1
|
CDK contribution to DSB formation and recombination in fission yeast meiosis. PLoS Genet 2019; 15:e1007876. [PMID: 30640914 PMCID: PMC6331086 DOI: 10.1371/journal.pgen.1007876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
CDKs (cyclin-dependent kinases) associate with different cyclins to form different CDK-complexes that are fundamental for an ordered cell cycle progression, and the coordination of this progression with different aspects of the cellular physiology. During meiosis programmed DNA double-strand breaks (DSBs) initiate recombination that in addition to generating genetic variability are essential for the reductional chromosome segregation during the first meiotic division, and therefore for genome stability and viability of the gametes. However, how meiotic progression and DSB formation are coordinated, and the role CDKs have in the process, is not well understood. We have used single and double cyclin deletion mutants, and chemical inhibition of global CDK activity using the cdc2-asM17 allele, to address the requirement of CDK activity for DSB formation and recombination in fission yeast. We report that several cyclins (Cig1, Cig2, and the meiosis-specific Crs1) control DSB formation and recombination, with a major contribution of Crs1. Moreover, complementation analysis indicates specificity at least for this cyclin, suggesting that different CDK complexes might act in different pathways to promote recombination. Down-regulation of CDK activity impinges on the formation of linear elements (LinEs, protein complexes required for break formation at most DSB hotspot sites). This defect correlates with a reduction in the capability of one structural component (Rec25) to bind chromatin, suggesting a molecular mechanism by which CDK controls break formation. However, reduction in DSB formation in cyclin deletion mutants does not always correspondingly correlate with a proportional reduction in meiotic recombination (crossovers), suggesting that specific CDK complexes might also control downstream events balancing repair pathways. Therefore, our work points to CDK regulation of DSB formation as a key conserved feature in the initiation of meiotic recombination, in addition to provide a view of possible roles CDK might have in other steps of the recombination process. Meiotic division is a cell division process where a single round of DNA replication is followed by two sequential chromosome segregations, the first reductional (homologous chromosomes separate) and the second equational (sister chromatids segregate). As a consequence diploid organisms halve ploidy, producing haploid gametes that after fertilization generate a new diploid organism with a complete chromosome complement. At early stages of meiosis physical exchange between homologous chromosomes ensures the accurate following reductional segregation. Physical exchange is provided by recombination that initiates with highly-controlled self-inflicted DNA damage (DSBs, double strand breaks). We have found that the conserved CDK (cyclin-dependent kinase) activity controls DSB formation in fission yeast. Available data were uncertain about the conservation of CDK in the process, and thus our work points to a broad evolutionary conservation of this regulation. Regulation is exerted at least by controlling chromatin-binding of one structural component of linear elements, a protein complex related to the synaptonemal complex and required for high levels of DSBs. Correspondingly, depletion of CDK activity impairs formation of these structures. In addition, CDK might control homeostatic mechanisms, critical to maintain efficient levels of recombination across the genome and, therefore, high rates of genetic exchange between parental chromosomes.
Collapse
|
2
|
Chan PHW, Lee L, Kim E, Hui T, Stoynov N, Nassar R, Moksa M, Cameron DM, Hirst M, Gsponer J, Mayor T. The [PSI +] yeast prion does not wildly affect proteome composition whereas selective pressure exerted on [PSI +] cells can promote aneuploidy. Sci Rep 2017; 7:8442. [PMID: 28814753 PMCID: PMC5559586 DOI: 10.1038/s41598-017-07999-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
The yeast Sup35 protein is a subunit of the translation termination factor, and its conversion to the [PSI +] prion state leads to more translational read-through. Although extensive studies have been done on [PSI +], changes at the proteomic level have not been performed exhaustively. We therefore used a SILAC-based quantitative mass spectrometry approach and identified 4187 proteins from both [psi -] and [PSI +] strains. Surprisingly, there was very little difference between the two proteomes under standard growth conditions. We found however that several [PSI +] strains harbored an additional chromosome, such as chromosome I. Albeit, we found no evidence to support that [PSI +] induces chromosomal instability (CIN). Instead we hypothesized that the selective pressure applied during the establishment of [PSI +]-containing strains could lead to a supernumerary chromosome due to the presence of the ade1-14 selective marker for translational read-through. We therefore verified that there was no prevalence of disomy among newly generated [PSI +] strains in absence of strong selection pressure. We also noticed that low amounts of adenine in media could lead to higher levels of mitochondrial DNA in [PSI +] in ade1-14 cells. Our study has important significance for the establishment and manipulation of yeast strains with the Sup35 prion.
