1
|
Brannan EO, Hartley GA, O’Neill RJ. Mechanisms of Rapid Karyotype Evolution in Mammals. Genes (Basel) 2023; 15:62. [PMID: 38254952 PMCID: PMC10815390 DOI: 10.3390/genes15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Chromosome reshuffling events are often a foundational mechanism by which speciation can occur, giving rise to highly derivative karyotypes even amongst closely related species. Yet, the features that distinguish lineages prone to such rapid chromosome evolution from those that maintain stable karyotypes across evolutionary time are still to be defined. In this review, we summarize lineages prone to rapid karyotypic evolution in the context of Simpson's rates of evolution-tachytelic, horotelic, and bradytelic-and outline the mechanisms proposed to contribute to chromosome rearrangements, their fixation, and their potential impact on speciation events. Furthermore, we discuss relevant genomic features that underpin chromosome variation, including patterns of fusions/fissions, centromere positioning, and epigenetic marks such as DNA methylation. Finally, in the era of telomere-to-telomere genomics, we discuss the value of gapless genome resources to the future of research focused on the plasticity of highly rearranged karyotypes.
Collapse
Affiliation(s)
- Emry O. Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Gabrielle A. Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Çağlar Ö, Çobanoğlu H, Uslu A, Çayır A. Evaluation of DNA damages in congenital hearing loss patients. Mutat Res 2021; 822:111744. [PMID: 33934048 DOI: 10.1016/j.mrfmmm.2021.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022]
Abstract
In the current study, we aimed to compare the level of genetic damages measured as micronucleus (MN), nucleoplasmic bridge (NPB), and nuclear bud formation (NBUD) in congenital hearing loss patients (n = 17) and control group (n = 24). The cytokinesis-blocked micronucleus assay (CBMN) was applied to the blood samples to measure the frequency of the markers in both groups. The frequencies of MN of hearing loss patients were found to be consistently significantly higher than those obtained for the control group (p < 0.0001). Similarly, we found significantly higher frequency of NPB in patients was obtained for the patient group (p < 0.0001). Finally, the frequencies of NBUD in patients is significantly higher than the level measured in the control group (p < 0.0001). Furthermore, the age-adjusted MNL, BNMN, NPB, and NBUD frequencies in the patients were significantly higher than those obtained in the control group. We observed that the frequency of MN in patients was positively correlated with NBUD frequency which may indicate a common mechanism for these biomarkers in the patient group. We found, for the first time, that there were statistically significant higher levels of MN, NPB, and NBUD in sensorineural hearing loss patients. Since the markers we evaluated were linked with crucial diseases, our findings might suggest that sensorineural hearing loss patients are susceptible to several crucial diseases, especially cancer. Furthermore, the results demonstrated the significance of the MN, NPB, and NBUD level and thus provides a potential marker for the diagnosis of congenital hearing loss patients.
Collapse
Affiliation(s)
- Özge Çağlar
- Otorhinolaryngology-Department of Head and Neck Surgery, Faculty of Medicine, Canakkale Onsekiz Mart University, Turkey
| | - Hayal Çobanoğlu
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Atilla Uslu
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093, Capa, Istanbul, Turkey
| | - Akın Çayır
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey.
| |
Collapse
|
3
|
Reamon-Buettner SM, Hackbarth A, Leonhardt A, Braun A, Ziemann C. Cellular senescence as a response to multiwalled carbon nanotube (MWCNT) exposure in human mesothelial cells. Mech Ageing Dev 2021; 193:111412. [PMID: 33279583 DOI: 10.1016/j.mad.2020.111412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a stable cell cycle arrest induced by diverse triggers, including replicative exhaustion, DNA damaging agents, oncogene activation, oxidative stress, and chromatin disruption. With important roles in aging and tumor suppression, cellular senescence has been implicated also in tumor promotion. Here we show that certain multiwalled carbon nanotubes (MWCNTs), as fiber-like nanomaterials, can trigger cellular senescence in primary human mesothelial cells. Using in vitro approaches, we found manifestation of several markers of cellular senescence, especially after exposure to a long and straight MWCNT. These included inhibition of cell division, senescence-associated heterochromatin foci, senescence-associated distension of satellites, LMNB1 depletion, γH2A.X nuclear panstaining, and enlarged cells exhibiting senescence-associated β-galactosidase activity. Furthermore, genome-wide transcriptome analysis revealed many differentially expressed genes, among which were genes encoding for a senescence-associated secretory phenotype. Our results clearly demonstrate the potential of long and straight MWCNTs to induce premature cellular senescence. This finding may find relevance in risk assessment of workplace safety, and in evaluating MWCNT's use in medicine such as drug carrier, due to exposure effects that might prompt onset of age-related diseases, or even carcinogenesis.
