1
|
Zhang Z, Zhao W, Wang Z, Pan Y, Wang Q, Zhang Z. Integration of ssGWAS and ROH analyses for uncovering genetic variants associated with reproduction traits in Large White pigs. Anim Genet 2024; 55:714-724. [PMID: 39129705 DOI: 10.1111/age.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 05/26/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024]
Abstract
The low heritability of reproduction traits such as total number born (TNB), number born alive (NBA) and adjusted litter weight until 21 days at weaning (ALW) poses a challenge for genetic improvement. In this study, we aimed to identify genetic variants that influence these traits and evaluate the accuracy of genomic selection (GS) using these variants as genomic features. We performed single-step genome-wide association studies (ssGWAS) on 17 823 Large White (LW) pigs, of which 2770 were genotyped by 50K single nucleotide polymorphism (SNP) chips. Additionally, we analyzed runs of homozygosity (ROH) in the population and tested their effects on the traits. The genomic feature best linear unbiased prediction (GFBLUP) was then carried out in an independent population of 350 LW pigs using identified trait-related SNP subsets as genomic features. As a result, our findings identified five, one and four SNP windows that explaining more than 1% of genetic variance for ALW, TNB, and NBA, respectively and discovered 358 hotspots and nine ROH islands. The ROH SSC1:21814570-27186456 and SSC11:7220366-14276394 were found to be significantly associated with ALW and NBA, respectively. We assessed the genomic estimated breeding value accuracy through 20 replicates of five-fold cross-validation. Our findings demonstrate that GFBLUP, incorporating SNPs located in effective ROH (p-value < 0.05) as genomic features, might enhance GS accuracy for ALW compared with GBLUP. Additionally, using SNPs explaining more than 0.1% of the genetic variance in ssGWAS for NBA as genomic features might improve the GS accuracy, too. However, it is important to note that the incorporation of inappropriate genomic features can significantly reduce GS accuracy. In conclusion, our findings provide valuable insights into the genetic mechanisms of reproductive traits in pigs and suggest that the ssGWAS and ROH have the potential to enhance the accuracy of GS for reproductive traits in LW pigs.
Collapse
Affiliation(s)
- Zhenyang Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Wei Zhao
- SciGene Biotechnology Co. Ltd, Hefei, China
| | - Zhen Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Qishan Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Vaishnav S, Chauhan A, Ajay A, Saini BL, Kumar S, Kumar A, Bhushan B, Gaur GK. Allelic to genome wide perspectives of swine genetic variation to litter size and its component traits. Mol Biol Rep 2023; 50:3705-3721. [PMID: 36642776 DOI: 10.1007/s11033-022-08168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/01/2022] [Indexed: 01/17/2023]
Abstract
Litter size is a complex and sex limited trait that depends on various biological, managemental and environmental factors. Owing to its low heritability it is inefficaciously selected by traditional methods. However, due to higher heritability of ovulation rate and embryo survival, selection based on component traits of litter size is advocated. QTL analysis and candidate gene approach are among the various supplementary/alternate strategies for selection of litter size. QTL analysis is aimed at identifying genomic regions affecting trait of interest significantly. Candidate gene approach necessitates identification of genes potentially affecting the trait. There are various genes that significantly affect litter size and its component traits viz. ESR, LEP, BF, IGFBP, RBP4, PRLR, CTNNAL1, WNT10B, TCF12, DAZ, and RNF4. These genes affect litter size in a complex interacting manner. Lately, genome wide association study (GWAS) have been utilized to unveil the genetic and biological background of litter traits, and elucidate the genes governing litter size. Favorable SNPs in these genes have been identified and offers a scope for inclusion in selection programs thereby increasing breeding efficiency and profit in pigs. The review provides a comprehensive coverage of investigations carried out globally to unravel the genetic variation in litter size and its component traits in pigs, both at allelic and genome wide level. It offers a current perspective on different strategies including the profiling of candidate genes, QTLs, and genome wide association studies as an aid to efficient selection for litter size and its component traits.
Collapse
Affiliation(s)
| | - Anuj Chauhan
- Indian Veterinary Research Institute, Bareilly, India.
| | - Argana Ajay
- Indian Veterinary Research Institute, Bareilly, India
| | | | - Subodh Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | | | | |
Collapse
|
3
|
Norseeda W, Liu G, Teltathum T, Supakankul P, Sringarm K, Naraballobh W, Khamlor T, Chomdej S, Nganvongpanit K, Krutmuang P, Mekchay S. Association of IL-4 and IL-4R Polymorphisms with Litter Size Traits in Pigs. Animals (Basel) 2021; 11:ani11041154. [PMID: 33920608 PMCID: PMC8073830 DOI: 10.3390/ani11041154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary The IL-4 and IL-4R cytokine genes are responsible for immune response in the reproductive system and are related to embryonic implantation and fetal survival during pregnancy in females. However, to date, their effects on litter size traits in pigs have been not elucidated. Therefore, the present study was conducted to verify the porcine IL-4 and IL-4R polymorphisms and assess how they affect litter size traits in commercial pigs. The findings suggested that the porcine IL-4 g.134993898T > C and IL-4R c.1577A > T polymorphisms were associated with the litter size traits. Therefore, the porcine IL-4 and IL-4R genes may be potentially effective genetic markers to improve the litter size traits in pigs. Abstract The interleukin-4 (IL-4) and interleukin-4 receptor (IL-4R) are cytokines that are involved in the immune and reproductive systems. This study aimed to verify the polymorphisms in the porcine IL-4 and IL-4R genes and to assess their effects on litter size traits in commercial pigs. Single nucleotide polymorphisms (SNPs) in the porcine IL-4 and IL-4R genes were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. A non-coding SNP of IL-4 g.134993898T > C and a non-synonymous SNP of IL-4R c.1577A > T (amino acid change at position 526, Q526L) were found to be segregating in Landrace sows. The IL-4 g.134993898T > C polymorphism was significantly associated with the number of piglets weaned alive (NWA) trait. The IL-4R c.1577A > T polymorphism was significantly associated with the number born alive (NBA) and NWA traits. Moreover, the accumulation of favorable alleles of these two SNP markers revealed significant associations with the NBA, NWA, and mean weight of piglets at weaning (MWW) traits. These findings indicate that the porcine IL-4 and IL-4R genes may contribute to the reproductive traits of pigs and could be used as candidate genes to improve litter size traits in the pig breeding industry.
Collapse
Affiliation(s)
- Worrarak Norseeda
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.N.); (K.S.); (W.N.); (T.K.)
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Guisheng Liu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Tawatchai Teltathum
- Mae Hong Son Livestock Research and Breeding Center, Mae Hong Son 58000, Thailand;
| | - Pantaporn Supakankul
- Division of Animal Science, School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.N.); (K.S.); (W.N.); (T.K.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Watcharapong Naraballobh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.N.); (K.S.); (W.N.); (T.K.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Trisadee Khamlor
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.N.); (K.S.); (W.N.); (T.K.)
| | - Siriwadee Chomdej
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Korakot Nganvongpanit
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Patcharin Krutmuang
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.N.); (K.S.); (W.N.); (T.K.)