Collapse
Affiliation(s)
- Patrick H W Chan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Lisa Lee
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Erin Kim
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Tony Hui
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Nikolay Stoynov
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Roy Nassar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Moksa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Dale M Cameron
- Department of Biology, Ursinus College, Pennsylvania, USA
| | - Martin Hirst
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Joerg Gsponer
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada. .,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Noguchi C, Grothusen G, Anandarajan V, Martínez-Lage García M, Terlecky D, Corzo K, Tanaka K, Nakagawa H, Noguchi E. Genetic controls of DNA damage avoidance in response to acetaldehyde in fission yeast. Cell Cycle 2016; 16:45-58. [PMID: 27687866 DOI: 10.1080/15384101.2016.1237326] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Acetaldehyde, a primary metabolite of alcohol, forms DNA adducts and disrupts the DNA replication process, causing genomic instability, a hallmark of cancer. Indeed, chronic alcohol consumption accounts for approximately 3.6% of all cancers worldwide. However, how the adducts are prevented and repaired after acetaldehyde exposure is not well understood. In this report, we used the fission yeast Schizosaccharomyces pombe as a model organism to comprehensively understand the genetic controls of DNA damage avoidance in response to acetaldehyde. We demonstrate that Atd1 functions as a major acetaldehyde detoxification enzyme that prevents accumulation of Rad52-DNA repair foci, while Atd2 and Atd3 have minor roles in acetaldehyde detoxification. We found that acetaldehyde causes DNA damage at the replication fork and activates the cell cycle checkpoint to coordinate cell cycle arrest with DNA repair. Our investigation suggests that acetaldehyde-mediated DNA adducts include interstrand-crosslinks and DNA-protein crosslinks. We also demonstrate that acetaldehyde activates multiple DNA repair pathways. Nucleotide excision repair and homologous recombination, which are both epistatically linked to the Fanconi anemia pathway, have major roles in acetaldehyde tolerance, while base excision repair and translesion synthesis also contribute to the prevention of acetaldehyde-dependent genomic instability. We also show the involvement of Wss1-related metalloproteases, Wss1 and Wss2, in acetaldehyde tolerance. These results indicate that acetaldehyde causes cellular stresses that require cells to coordinate multiple cellular processes in order to prevent genomic instability. Considering that acetaldehyde is a human carcinogen, our genetic studies serve as a guiding investigation into the mechanisms of acetaldehyde-dependent genomic instability and carcinogenesis.
Collapse
Affiliation(s)
- Chiaki Noguchi
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Grant Grothusen
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Vinesh Anandarajan
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Marta Martínez-Lage García
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Daniel Terlecky
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Krysten Corzo
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Katsunori Tanaka
- b Department of Bioscience , School of Science and Technology, Kwansei Gakuin University , Sanda , Japan
| | - Hiroshi Nakagawa
- c Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine , PA , USA
| | - Eishi Noguchi
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| |
Collapse
|
4
|
Dou W, Zhu J, Wang T, Wang W, Li H, Chen X, Guan W. Mutations of charged amino acids at the cytoplasmic end of transmembrane helix 2 affect transport activity of the budding yeast multidrug resistance protein Pdr5p. FEMS Yeast Res 2016; 16:fow031. [PMID: 27189366 DOI: 10.1093/femsyr/fow031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 01/06/2023] Open
Abstract
Pdr5p is a major ATP-binding cassette (ABC) transporter in Saccharomyces cerevisiae. It displays a sequence and functional homology to the pathogenic Candida albicans multidrug resistance protein Cdr1p. The transmembrane helices of Pdr5p act in substrate recognition, binding, translocation and eventual removal of toxic substances out of the plasma membrane via the formation of a binding pocket. In this study, we identify two novel Pdr5 mutants (E574K and E580K), which exhibit impaired substrate efflux functions. Both mutants remained hypersensitive to all tested Pdr5p substrates without affecting their protein expression levels, localization or ATPase activities. As E574 and E580 are both located adjacent to the predicted cytoplasmic end of transmembrane helix 2, this implies that such charged residues are functionally essential for Pdr5p. Molecular docking studies suggest the possibility that oppositely charged substitution at residue E574 may disturb the interaction between the substrates and Pdr5p, resulting in impaired transport activity. Our results present new evidence, suggesting that transmembrane helix 2 plays an important role for the efflux function of Pdr5p.