Collapse
Affiliation(s)
- Stella Marie Reamon-Buettner
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| | - Anja Hackbarth
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Albrecht Leonhardt
- Nanoscale Chemistry, Leibniz Institute for Solid State and Materials Research IFW, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Armin Braun
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Christina Ziemann
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
4
|
Tolmacheva EN, Vasilyev SA, Lebedev IN. Aneuploidy and DNA Methylation as Mirrored Features of Early Human Embryo Development. Genes (Basel) 2020; 11:E1084. [PMID: 32957536 PMCID: PMC7564410 DOI: 10.3390/genes11091084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Genome stability is an integral feature of all living organisms. Aneuploidy is the most common cause of fetal death in humans. The timing of bursts in increased aneuploidy frequency coincides with the waves of global epigenetic reprogramming in mammals. During gametogenesis and early embryogenesis, parental genomes undergo two waves of DNA methylation reprogramming. Failure of these processes can critically affect genome stability, including chromosome segregation during cell division. Abnormal methylation due to errors in the reprogramming process can potentially lead to aneuploidy. On the other hand, the presence of an entire additional chromosome, or chromosome loss, can affect the global genome methylation level. The associations of these two phenomena are well studied in the context of carcinogenesis, but here, we consider the relationship of DNA methylation and aneuploidy in early human and mammalian ontogenesis. In this review, we link these two phenomena and highlight the critical ontogenesis periods and genome regions that play a significant role in human reproduction and in the formation of pathological phenotypes in newborns with chromosomal aneuploidy.
Collapse
Affiliation(s)
- Ekaterina N. Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (S.A.V.); (I.N.L.)
| | | | | |
Collapse
|
5
|
Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA, Grothe R, Miga KH, Eichler EE, Phillippy AM, Koren S. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res 2020; 30:1291-1305. [PMID: 32801147 PMCID: PMC7545148 DOI: 10.1101/gr.263566.120] [Citation(s) in RCA: 362] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Complete and accurate genome assemblies form the basis of most downstream genomic analyses and are of critical importance. Recent genome assembly projects have relied on a combination of noisy long-read sequencing and accurate short-read sequencing, with the former offering greater assembly continuity and the latter providing higher consensus accuracy. The recently introduced Pacific Biosciences (PacBio) HiFi sequencing technology bridges this divide by delivering long reads (>10 kbp) with high per-base accuracy (>99.9%). Here we present HiCanu, a modification of the Canu assembler designed to leverage the full potential of HiFi reads via homopolymer compression, overlap-based error correction, and aggressive false overlap filtering. We benchmark HiCanu with a focus on the recovery of haplotype diversity, major histocompatibility complex (MHC) variants, satellite DNAs, and segmental duplications. For diploid human genomes sequenced to 30× HiFi coverage, HiCanu achieved superior accuracy and allele recovery compared to the current state of the art. On the effectively haploid CHM13 human cell line, HiCanu achieved an NG50 contig size of 77 Mbp with a per-base consensus accuracy of 99.999% (QV50), surpassing recent assemblies of high-coverage, ultralong Oxford Nanopore Technologies (ONT) reads in terms of both accuracy and continuity. This HiCanu assembly correctly resolves 337 out of 341 validation BACs sampled from known segmental duplications and provides the first preliminary assemblies of nine complete human centromeric regions. Although gaps and errors still remain within the most challenging regions of the genome, these results represent a significant advance toward the complete assembly of human genomes.