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence:
| |
Collapse
|
4
|
Rovelli G, Ceccobelli S, Perini F, Demir E, Mastrangelo S, Conte G, Abeni F, Marletta D, Ciampolini R, Cassandro M, Bernabucci U, Lasagna E. The genetics of phenotypic plasticity in livestock in the era of climate change: a review. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1809540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Giacomo Rovelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Perini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| | - Eymen Demir
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Giuseppe Conte
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, University of Pisa, Pisa, Italy
| | - Fabio Abeni
- Centro di ricerca Zootecnia e Acquacoltura, Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Lodi, Italy
| | - Donata Marletta
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | | | - Martino Cassandro
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padova, Legnaro, Italy
| | - Umberto Bernabucci
- Dipartimento di Scienze Agrarie e Forestali, Università della Tuscia, Viterbo, Italy
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Banerjee P, Carmelo VAO, Kadarmideen HN. Genome-Wide Epistatic Interaction Networks Affecting Feed Efficiency in Duroc and Landrace Pigs. Front Genet 2020; 11:121. [PMID: 32184802 PMCID: PMC7058701 DOI: 10.3389/fgene.2020.00121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Interactions among genomic loci have often been overlooked in genome-wide association studies, revealing the combinatorial effects of variants on phenotype or disease manifestation. Unexplained genetic variance, interactions among causal genes of small effects, and biological pathways could be identified using a network biology approach. The main objective of this study was to determine the genome-wide epistatic variants affecting feed efficiency traits [feed conversion ratio (FCR) and residual feed intake (RFI)] based on weighted interaction SNP hub (WISH-R) method. Herein, we detected highly interconnected epistatic SNP modules, pathways, and potential biomarkers for the FCR and RFI in Duroc and Landrace purebreds considering the whole population, and separately for low and high feed efficient groups. Highly interacting SNP modules in Duroc (1,247 SNPs) and Landrace (1,215 SNPs) across the population and for low feed efficient (Duroc-80 SNPs, Landrace-146 SNPs) and high feed efficient group (Duroc-198 SNPs, Landrace-232 SNPs) for FCR and RFI were identified. Gene and pathway analyses identified ABL1, MAP3K4, MAP3K5, SEMA6A, KITLG, and KAT2B from chromosomes 1, 2, 5, and 13 underlying ErbB, Ras, Rap1, thyroid hormone, axon guidance pathways in Duroc. GABBR2, GNA12, and PRKCG genes from chromosomes 1, 3, and 6 pointed towards thyroid hormone, cGMP-PKG and cAMP pathways in Landrace. From Duroc low feed efficient group, the TPK1 gene was found involved with thiamine metabolism, whereas PARD6G, DLG2, CRB1 were involved with the hippo signaling pathway in high feed efficient group. PLOD1 and SETD7 genes were involved with lysine degradation in low feed efficient group in Landrace, while high feed efficient group pointed to genes underpinning valine, leucine, isoleucine degradation, and fatty acid elongation. Some SNPs and genes identified are known for their association with feed efficiency, others are novel and potentially provide new avenues for further research. Further validation of epistatic SNPs and genes identified here in a larger cohort would help to establish a framework for modelling epistatic variance in future methods of genomic prediction, increasing the accuracy of estimated genetic merit for FE and helping the pig breeding industry.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Victor Adriano Okstoft Carmelo
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Haja N Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Lopez BIM, Seo K. Genetic parameters for litter traits at different parities in purebred Landrace and Yorkshire pigs. Anim Sci J 2019; 90:1497-1502. [PMID: 31603600 DOI: 10.1111/asj.13298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 11/30/2022]
Abstract
Comparison of the multi-trait animal model and the traditional repeatability model was carried out using data obtained from 6,424 Landrace and 20,835 Yorkshire sows farrowed from January 2000 to April 2018 in order to estimate genetic parameters for litter traits at different parities. Specifically, records of the total number born (TNB), number born alive (NBA), total number of mortality (MORT), number of stillborn (NSB) and number of mummified pigs (MUM) were used. Although results showed the heterogeneity of heritability for litter traits at different parities, the mean heritability estimates from the multi-trait model were found to be higher than those of the repeatability model for all traits in both pig breeds. In terms of genetic correlation between parities, a slight difference in genetic control in the first parity was noted for TNB and NBA in Landrace and Yorkshire pigs. The correlation between the first parity and later parities ranged from 0.48 to 0.74 for TNB and NBA in both breeds. Moreover, genetic correlation between parities for MORT and NSB was observed to be high for parities higher than 2 in Yorkshire pigs. For MUM, genetic correlation between the first and other parities was generally low in both breeds, indicating that culling pigs on the basis of MUM at the first parity could probably be unreasonable. Overall, the results of this study suggest that the multi-trait approach for litter size traits is useful for the accurate estimation of genetic parameters.
Collapse
Affiliation(s)
- Bryan I M Lopez
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Kangseok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
7
|
Genetic parameters and direct, maternal and heterosis effects on litter size in a diallel cross among three commercial varieties of Iberian pig. Animal 2019; 13:2765-2772. [PMID: 31159900 DOI: 10.1017/s1751731119001125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Iberian pig is one of the pig breeds that has the highest meat quality. Traditionally, producers have bred one of the available varieties, exclusively, and have not used crosses between them, which has contrasted sharply with other populations of commercial pigs for which crossbreeding has been a standard procedure. The objective of this study was to perform an experiment under full diallel design among three contemporary commercial varieties of Iberian pig and estimate the additive genetic variation and the crossbreeding effects (direct, maternal and heterosis) for prolificacy. The data set comprised 18 193 records for total number born and number born alive from 3800 sows of three varieties of the Iberian breed (Retinto, Torbiscal and Entrepelado) and their reciprocal crosses (Retinto × Torbiscal, Torbiscal × Retinto, Retinto × Entrepelado, Entrepelado × Retinto, Torbiscal × Entrepelado and Entrepelado × Torbiscal), and a pedigree of 4609 individuals. The analysis was based on a multiple population repeatability model, and we developed a model comparison test that indicated the presence of direct line, maternal and heterosis effects. The results indicated the superiorities of the direct line effect of the Retinto and the maternal effect of the Entrepelado populations. All of the potential crosses produced significant heterosis, and additive genetic variation was higher in the Entrepelado than it was in the other two populations. The recommended cross for the highest yield in prolificacy is a Retinto father and an Entrepelado mother to generate a hybrid commercial sow.