Collapse
Affiliation(s)
- Weiwang Dou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jianhua Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tanjun Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wei Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Han Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xin Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wenjun Guan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
5
|
Bleykasten-Grosshans C, Friedrich A, Schacherer J. Genome-wide analysis of intraspecific transposon diversity in yeast. BMC Genomics 2013; 14:399. [PMID: 23768249 PMCID: PMC4022208 DOI: 10.1186/1471-2164-14-399] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/06/2013] [Indexed: 02/02/2023] Open
Abstract
Background In the model organism Saccharomyces cerevisiae, the transposable elements (TEs) consist of LTR (Long Terminal Repeat) retrotransposons called Ty elements belonging to five families, Ty1 to Ty5. They take the form of either full-length coding elements or non-coding solo-LTRs corresponding to remnants of former transposition events. Although the biological features of Ty elements have been studied in detail in S. cerevisiae and the Ty content of the reference strain (S288c) was accurately annotated, the Ty-related intra-specific diversity has not been closely investigated so far. Results In this study, we investigated the Ty contents of 41 available genomes of isolated S. cerevisiae strains of diverse geographical and ecological origins. The strains were compared in terms of the number of Ty copies, the content of the potential transpositionally active elements and the genomic insertion maps. The strain repertoires were also investigated in the closely related Ty1 and Ty2 families and subfamilies. Conclusions This is the first genome-wide analysis of the diversity associated to the Ty elements, carried out for a large set of S. cerevisiae strains. The results of the present analyses suggest that the current Ty-related polymorphism has resulted from multiple causes such as differences between strains, between Ty families and over time, in the recent transpositional activity of Ty elements. Some new Ty1 variants were also identified, and we have established that Ty1 variants have different patterns of distribution among strains, which further contributes to the strain diversity.
Collapse
Affiliation(s)
- Claudine Bleykasten-Grosshans
- CNRS, Department of Genetics, Genomics and Microbiology, University of Strasbourg, UMR 7156, 28, rue Goethe, Strasbourg, 67083, France.
| | | | | |
Collapse
|
6
|
Dunn B, Paulish T, Stanbery A, Piotrowski J, Koniges G, Kroll E, Louis EJ, Liti G, Sherlock G, Rosenzweig F. Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression. PLoS Genet 2013; 9:e1003366. [PMID: 23555283 PMCID: PMC3605161 DOI: 10.1371/journal.pgen.1003366] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/20/2013] [Indexed: 12/17/2022] Open
Abstract
Genome rearrangements are associated with eukaryotic evolutionary processes ranging from tumorigenesis to speciation. Rearrangements are especially common following interspecific hybridization, and some of these could be expected to have strong selective value. To test this expectation we created de novo interspecific yeast hybrids between two diverged but largely syntenic Saccharomyces species, S. cerevisiae and S. uvarum, then experimentally evolved them under continuous ammonium limitation. We discovered that a characteristic interspecific genome rearrangement arose multiple times in independently evolved populations. We uncovered nine different breakpoints, all occurring in a narrow ~1-kb region of chromosome 14, and all producing an "interspecific fusion junction" within the MEP2 gene coding sequence, such that the 5' portion derives from S. cerevisiae and the 3' portion derives from S. uvarum. In most cases the rearrangements altered both chromosomes, resulting in what can be considered to be an introgression of a several-kb region of S. uvarum into an otherwise intact S. cerevisiae chromosome 14, while the homeologous S. uvarum chromosome 14 experienced an interspecific reciprocal translocation at the same breakpoint within MEP2, yielding a chimaeric chromosome; these events result in the presence in the cell of two MEP2 fusion genes having identical breakpoints. Given that MEP2 encodes for a high-affinity ammonium permease, that MEP2 fusion genes arise repeatedly under ammonium-limitation, and that three independent evolved isolates carrying MEP2 fusion genes are each more fit than their common ancestor, the novel MEP2 fusion genes are very likely adaptive under ammonium limitation. Our results suggest that, when homoploid hybrids form, the admixture of two genomes enables swift and otherwise unavailable evolutionary innovations. Furthermore, the architecture of the MEP2 rearrangement suggests a model for rapid introgression, a phenomenon seen in numerous eukaryotic phyla, that does not require repeated backcrossing to one of the parental species.
