3389/fphar.2012.00088] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/23/2012] [Indexed: 12/13/2022] Open
Abstract
Unconjugated hyperbilirubinemia is a common condition in the first week of postnatal life. Although generally harmless, some neonates may develop very high levels of unconjugated bilirubin (UCB), which may surpass the protective mechanisms of the brain in preventing UCB accumulation. In this case, both short-term and long-term neurodevelopmental disabilities, such as acute and chronic UCB encephalopathy, known as kernicterus, or more subtle alterations defined as bilirubin-induced neurological dysfunction (BIND) may be produced. There is a tremendous variability in babies' vulnerability toward UCB for reasons not yet explained, but preterm birth, sepsis, hypoxia, and hemolytic disease are comprised as risk factors. Therefore, UCB levels and neurological abnormalities are not strictly correlated. Even nowadays, the mechanisms of UCB neurotoxicity are still unclear, as are specific biomarkers, and little is known about lasting sequelae attributable to hyperbilirubinemia. On autopsy, UCB was shown to be within neurons, neuronal processes, and microglia, and to produce loss of neurons, demyelination, and gliosis. In isolated cell cultures, UCB was shown to impair neuronal arborization and to induce the release of pro-inflammatory cytokines from microglia and astrocytes. However, cell dependent sensitivity to UCB toxicity and the role of each nerve cell type remains not fully understood. This review provides a comprehensive insight into cell susceptibilities and molecular targets of UCB in neurons, astrocytes, and oligodendrocytes, and on phenotypic and functional responses of microglia to UCB. Interplay among glia elements and cross-talk with neurons, with a special emphasis in the UCB-induced immunostimulation, and the role of sepsis in BIND pathogenesis are highlighted. New and interesting data on the anti-inflammatory and antioxidant activities of different pharmacological agents are also presented, as novel and promising additional therapeutic approaches to BIND.
Collapse
Affiliation(s)
- Dora Brites
- Neuron Glia Biology in Health and Disease Unit, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon Lisbon, Portugal
| |
Collapse
|
22
|
Palmela I, Sasaki H, Cardoso FL, Moutinho M, Kim KS, Brites D, Brito MA. Time-dependent dual effects of high levels of unconjugated bilirubin on the human blood-brain barrier lining. Front Cell Neurosci 2012; 6:22. [PMID: 22590454 PMCID: PMC3349234 DOI: 10.3389/fncel.2012.00022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/23/2012] [Indexed: 01/07/2023] Open
Abstract
In neonatal jaundice, high levels of unconjugated bilirubin (UCB) may induce neurological dysfunction (BIND). Recently, it was observed that UCB induces alterations on brain microvasculature, which may facilitate its entrance into the brain, but little is known about the steps involved. To evaluate if UCB damages the integrity of human brain microvascular endothelial cells (HBMECs), we used 50 or 100 μM UCB plus human serum albumin, to mimic the neuropathological conditions where levels of UCB free species correspond to moderate and severe neonatal jaundice, respectively. Our results point to a biphasic response of HBMEC to UCB depending on time of exposure. The early response includes increased number of caveolae and caveolin-1 expression, as well as upregulation of vascular endothelial growth factor (VEGF) and its receptor 2 (VEGFR-2) with no alterations of the paracellular permeability. In contrast, effects by sustained hyperbilirubinemia are the reduction in zonula occludens (ZO)-1 and β-catenin levels and thus of tight junctions (TJ) strands and cell-to-cell contacts. In addition, reduction of the transendothelial electrical resistance (TEER) and increased paracellular permeability are observed, revealing loss of the barrier properties. The 72 h of HBMEC exposure to UCB triggers a cell response to the stressful stimulus evidenced by increased autophagy. In this later condition, the UCB intracellular content and the detachment of both viable and non-viable cells are increased. These findings contribute to understand why the duration of hyperbilirubinemia is considered one of the risk factors of BIND. Indeed, facilitated brain entrance of the free UCB species will favor its parenchymal accumulation and neurological dysfunction.
Collapse
Affiliation(s)
- Inês Palmela
- Faculty of Pharmacy, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), University of Lisbon Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
23
|
Giraudi PJ, Bellarosa C, Coda-Zabetta CD, Peruzzo P, Tiribelli C. Functional induction of the cystine-glutamate exchanger system Xc(-) activity in SH-SY5Y cells by unconjugated bilirubin. PLoS One 2011; 6:e29078. [PMID: 22216172 PMCID: PMC3246462 DOI: 10.1371/journal.pone.0029078] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 11/21/2011] [Indexed: 12/18/2022] Open
Abstract
We have previously reported that exposure of SH-SY5Y neuroblastoma cells to unconjugated bilirubin (UCB) resulted in a marked up-regulation of the mRNA encoding for the Na+ -independent cystine∶glutamate exchanger System Xc− (SLC7A11 and SLC3A2 genes). In this study we demonstrate that SH-SY5Y cells treated with UCB showed a higher cystine uptake due to a significant and specific increase in the activity of System Xc−, without the contribution of the others two cystine transporters (XAG− and GGT) reported in neurons. The total intracellular glutathione content was 2 folds higher in the cells exposed to bilirubin as compared to controls, suggesting that the internalized cystine is used for gluthathione synthesis. Interestingly, these cells were significantly less sensitive to an oxidative insult induced by hydrogen peroxide. If System Xc− is silenced the protection is lost. In conclusion, these results suggest that bilirubin can modulate the gluthathione levels in neuroblastoma cells through the induction of the System Xc−, and this renders the cell less prone to oxidative damage.
Collapse
Affiliation(s)
- Pablo J Giraudi
- Centro Studi Fegato, Fondazione Italiana Fegato, Trieste, Italy
| | | | | | | | | |
Collapse
|
24
|
Deganuto M, Cesaratto L, Bellarosa C, Calligaris R, Vilotti S, Renzone G, Foti R, Scaloni A, Gustincich S, Quadrifoglio F, Tiribelli C, Tell G. A proteomic approach to the bilirubin-induced toxicity in neuronal cells reveals a protective function of DJ-1 protein. Proteomics 2010; 10:1645-57. [DOI: 10.1002/pmic.200900579] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|