Collapse
|
8
|
Genome-wide association analysis reveals genomic regions on Chromosome 13 affecting litter size and candidate genes for uterine horn length in Erhualian pigs. Animal 2018. [DOI: 10.1017/s1751731118000332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
9
|
Single step genome-wide association studies based on genotyping by sequence data reveals novel loci for the litter traits of domestic pigs. Genomics 2017; 110:171-179. [PMID: 28943389 DOI: 10.1016/j.ygeno.2017.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022]
Abstract
In this study, data genotyping by sequence (GBS) was used to perform single step GWAS (ssGWAS) to identify SNPs associated with the litter traits in domestic pigs and search for candidate genes in the region of significant SNPs. After quality control, 167,355 high-quality SNPs from 532 pigs were obtained. Phenotypic traits on 2112 gilt litters from 532 pigs were recorded including total number born (TNB), number born alive (NBA), and litter weight born alive (LWB). A single-step genomic BLUP approach (ssGBLUP) was used to implement the genome-wide association analysis at a 5% genome-wide significance level. A total of 8, 23 and 20 significant SNPs were associated with TNB, NBA, and LWB, respectively, and these significant SNPs accounted for 62.78%, 79.75%, and 58.79% of genetic variance. Furthermore, 1 (SSC14: 16314857), 4 (SSC1: 81986236, SSC1: 66599775, SSC1: 161999013, and SSC1: 267883107), and 5 (SSC9: 29030061, SSC2: 32368561, SSC5: 110375350, SSC13: 45619882 and SSC13: 45647829) significant SNPs for TNB, NBA, and LWB were inferred to be novel loci. At SSC1, the AIM1 and FOXO3 genes were found to be associated with NBA; these genes increase ovarian reproductive capacity and follicle number and decrease gonadotropin levels. The genes SLC36A4 and INTU are involved in cell growth, cytogenesis and development were found to be associated with LWB. These significant SNPs can be used as an indication for regions in the Sus scrofa genome for variability in litter traits, but further studies are expected to confirm causative mutations.
Collapse
|
10
|
Howard DM, Pong-Wong R, Knap PW, Woolliams JA. Use of haplotypes to identify regions harbouring lethal recessive variants in pigs. Genet Sel Evol 2017; 49:57. [PMID: 28709397 PMCID: PMC5512953 DOI: 10.1186/s12711-017-0332-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/05/2017] [Indexed: 12/16/2022] Open
Abstract
Background Lethal recessive genetic variants are maintained at relatively low frequencies in a population in the heterozygous state, but by definition are fatal and therefore unobserved in the homozygous state. Since haplotypes allow the tagging of rare and untyped genetic variants, they have potential for studying lethal recessive variants. In this study, we used a large commercial population to identify putative lethal recessive haplotypes that impact either the total number born (TNB) or the number born alive (NBA) as a proportion of the total number born (NBA/TNB). We also compared the use of haplotypes with a single nucleotide polymorphism (SNP)-by-SNP approach and examined the benefits of using additional haplotypes imputed from low-density genotype data for the detection of lethal recessive variants. Candidate haplotypes were identified using population-wide haplotype frequencies and within-family analyses. These candidate haplotypes were subsequently assessed for putative lethal recessive effects on TNB and NBA/TNB by comparing carrier-to-carrier matings with carrier-to-non-carrier matings. Results Using both medium-density and imputed low-density genotype data six regions were identified as containing putative lethal recessive haplotypes that had an effect on TNB. It is likely that these regions were related to at least four putative lethal recessive variants, each located on a different chromosome. Evidence for putative lethal recessive effects on TNB was found on chromosomes 1, 6, 10 and 14 using haplotypes. Using haplotypes from individuals genotyped only at medium-density or a SNP-by-SNP approach did not detect any lethal recessive effects. No lethal recessive haplotypes or SNPs were detected that had an effect on NBA/TNB. Conclusions We show that the use of haplotypes from combining medium-density and imputed low-density genotype data is superior for the identification of lethal recessive variants compared to both a SNP-by-SNP approach and to the use of only medium-density data. We developed a formal statistical framework that provided sufficient power to detect lethal recessive variants in species, which produce large full-sib families, while reducing false positive or type I errors. Applying this framework results in improvements in reproductive performance by purging lethal recessive alleles from a population in a timely and cost-effective manner. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0332-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M Howard
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Midlothian, UK.
| | - Ricardo Pong-Wong
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Midlothian, UK
| | - Pieter W Knap
- Genus-PIC, Ratsteich 31, 24837, Schleswig, Germany.,Genus PLC, 100 Bluegrass Commons Blvd, Suite 2200, Hendersonville, TN, 37075, USA
| | - John A Woolliams
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Midlothian, UK
| |
Collapse
|
11
|
Kwon SG, Hwang JH, Park DH, Kim TW, Kang DG, Kang KH, Kim IS, Park HC, Na CS, Ha J, Kim CW. Identification of Differentially Expressed Genes Associated with Litter Size in Berkshire Pig Placenta. PLoS One 2016; 11:e0153311. [PMID: 27078025 PMCID: PMC4831801 DOI: 10.1371/journal.pone.0153311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/28/2016] [Indexed: 01/24/2023] Open
Abstract
Improvement in litter size has become of great interest in the pig industry because fecundity is directly related to sow reproductive life. Improved reproduction has thus been achieved by elucidating the molecular functions of genes associated with fecundity. In the present study, we identified differentially expressed genes (DEGs) via transcriptomic analysis using RNA-sequencing (RNA-Seq) in Berkshire pig placentas from larger (LLG, mean litter size >12) and smaller (SLG, mean litter size < 6.5) litter size groups. In total 588 DEGs were identified (p < 0.05, > 1.5-fold change), of which 98 were upregulated, while 490 were downregulated in the LLG compared with the SLG. Gene Ontology (GO) enrichment was also performed. We concluded that 129 of the 588 DEGs were closely related to litter size according to reproduction related genes selected based on previous reports, as 110 genes were downregulated and 19 upregulated in the LLG compared with the SLG. RT-qPCR utilizing specific primers targeting the early growth response 2 (EGR2), pheromaxein c subunit (PHEROC) and endothelial lipase (LIPG) genes showed high accordance with RNA-Seq results. Furthermore, we investigated the upstream regulators of these three genes in the placenta. We found that WNT9B, a Wnt signaling pathway molecule, and IL-6, known inducers of EGR2 and LIPG, respectively, were significantly increased in LLG compared with SLG. We believe that the induction of IL-6 and LIPG may play an important role in increasing nutrition supply through the placenta from the sow to the piglet during gestation. These results provide novel molecular insights into pig reproduction.
Collapse
Affiliation(s)
- Seul Gi Kwon
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Jung Hye Hwang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Da Hye Park
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Tae Wan Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Deok Gyeong Kang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Kyung Hee Kang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Il-Suk Kim
- Department of Animal Resource Technology, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | | | - Chong-Sam Na
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, South Korea
| | - Jeongim Ha
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
- * E-mail: (JH); (CWK)
| | - Chul Wook Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
- * E-mail: (JH); (CWK)
| |
Collapse
|
12
|
Endometrial gene expression profile of pregnant sows with extreme phenotypes for reproductive efficiency. Sci Rep 2015; 5:14416. [PMID: 26435523 PMCID: PMC5155628 DOI: 10.1038/srep14416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022] Open
Abstract
Prolificacy can directly impact porcine profitability, but large genetic variation and low heritability have been found regarding litter size among porcine breeds. To identify key differences in gene expression associated to swine reproductive efficiency, we performed a transcriptome analysis of sows' endometrium from an Iberian x Meishan F2 population at day 30-32 of gestation, classified according to their estimated breeding value (EBV) as high (H, EBV > 0) and low (L, EBV < 0) prolificacy phenotypes. For each sample, mRNA and small RNA libraries were RNA-sequenced, identifying 141 genes and 10 miRNAs differentially expressed between H and L groups. We selected four miRNAs based on their role in reproduction, and five genes displaying the highest differences and a positive mapping into known reproductive QTLs for RT-qPCR validation on the whole extreme population. Significant differences were validated for genes: PTGS2 (p = 0.03; H/L ratio = 3.50), PTHLH (p = 0.03; H/L ratio = 3.69), MMP8 (p = 0.01; H/L ratio =4.41) and SCNN1G (p = 0.04; H/L ratio = 3.42). Although selected miRNAs showed similar expression levels between H and L groups, significant correlation was found between the expression level of ssc-miR-133a (p < 0.01) and ssc-miR-92a (p < 0.01) and validated genes. These results provide a better understanding of the genetic architecture of prolificacy-related traits and embryo implantation failure in pigs.