Collapse
Affiliation(s)
- Barbara Dunn
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Terry Paulish
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Alison Stanbery
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Jeff Piotrowski
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Chemical Genomics Research Group, RIKEN Advance Science Institute, Wako, Japan
| | - Gregory Koniges
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Evgueny Kroll
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Edward J. Louis
- Center of Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Gianni Liti
- Center of Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (GS); (FR)
| | - Frank Rosenzweig
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- * E-mail: (GS); (FR)
| |
Collapse
|
7
|
Mallet S, Weiss S, Jacques N, Leh-Louis V, Sacerdot C, Casaregola S. Insights into the life cycle of yeasts from the CTG clade revealed by the analysis of the Millerozyma (Pichia) farinosa species complex. PLoS One 2012; 7:e35842. [PMID: 22574125 PMCID: PMC3344839 DOI: 10.1371/journal.pone.0035842] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 03/23/2012] [Indexed: 11/30/2022] Open
Abstract
Among ascomycetous yeasts, the CTG clade is so-called because its constituent species translate CTG as serine instead of leucine. Though the biology of certain pathogenic species such as Candida albicans has been much studied, little is known about the life cycles of non-pathogen species of the CTG clade. Taking advantage of the recently obtained sequence of the biotechnological Millerozyma (Pichiasorbitophila) farinosa strain CBS 7064, we used MLST to better define phylogenic relationships between most of the Millerozyma farinosa strains available in public collections. This led to the constitution of four phylogenetic clades diverging from 8% to 15% at the DNA level and possibly constituting a species complex (M. farinosa) and to the proposal of two new species:Millerozyma miso sp. nov. CBS 2004T ( = CLIB 1230T) and Candida pseudofarinosa sp. nov.NCYC 386T( = CLIB 1231T).Further analysis showed that M. farinosa isolates exist as haploid and inter-clade hybrids. Despite the sequence divergence between the clades, secondary contacts after reproductive isolation were evidenced, as revealed by both introgression and mitochondria transfer between clades. We also showed that the inter-clade hybrids do sporulate to generate mainly viable vegetative diploid spores that are not the result of meiosis, and very rarely aneuploid spores possibly through the loss of heterozygosity during sporulation. Taken together, these results show that in this part of the CTG clade, non-Mendelian genetic exchanges occur at high rates through hybridization between divergent strainsfrom distinct clades and subsequent massive loss of heterozygosity. This combination of mechanisms could constitute an alternative sexuality leading to an unsuspected biodiversity.