Collapse
|
13
|
Zhang X, Huang L, Wu T, Feng Y, Ding Y, Ye P, Yin Z. Transcriptomic Analysis of Ovaries from Pigs with High And Low Litter Size. PLoS One 2015; 10:e0139514. [PMID: 26426260 PMCID: PMC4591126 DOI: 10.1371/journal.pone.0139514] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/13/2015] [Indexed: 01/03/2023] Open
Abstract
Litter size is one of the most important economic traits for pig production as it is directly related to the production efficiency. Litter size is affected by interactions between multiple genes and the environment. While recent studies have identified some genes associated with prolificacy in pigs, transcriptomic studies of specific genes affecting litter size in porcine ovaries are rare. In order to identify candidate genes associated with litter size in swine, we assessed gene expression differences between the ovaries of Yorkshire pigs with extremely high and low litter sizes using the RNA-Seq method. A total of 1 243 differentially expressed genes were identified: 897 genes were upregulated and 346 genes were downregulated in high litter size ovary samples compared with low litter size ovary samples. A large number of these genes related to steroid hormone regulation in animal ovaries, including 59 Gene Ontology terms and 27 Kyoto Encyclopedia of Genes and Genomes pathways involved in steroid biosynthesis and ovarian steroidogenesis. From these differentially expressed genes, we identified a total of 11 genes using a bioinformatics screen that may be associated with high litter size in Yorkshire pigs. These results provide a list of new candidate genes for porcine litter size and prolificacy to be further investigated.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Long Huang
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Tao Wu
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Yifang Feng
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Yueyun Ding
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Pengfei Ye
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Zongjun Yin
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
14
|
Chen X, Li A, Chen W, Wei J, Fu J, Wang A. Differential Gene Expression in Uterine Endometrium During Implantation in Pigs1. Biol Reprod 2015; 92:52. [DOI: 10.1095/biolreprod.114.123075] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
15
|
Saura M, Fernández A, Varona L, Fernández AI, de Cara MÁR, Barragán C, Villanueva B. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genet Sel Evol 2015; 47:1. [PMID: 25595431 PMCID: PMC4297446 DOI: 10.1186/s12711-014-0081-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The current availability of genotypes for very large numbers of single nucleotide polymorphisms (SNPs) is leading to more accurate estimates of inbreeding coefficients and more detailed approaches for detecting inbreeding depression. In the present study, genome-wide information was used to detect inbreeding depression for two reproductive traits (total number of piglets born and number of piglets born alive) in an ancient strain of Iberian pigs (the Guadyerbas strain) that is currently under serious danger of extinction. METHODS A total of 109 sows with phenotypic records were genotyped with the PorcineSNP60 BeadChip v1. Inbreeding depression was estimated using a bivariate animal model in which the inbreeding coefficient was included as a covariate. We used two different measures of genomic inbreeding to perform the analyses: inbreeding estimated on a SNP-by-SNP basis and inbreeding estimated from runs of homozygosity. We also performed the analyses using pedigree-based inbreeding. RESULTS Significant inbreeding depression was detected for both traits using all three measures of inbreeding. Genome-wide information allowed us to identify one region on chromosome 13 associated with inbreeding depression. This region spans from 27 to 54 Mb and overlaps with a previously detected quantitative trait locus and includes the inter-alpha-trypsin inhibitor gene cluster that is involved with embryo implantation. CONCLUSIONS Our results highlight the value of high-density SNP genotyping for providing new insights on where genes causing inbreeding depression are located in the genome. Genomic measures of inbreeding obtained on a SNP-by-SNP basis or those based on the presence/absence of runs of homozygosity represent a suitable alternative to pedigree-based measures to detect inbreeding depression, and a useful tool for mapping studies. To our knowledge, this is the first study in domesticated animals using the SNP-by-SNP inbreeding coefficient to map specific regions within chromosomes associated with inbreeding depression.
Collapse
Affiliation(s)
- María Saura
- />Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Almudena Fernández
- />Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Luis Varona
- />Unidad de Genética Cuantitativa y Mejora Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Ana I Fernández
- />Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Maria Ángeles R de Cara
- />Laboratoire d’Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS/MNHN/Université Paris 7, Muséum National d’Histoire Naturelle, CP 139, 57 rue Cuvier, F-75231 Paris, France
| | - Carmen Barragán
- />Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Beatriz Villanueva
- />Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
16
|
CASELLAS JOAQUIM, GIANOLA DANIEL, MEDRANO JUANF. Bayesian analysis of additive epistasis arising from new mutations in mice. Genet Res (Camb) 2014; 96:e008. [PMID: 25578900 PMCID: PMC7045013 DOI: 10.1017/s001667231400010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/15/2014] [Indexed: 01/17/2023] Open
Abstract
The continuous uploading of polygenic additive mutational variability has been reported in several studies in laboratory species with an inbred genetic background. These studies have focused on the direct contribution of new mutations without considering the possibility of epistatic effects derived from the interaction of new mutations with pre-existing polymorphisms. In this work we focused on this main topic and analysed the statistical and biological relevance of the epistatic variance for 9 week body weight in two populations of inbred mice. We developed a new linear mixed model parameterization where founder-related additive genetic variability, additive mutational variability and the interaction terms between both sources of variation were accounted for under a Bayesian design and without requiring the inversion of a matrix of epistatic genetic covariances. The analyses focused on a six-generations data set from C57BL/6J mice (n = 3736) and a five-generations data set from C57BL/6J(hg/hg) mice (n = 2843). The deviance information criterion (DIC) clearly favoured the model accounting for epistatic variability with reductions larger than 50 DIC units in both populations. Modal estimates for founder related, mutational and epistatic heritabilities were 0·068, 0·011 and 0·095 in C57BL/6J and 0·060, 0·010 and 0·113 in C57BL/6J(hg/hg), ruling out any doubt about the biological relevance of epistasis originating from new mutations in mice. These results contribute new insights on the relevance of epistasis in the genetic architecture of mammals and serve as an important component of an additional source of genetic heterogeneity for inbred strains of laboratory mice.
Collapse
Affiliation(s)
- JOAQUIM CASELLAS
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - DANIEL GIANOLA
- Departments of Animal Sciences, Dairy Science and Biostatistics and Medical Information, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - JUAN F. MEDRANO
- Department of Animal Science, University of California, Davis, California 95616-8521, USA
| |
Collapse
|
17
|
Ibáñez-Escriche N, Forni S, Noguera JL, Varona L. Genomic information in pig breeding: Science meets industry needs. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Selection of internal control genes for real-time quantitative PCR in ovary and uterus of sows across pregnancy. PLoS One 2013; 8:e66023. [PMID: 23785467 PMCID: PMC3681925 DOI: 10.1371/journal.pone.0066023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 05/06/2013] [Indexed: 11/19/2022] Open
Abstract
Background Reproductive traits play a key role in pig production in order to reduce costs and increase economic returns. Among others, gene expression analyses represent a useful approach to study genetic mechanisms underlying reproductive traits in pigs. The application of reverse-transcription quantitative PCR requires the selection of appropriate reference genes, whose expression levels should not be affected by the experimental conditions, especially when comparing gene expression across different physiological stages. Results The gene expression stability of ten potential reference genes was studied by three different methods (geNorm, NormFinder and BestKeeper) in ovary and uterus collected at five different physiological time points (heat, and 15, 30, 45 and 60 days of pregnancy). Although final ranking differed, the three algorithms gave very similar results. Thus, the most stable genes across time were TBP and UBC in uterus and TBP and HPRT1 in ovary, while HMBS and ACTB showed the less stable expression in uterus and ovary, respectively. When studied as a systematic effect, the reproductive stage did not significantly affect the expression of the candidate reference genes except at 30d and 60d of pregnancy, when a general drop in expression was observed in ovary. Conclusions Based in our results, we propose the use of TBP, UBC and SDHA in uterus and TBP, GNB2L1 and HPRT1 in ovary for normalization of longitudinal expression studies using quantitative PCR in sows.
Collapse
|
19
|
Humpolíček P, Tvrdoň Z, Urban T. Breeding for reproduction traits in context of multiplication herds efficiency in swine. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2013. [DOI: 10.11118/actaun201361030647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Hernandez SC, Hogg CO, Billon Y, Sanchez MP, Bidanel JP, Haley CS, Archibald AL, Ashworth CJ. Secreted Phosphoprotein 1 Expression in Endometrium and Placental Tissues of Hyperprolific Large White and Meishan Gilts1. Biol Reprod 2013; 88:120. [DOI: 10.1095/biolreprod.112.104679] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
21
|
Sheng Z, Pettersson ME, Hu X, Luo C, Qu H, Shu D, Shen X, Carlborg O, Li N. Genetic dissection of growth traits in a Chinese indigenous × commercial broiler chicken cross. BMC Genomics 2013; 14:151. [PMID: 23497136 PMCID: PMC3679733 DOI: 10.1186/1471-2164-14-151] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/28/2013] [Indexed: 11/18/2022] Open
Abstract
Background In China, consumers often prefer indigenous broiler chickens over commercial breeds, as they have characteristic meat qualities requested within traditional culinary customs. However, the growth-rate of these indigenous breeds is slower than that of the commercial broilers, which means they have not yet reached their full economic value. Therefore, combining the valuable meat quality of the native chickens with the efficiency of the commercial broilers is of interest. In this study, we generated an F2 intercross between the slow growing native broiler breed, Huiyang Beard chicken, and the fast growing commercial broiler breed, High Quality chicken Line A, and used it to map loci explaining the difference in growth rate between these breeds. Results A genome scan to identify main-effect loci affecting 24 growth-related traits revealed nine distinct QTL on six chromosomes. Many QTL were pleiotropic and conformed to the correlation patterns observed between phenotypes. Most of the mapped QTL were found in locations where growth QTL have been reported in other populations, although the effects were greater in this population. A genome scan for pairs of interacting loci identified a number of additional QTL in 10 other genomic regions. The epistatic pairs explained 6–8% of the residual phenotypic variance. Seven of the 10 epistatic QTL mapped in regions containing candidate genes in the ubiquitin mediated proteolysis pathway, suggesting the importance of this pathway in the regulation of growth in this chicken population. Conclusions The main-effect QTL detected using a standard one-dimensional genome scan accounted for a significant fraction of the observed phenotypic variance in this population. Furthermore, genes in known pathways present interesting candidates for further exploration. This study has thus located several QTL regions as promising candidates for further study, which will increase our understanding of the genetic mechanisms underlying growth-related traits in chickens.
Collapse
Affiliation(s)
- Zheya Sheng
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Álvarez-Castro JM. Current applications of models of genetic effects with interactions across the genome. Curr Genomics 2012; 13:163-75. [PMID: 23024608 PMCID: PMC3308327 DOI: 10.2174/138920212799860689] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/18/2011] [Accepted: 10/25/2011] [Indexed: 02/07/2023] Open
Abstract
Models of genetic effects integrate the action of genes, regulatory regions and interactions among alleles across the genome. Such theoretical frameworks are critical for applied studies in at least two ways. First, discovering genetic networks with specific effects underlying traits in populations requires the development of models that implement those effects as parameters-adjusting the implementation of epistasis parameters in genetic models has for instance been a requirement for properly testing for epistasis in gene-mapping studies. Second, studying the properties and implications of models of genetic effects that involve complex genetic networks has proven to be valuable, whether those networks have been revealed for particular organisms or inferred to be of interest from theoretical works and simulations. Here I review the current state of development and recent applications of models of genetic effects. I focus on general models aiming to depict complex genotype-to-phenotype maps and on applications of them to networks of interacting loci.
Collapse
Affiliation(s)
- José M Álvarez-Castro
- University of Santiago de Compostela, Department of Genetics, Veterinary Faculty, Avda. Carvalho Calero, ES-27002 Lugo, Galiza, Spain
| |
Collapse
|
23
|
Alvarez-Castro JM, Carlborg O, Rönnegård L. Estimation and interpretation of genetic effects with epistasis using the NOIA model. Methods Mol Biol 2012; 871:191-204. [PMID: 22565838 DOI: 10.1007/978-1-61779-785-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We introduce this communication with a brief outline of the historical landmarks in genetic modeling, especially concerning epistasis. Then, we present methods for the use of genetic modeling in QTL analyses. In particular, we summarize the essential expressions of the natural and orthogonal interactions (NOIA) model of genetic effects. Our motivation for reviewing that theory here is twofold. First, this review presents a digest of the expressions for the application of the NOIA model, which are often mixed with intermediate and additional formulae in the original articles. Second, we make the required theory handy for the reader to relate the genetic concepts to the particular mathematical expressions underlying them. We illustrate those relations by providing graphical interpretations and a diagram summarizing the key features for applying genetic modeling with epistasis in comprehensive QTL analyses. Finally, we briefly review some examples of the application of NOIA to real data and the way it improves the interpretability of the results.