Collapse
Affiliation(s)
- Sandrine Mallet
- INRA UMR1319, Micalis Institute, CIRM-Levures, Thiverval-Grignon, France
- AgroParisTech UMR1319, Micalis Institute, Thiverval-Grignon, France
| | - Stéphanie Weiss
- INRA UMR1319, Micalis Institute, CIRM-Levures, Thiverval-Grignon, France
- AgroParisTech UMR1319, Micalis Institute, Thiverval-Grignon, France
| | - Noémie Jacques
- INRA UMR1319, Micalis Institute, CIRM-Levures, Thiverval-Grignon, France
- AgroParisTech UMR1319, Micalis Institute, Thiverval-Grignon, France
| | | | - Christine Sacerdot
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, UMR 3525, Université Pierre et Marie Curie-Paris 06, UFR 927, Paris, France
| | - Serge Casaregola
- INRA UMR1319, Micalis Institute, CIRM-Levures, Thiverval-Grignon, France
- AgroParisTech UMR1319, Micalis Institute, Thiverval-Grignon, France
- * E-mail:
| |
Collapse
|
8
|
Jung PP, Fritsch ES, Blugeon C, Souciet JL, Potier S, Lemoine S, Schacherer J, de Montigny J. Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae. BMC Genomics 2011; 12:331. [PMID: 21711526 PMCID: PMC3157476 DOI: 10.1186/1471-2164-12-331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/28/2011] [Indexed: 01/04/2023] Open
Abstract
Background Gross chromosomal rearrangements (GCRs) such as aneuploidy are key factors in genome evolution as well as being common features of human cancer. Their role in tumour initiation and progression has not yet been completely elucidated and the effects of additional chromosomes in cancer cells are still unknown. Most previous studies in which Saccharomyces cerevisiae has been used as a model for cancer cells have been carried out in the haploid context. To obtain new insights on the role of ploidy, the cellular effects of GCRs were compared between the haploid and diploid contexts. Results A total number of 21 haploid and diploid S. cerevisiae strains carrying various types of GCRs (aneuploidies, nonreciprocal translocations, segmental duplications and deletions) were studied with a view to determining the effects of ploidy on the cellular responses. Differences in colony and cell morphology as well as in the growth rates were observed between mutant and parental strains. These results suggest that cells are impaired physiologically in both contexts. We also investigated the variation in genomic expression in all the mutants. We observed that gene expression was significantly altered. The data obtained here clearly show that genes involved in energy metabolism, especially in the tricarboxylic acid cycle, are up-regulated in all these mutants. However, the genes involved in the composition of the ribosome or in RNA processing are down-regulated in diploids but up-regulated in haploids. Over-expression of genes involved in the regulation of the proteasome was found to occur only in haploid mutants. Conclusion The present comparisons between the cellular responses of strains carrying GCRs in different ploidy contexts bring to light two main findings. First, GCRs induce a general stress response in all studied mutants, regardless of their ploidy. Secondly, the ploidy context plays a crucial role in maintaining the stoichiometric balance of the proteins: the translation rates decrease in diploid strains, whereas the excess protein synthesized is degraded in haploids by proteasome activity.
Collapse
Affiliation(s)
- Paul P Jung
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, CNRS, UMR, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bleykasten-Grosshans C, Jung PP, Fritsch ES, Potier S, de Montigny J, Souciet JL. The Ty1 LTR-retrotransposon population in Saccharomyces cerevisiae genome: dynamics and sequence variations during mobility. FEMS Yeast Res 2011; 11:334-44. [DOI: 10.1111/j.1567-1364.2011.00721.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
10
|
Noise-driven heterogeneity in the rate of genetic-variant generation as a basis for evolvability. Genetics 2010; 185:395-404. [PMID: 20606014 DOI: 10.1534/genetics.110.118190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Molecular biologists have long searched for molecular mechanisms responsible for tuning the rate of genetic-variant generation (RGVG) in fluctuating environments. In spite of several bacterial examples, no regulated variation in the RGVG has been identified in eukaryotic systems. Based notably on the example of industrial and pathogenic yeasts, this article proposes a nonregulated molecular evolutionary mechanism for the appearance of the transient increase of the RGVG in eukaryotic cell populations facing challenging environments. The stochastic nature of gene expression allows a model in which the RGVG in the population can be rapidly tuned as a result of a simple Darwinian process acting on noise-driven heterogeneity in the RGVG from cell to cell. The high flexibility conferred through this model could resolve paradoxical situations, especially concerning the mutator phenotype in cancer cells.
Collapse
|