Collapse
|
24
|
Balcells I, Castelló A, Mercadé A, Noguera JL, Fernández-Rodríguez A, Sànchez A, Tomàs A. Analysis of porcine MUC4 gene as a candidate gene for prolificacy QTL on SSC13 in an Iberian × Meishan F2 population. BMC Genet 2011; 12:93. [PMID: 22039891 PMCID: PMC3224777 DOI: 10.1186/1471-2156-12-93] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/31/2011] [Indexed: 02/04/2023] Open
Abstract
Background Reproductive traits, such as prolificacy, are of great interest to the pig industry. Better understanding of their genetic architecture should help to increase the efficiency of pig productivity through the implementation of marker assisted selection (MAS) programmes. Results The Mucin 4 (MUC4) gene has been evaluated as a candidate gene for a prolificacy QTL described in an Iberian × Meishan (Ib × Me) F2 intercross. For association analyses, two previously described SNPs (DQ124298:g.243A>G and DQ124298:g.344A>G) were genotyped in 347 pigs from the Ib × Me population. QTL for the number of piglets born alive (NBA) and for the total number of piglets born (TNB) were confirmed on SSC13 at positions 44 cM and 51 cM, respectively. The MUC4 gene was successfully located within the confidence intervals of both QTL. Only DQ124298:g.344A>G MUC4 polymorphism was significantly associated with both NBA and TNB (P-value < 0.05) with favourable effects coming from the Meishan origin. MUC4 expression level was determined in F2 sows displaying extreme phenotypes for the number of embryos (NE) at 30-32 days of gestation. Differences in the uterine expression of MUC4 were found between high (NE ≥ 13) and low (NE ≤ 11) prolificacy sows. Overall, MUC4 expression in high prolificacy sows was almost two-fold increased compared with low prolificacy sows. Conclusions Our data suggest that MUC4 could play an important role in the establishment of an optimal uterine environment that would increase embryonic survival during pig gestation.
Collapse
Affiliation(s)
- Ingrid Balcells
- Departament de Genètica Animal, Centre de Recerca en Agrigenòmica (CRAG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | | | | | | | | | |
Collapse
|
25
|
Tortereau F, Sanchez MP, Fève K, Gilbert H, Iannuccelli N, Billon Y, Milan D, Bidanel JP, Riquet J. Progeny-testing of full-sibs IBD in a SSC2 QTL region highlights epistatic interactions for fatness traits in pigs. BMC Genet 2011; 12:92. [PMID: 22032270 PMCID: PMC3217858 DOI: 10.1186/1471-2156-12-92] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/27/2011] [Indexed: 11/13/2022] Open
Abstract
Background Many QTL have been detected in pigs, but very few of them have been fine-mapped up to the causal mutation. On SSC2, the IGF2-intron3-G3072A mutation has been described as the causative polymorphism for a QTL underlying muscle mass and backfat deposition, but further studies have demonstrated that at least one additional QTL should segregate downstream of this mutation. A marker-assisted backcrossing design was set up in order to confirm the segregation of this second locus, reduce its confidence interval and better understand its mode of segregation. Results Five recombinant full-sibs, with genotype G/G at the IGF2 mutation, were progeny-tested. Only two of them displayed significant QTL for fatness traits although four inherited the same paternal and maternal chromosomes, thus exhibiting the same haplotypic contrast in the QTL region. The hypothesis of an interaction with another region in the genome was proposed to explain these discrepancies and after a genome scan, four different regions were retained as potential interacting regions with the SSC2 QTL. A candidate interacting region on SSC13 was confirmed by the analysis of an F2 pedigree, and in the backcross pedigree one haplotype in this region was found to mask the SSC2 QTL effect. Conclusions Assuming the hypothesis of interactions with other chromosomal regions, the QTL could be unambiguously mapped to a 30 cM region delimited by recombination points. The marker-assisted backcrossing design was successfully used to confirm the segregation of a QTL on SSC2 and, because full-sibs that inherited the same alleles from their two parents were analysed, the detection of epistatic interactions could be performed between alleles and not between breeds as usually done with the traditional Line-Cross model. Additional analyses of other recombinant sires should provide more information to further improve the fine-mapping of this locus, and confirm or deny the interaction identified between chromosomes 2 and 13.
Collapse
Affiliation(s)
- Flavie Tortereau
- INRA, UMR Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rosendo A, Iannuccelli N, Gilbert H, Riquet J, Billon Y, Amigues Y, Milan D, Bidanel JP. Microsatellite mapping of quantitative trait loci affecting female reproductive tract characteristics in Meishan x Large White F(2) pigs. J Anim Sci 2011; 90:37-44. [PMID: 21948608 DOI: 10.2527/jas.2011-3989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A QTL analysis of female reproductive data from a 3-generation experimental cross between Meishan and Large White pig breeds is presented. Six F(1) boars and 23 F(1) sows, progeny of 6 Large White boars and 6 Meishan sows, produced 502 F(2) gilts whose reproductive tract was collected after slaughter at 30 d of gestation. Five traits [i.e., the total weight of the reproductive tract, of the empty uterine horns, of the ovaries (WOV), and of the embryos], as well as the length of uterine horns (LUH), were measured and analyzed with and without adjustment for litter size. Animals were genotyped for a total of 137 markers covering the entire porcine genome. Analyses were carried out based on interval mapping methods, using a line-cross regression and a half-full sib maximum likelihood test. A total of 18 genome-wide significant (P < 0.05) QTL were detected on 9 different chromosomes (i.e., SSC 1, 5, 6, 7, 9, 12, 13, 18, and X). Five genome-wide significant QTL were detected for LUH, 4 for weight of the empty uterine horns and WOV, 2 for total weight of the reproductive tract, and 1 for weight of the embryos. Twenty-two additional suggestive QTL were also detected. The largest effects were obtained for LUH and WOV on SSC13 (9.2 and 7.0% of trait phenotypic variance, respectively). Meishan alleles had both positive (e.g., on SSC7) and negative effects (e.g., on SSC13) on the traits investigated. Moreover, the QTL were generally not fixed in founder breeds, and opposite effects were in some cases obtained in different families. Although reproductive tract characteristics had only a moderate correlation with reproductive performances, most of the major QTL detected in this study were previously reported as affecting female reproduction, generally with reduced significance levels. This study thus shows that focusing on traits with high heritability might help to detect loci involved in low heritability major traits for breeding.
Collapse
Affiliation(s)
- A Rosendo
- INRA, UMR1313 Génétique Animale et Biologie Intégrative F-78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Balcells I, Castelló A, Noguera JL, Fernández-Rodríguez A, Sánchez A, Tomás A. Sequencing and gene expression of the porcine ITIH SSC13 cluster and its effect on litter size in an Iberian × Meishan F2 population. Anim Reprod Sci 2011; 128:85-92. [PMID: 21992966 DOI: 10.1016/j.anireprosci.2011.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/19/2011] [Accepted: 09/15/2011] [Indexed: 02/09/2023]
Abstract
The aim of the present study was to identify polymorphisms and to analyze endometrial gene expression of the porcine SSC13 ITIH cluster that could explain differences in prolificacy of 255 F(2) sows derived from an Iberian (Ib)×Meishan (Me) intercross in which QTL for the number of piglets born alive (NBA) and total number of piglets born (TNB) were previously detected on this chromosome. Sequencing of ITIH-1, -3, and -4 mRNAs was done and several polymorphisms segregating within the Ib×Me population were found in all three genes. Significant associations with NBA were found for two SNPs from ITIH-1, four from ITIH-3, and four SNPs from ITIH-4 (p<0.05). Haplotypes for the significant SNPs were calculated by segregation analysis and a marker assisted association test indicated that the alleles coming from the Meishan breed had a favorable effect on NBA for all three genes. Interestingly, some of the significant SNPs were located within the von Willebrand domain of the ITIH proteins, the binding site of molecules essential for the synthesis of the extracellular matrix during cumulus expansion. Gene expression analyses also revealed differences in the expression level of the ITIH-3 gene regarding the prolificacy performance (high or low) and the uterus sample (apical or basal).
Collapse
Affiliation(s)
- I Balcells
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Esteve-Codina A, Kofler R, Himmelbauer H, Ferretti L, Vivancos AP, Groenen MAM, Folch JM, Rodríguez MC, Pérez-Enciso M. Partial short-read sequencing of a highly inbred Iberian pig and genomics inference thereof. Heredity (Edinb) 2011; 107:256-64. [PMID: 21407255 PMCID: PMC3183945 DOI: 10.1038/hdy.2011.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/20/2011] [Accepted: 01/27/2011] [Indexed: 11/08/2022] Open
Abstract
Despite dramatic reduction in sequencing costs with the advent of next generation sequencing technologies, obtaining a complete mammalian genome sequence at sufficient depth is still costly. An alternative is partial sequencing. Here, we have sequenced a reduced representation library of an Iberian sow from the Guadyerbas strain, a highly inbred strain that has been used in numerous QTL studies because of its extreme phenotypic characteristics. Using the Illumina Genome Analyzer II (San Diego, CA, USA), we resequenced ∼ 1% of the genome with average 4 × depth, identifying 68,778 polymorphisms. Of these, 55,457 were putative fixed differences with respect to the assembly, based on the genome of a Duroc pig, and 13,321 were heterozygous positions within Guadyerbas. Despite being highly inbred, the estimate of heterozygosity within Guadyerbas was ∼ 0.78 kb(-1) in autosomes, after correcting for low depth. Nucleotide variability was consistently higher at the telomeric regions than on the rest of the chromosome, likely a result of increased recombination rates. Further, variability was 50% lower in the X-chromosome than in autosomes, which may be explained by a recent bottleneck or by selection. We divided the whole genome in 500 kb windows and we analyzed overrepresented gene ontology terms in regions of low and high variability. Multi organism process, pigmentation and cell killing were overrepresented in high variability regions and metabolic process ontology, within low variability regions. Further, a genome wide Hudson-Kreitman-Aguadé test was carried out per window; overall, variability was in agreement with neutral expectations.
Collapse
Affiliation(s)
- A Esteve-Codina
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Kofler
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - H Himmelbauer
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
| | - L Ferretti
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Science, Centre for Research in Agrigenomics (CRAG), Bellaterra, Spain
| | - A P Vivancos
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
| | - M A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - J M Folch
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M C Rodríguez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - M Pérez-Enciso
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
29
|
Duthie C, Simm G, Doeschl-Wilson A, Kalm E, Knap P, Roehe R. Epistatic quantitative trait loci affecting chemical body composition and deposition as well as feed intake and feed efficiency throughout the entire growth period of pigs. Livest Sci 2011. [DOI: 10.1016/j.livsci.2010.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Brunner RM, Srikanchai T, Murani E, Wimmers K, Ponsuksili S. Genes with expression levels correlating to drip loss prove association of their polymorphism with water holding capacity of pork. Mol Biol Rep 2011; 39:97-107. [PMID: 21556776 DOI: 10.1007/s11033-011-0714-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/23/2011] [Indexed: 01/03/2023]
Abstract
Six genes that were known to exhibit expression levels that are correlated to drip loss BVES, SLC3A2, ZDHHC5, CS, COQ9, and EGFR have been for candidate gene analysis. Based on in silico analysis SNPs were detected, confirmed by sequencing, and used for genotyping. The SNPs were genotyped in about 1,800 animals from six pig populations including commercial herds of Pietrain (PI) and German Landrace (DL), different commercial herds of Pietrain×(German Large White×German Landrace) (PIF1(a/b/c)), and one experimental F2-population Duroc×Pietrain (DUPI). Comparative and genetic mapping established the location of BVES on SSC1, of SLC3A2 and ZDHHC5 on SSC2, of CS on SSC5, of COQ9 on SSC6 and of EGFR on SSC9, respectively, coinciding with QTL regions for carcass and meat quality traits. BVES, SLC3A2, and CS revealed association at least with drip loss and with several other measures of water holding capacity (WHC). Moreover, COQ9 and EGFR were associated with several meat quality traits such as meat color and/or thawing loss. This study reveals statistic evidence in addition to the functional relationship of these genes to WHC previously evidenced by expression analysis. This study reveals positional and genetic statistical evidence for a link of genetic variation at these loci or close to them and promotes those six candidate genes as functional and/or positional candidate genes for meat quality traits.
Collapse
Affiliation(s)
- R M Brunner
- Leibniz Institute for Farm Animal Biology, Research Unit Molecular Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | | | | | | | | |
Collapse
|
31
|
Rempel LA, Freking BA, Miles JR, Nonneman DJ, Rohrer GA, Schneider JF, Vallet JL. Association of porcine heparanase and hyaluronidase 1 and 2 with reproductive and production traits in a landrace-duroc-yorkshire population. Front Genet 2011; 2:20. [PMID: 22303316 PMCID: PMC3268575 DOI: 10.3389/fgene.2011.00020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/22/2011] [Indexed: 01/26/2023] Open
Abstract
The ovary and placenta are dynamic structures requiring constant modification both structurally and through cell-cell communication capabilities. The extracellular matrix and basement membranes are primarily composed of a milieu of glycosaminoglycans, including heparan sulfate and hyaluronan. Heparanase (HPSE) and hyaluronidases (HYAL) are responsible for degrading heparan sulfate and hyaluronan, respectively. Therefore, the objective of this study was to evaluate the relationship of SNPs distinct to HPSE, HYAL1, and HYAL2 with measurements of reproduction and production traits in swine. Single trait associations were performed on a Landrace-Duroc-Yorkshire population using SNPs discovered and identified in HPSE, HYAL1, and HYAL2. Analyses were conducted on an extended pedigree and SNPs were found to be associated with reproductive and production traits. Prior to multiple-testing corrections, SNPs within HPSE were weakly associated (P < 0.03) having additive effects with age at puberty (-2.5 ± 1.08 days), ovulation rate (0.5 ± 0.24 corpora lutea), and number of piglets born alive (0.9 ± 0.44 piglets). A HYAL1 and two HYAL2 SNP were nominally associated (P ≤ 0.0063) with number of piglets born alive after multiple-testing corrections (effects between 1.02 and 1.44 piglets), while one of the same HYAL2 markers maintained a modest association (P = 0.0043) having a dominant effect with number of piglets weaned (1.2 ± 0.41 piglets) after multiple-testing correction. Functionally, HPSE and HYAL1 and 2 have been shown to participate in events related to ovarian and placental activity. SNPs from these studies could potentially assist with understanding genetic components underlying sow lifetime productivity as measured by piglet survivability based on number born alive and number weaned, thereby contributing to a greater number of pigs/sow/year.
Collapse
Affiliation(s)
- Lea A Rempel
- U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture Clay Center, NE, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Tomás A, Ramírez O, Casellas J, Muñoz G, Sánchez A, Barragán C, Arqué M, Riart I, Óvilo C, Noguera JL, Amills M, Rodríguez C. Quantitative trait loci for fatness at growing and reproductive stages in Iberian × Meishan F(2) sows. Anim Genet 2011; 42:548-51. [PMID: 21906106 DOI: 10.1111/j.1365-2052.2010.02169.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A considerable number of fatness QTL have been identified in growing pigs, but there is a lack of knowledge about the genetic architecture of this trait in gilts and sows. We have performed a genome scan, in 255 Iberian × Meishan F(2) sows, for backfat thickness (BF) at 150 (BF(150) ) and 210 (BF(210)) days of age, 30 days after conception (BF(30)) and 7-10 days before farrowing (BF(bf)). We have found one BF150 QTL in SSC6 (120 cM) that was highly significant (P < 0.001) at the chromosome-wide level and suggestive at the genome-wide level (P < 0.1). Ten additional chromosome-wide significant QTL were found for sow BF(150) (SSC1, SSC13), BF(210) (SSC6, SSC8, SSC15), BF(30) (SSC5, SSC6) and BF(bf) (SSC1, SSC6, SSC13). The location of several of the BF QTL varied depending on the growing and reproductive status of the sow, suggesting that part of these genetic effects may have a temporal pattern of phenotypic expression.
Collapse
Affiliation(s)
- A Tomás
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Grosse-Brinkhaus C, Jonas E, Buschbell H, Phatsara C, Tesfaye D, Jüngst H, Looft C, Schellander K, Tholen E. Epistatic QTL pairs associated with meat quality and carcass composition traits in a porcine Duroc × Pietrain population. Genet Sel Evol 2010; 42:39. [PMID: 20977705 PMCID: PMC2984386 DOI: 10.1186/1297-9686-42-39] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 10/26/2010] [Indexed: 11/10/2022] Open
Abstract
Background Quantitative trait loci (QTL) analyses in pig have revealed numerous individual QTL affecting growth, carcass composition, reproduction and meat quality, indicating a complex genetic architecture. In general, statistical QTL models consider only additive and dominance effects and identification of epistatic effects in livestock is not yet widespread. The aim of this study was to identify and characterize epistatic effects between common and novel QTL regions for carcass composition and meat quality traits in pig. Methods Five hundred and eighty five F2 pigs from a Duroc × Pietrain resource population were genotyped using 131 genetic markers (microsatellites and SNP) spread over the 18 pig autosomes. Phenotypic information for 26 carcass composition and meat quality traits was available for all F2 animals. Linkage analysis was performed in a two-step procedure using a maximum likelihood approach implemented in the QxPak program. Results A number of interacting QTL was observed for different traits, leading to the identification of a variety of networks among chromosomal regions throughout the porcine genome. We distinguished 17 epistatic QTL pairs for carcass composition and 39 for meat quality traits. These interacting QTL pairs explained up to 8% of the phenotypic variance. Conclusions Our findings demonstrate the significance of epistasis in pigs. We have revealed evidence for epistatic relationships between different chromosomal regions, confirmed known QTL loci and connected regions reported in other studies. Considering interactions between loci allowed us to identify several novel QTL and trait-specific relationships of loci within and across chromosomes.
Collapse
|
34
|
Muñoz M, Fernández AI, Ovilo C, Muñoz G, Rodriguez C, Fernández A, Alves E, Silió L. Non-additive effects of RBP4, ESR1 and IGF2 polymorphisms on litter size at different parities in a Chinese-European porcine line. Genet Sel Evol 2010; 42:23. [PMID: 20576168 PMCID: PMC3238285 DOI: 10.1186/1297-9686-42-23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/25/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aim of this work was to study the effects on litter size of variants of the porcine genes RBP4, ESR1 and IGF2, currently used in genetic tests for different purposes. Moreover, we investigated a possible effect of the interaction between RBP4-MspI and ESR1-PvuII polymorphisms. The IGF2-intron3-G3072A polymorphism is actually used to select lean growth, but other possible effects of this polymorphism on reproductive traits need to be evaluated. METHODS Detection of polymorphisms in the genomic and cDNA sequences of RBP4 gene was carried out. RBP4-MspI and IGF2-intron3-G3072A were genotyped in a hyperprolific Chinese-European line (Tai-Zumu) and three new RBP4 polymorphisms were genotyped in different pig breeds. A bivariate animal model was implemented in association analyses considering the number of piglets born alive at early (NBA12) and later parities (NBA3+ ) as different traits. A joint analysis of RBP4-MspI and ESR1-PvuII was performed to test their possible interaction. In the IGF2 analysis, paternal or maternal imprinting effects were also considered. RESULTS Four different RBP4 haplotypes were detected (TGAC, GGAG, GAAG and GATG) in different pig breeds and wild boars. A significant interaction effect between RBP4-MspI and ESR1-PvuII polymorphisms of 0.61 +/- 0.29 piglets was detected on NBA3+. The IGF2 analysis revealed a significant increase on NBA3+ of 0.74 +/- 0.37 piglets for the paternally inherited allele A. CONCLUSIONS All the analyzed pig and wild boar populations shared one of the four detected RBP4 haplotypes. This suggests an ancestral origin of the quoted haplotype. The joint use of RBP4-MspI and ESR1-PvuII polymorphisms could be implemented to select for higher prolificacy in the Tai-Zumu line. In this population, the paternal allele IGF2-intron3-3072A increased litter size from the third parity. The non-additive effects on litter size reported here should be tested before implementation in other pig breeding schemes.
Collapse
Affiliation(s)
- María Muñoz
- Departamento de Mejora Genética Animal, INIA, Ctra de la Coruña km 7.5, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Casellas J, Caja G, Piedrafita J. Accounting for additive genetic mutations on litter size in Ripollesa sheep. J Anim Sci 2009; 88:1248-55. [PMID: 20023132 DOI: 10.2527/jas.2009-2117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Little is known about mutational variability in livestock, among which only a few mutations with relatively large effects have been reported. In this manuscript, mutational variability was analyzed in 1,765 litter size records from 404 Ripollesa ewes to characterize the magnitude of this genetic source of variation and check the suitability of including mutational effects in genetic evaluations of this breed. Threshold animal models accounting for additive genetic mutations were preferred to models without mutational contributions, with an average difference in the deviance information criterion of more than 5 units. Moreover, the statistical relevance of the additive genetic mutation term was checked through a Bayes factor approach, which showed that the models with mutational variability were 8.5 to 22.7 times more probable than the others. The mutational heritability (percentage of the phenotypic variance accounted for by mutational variance) was 0.6 or 0.9%, depending on whether genetic dominance effects were accounted for by the analytical model. The inclusion of mutational effects in the genetic model for evaluating litter size in Ripollesa ewes called for some minor modifications in the genetic merit order of the individuals evaluated, which suggested that the continuous uploading of new additive mutations could be taken into account to optimize the selection scheme. This study is the first attempt to estimate mutational variances in a livestock species and thereby contribute to better characterization of the genetic background of productive traits of interest.
Collapse
Affiliation(s)
- J Casellas
- Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries-Lleida, 25198 Lleida, Spain.
| | | | | |
Collapse
|