Collapse
Affiliation(s)
- Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Brian P Walenz
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Robert Grothe
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
6
|
Balzano E, Giunta S. Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function. Genes (Basel) 2020; 11:E912. [PMID: 32784998 PMCID: PMC7463522 DOI: 10.3390/genes11080912] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Centromeres are essential genetic elements that enable spindle microtubule attachment for chromosome segregation during mitosis and meiosis. While this function is preserved across species, centromeres display an array of dynamic features, including: (1) rapidly evolving DNA; (2) wide evolutionary diversity in size, shape and organization; (3) evidence of mutational processes to generate homogenized repetitive arrays that characterize centromeres in several species; (4) tolerance to changes in position, as in the case of neocentromeres; and (5) intrinsic fragility derived by sequence composition and secondary DNA structures. Centromere drive underlies rapid centromere DNA evolution due to the "selfish" pursuit to bias meiotic transmission and promote the propagation of stronger centromeres. Yet, the origins of other dynamic features of centromeres remain unclear. Here, we review our current understanding of centromere evolution and plasticity. We also detail the mutagenic processes proposed to shape the divergent genetic nature of centromeres. Changes to centromeres are not simply evolutionary relics, but ongoing shifts that on one side promote centromere flexibility, but on the other can undermine centromere integrity and function with potential pathological implications such as genome instability.
Collapse
Affiliation(s)
- Elisa Balzano
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Roma, Italy;
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
7
|
Gamba R, Fachinetti D. From evolution to function: Two sides of the same CENP-B coin? Exp Cell Res 2020; 390:111959. [DOI: 10.1016/j.yexcr.2020.111959] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
|
8
|
Sullivan LL, Sullivan BA. Genomic and functional variation of human centromeres. Exp Cell Res 2020; 389:111896. [PMID: 32035947 PMCID: PMC7140587 DOI: 10.1016/j.yexcr.2020.111896] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
Centromeres are central to chromosome segregation and genome stability, and thus their molecular foundations are important for understanding their function and the ways in which they go awry. Human centromeres typically form at large megabase-sized arrays of alpha satellite DNA for which there is little genomic understanding due to its repetitive nature. Consequently, it has been difficult to achieve genome assemblies at centromeres using traditional next generation sequencing approaches, so that centromeres represent gaps in the current human genome assembly. The role of alpha satellite DNA has been debated since centromeres can form, albeit rarely, on non-alpha satellite DNA. Conversely, the simple presence of alpha satellite DNA is not sufficient for centromere function since chromosomes with multiple alpha satellite arrays only exhibit a single location of centromere assembly. Here, we discuss the organization of human centromeres as well as genomic and functional variation in human centromere location, and current understanding of the genomic and epigenetic mechanisms that underlie centromere flexibility in humans.
Collapse
Affiliation(s)
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, USA; Division of Human Genetics, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Centromere Repeats: Hidden Gems of the Genome. Genes (Basel) 2019; 10:genes10030223. [PMID: 30884847 PMCID: PMC6471113 DOI: 10.3390/genes10030223] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Satellite DNAs are now regarded as powerful and active contributors to genomic and chromosomal evolution. Paired with mobile transposable elements, these repetitive sequences provide a dynamic mechanism through which novel karyotypic modifications and chromosomal rearrangements may occur. In this review, we discuss the regulatory activity of satellite DNA and their neighboring transposable elements in a chromosomal context with a particular emphasis on the integral role of both in centromere function. In addition, we discuss the varied mechanisms by which centromeric repeats have endured evolutionary processes, producing a novel, species-specific centromeric landscape despite sharing a ubiquitously conserved function. Finally, we highlight the role these repetitive elements play in the establishment and functionality of de novo centromeres and chromosomal breakpoints that underpin karyotypic variation. By emphasizing these unique activities of satellite DNAs and transposable elements, we hope to disparage the conventional exemplification of repetitive DNA in the historically-associated context of ‘junk’.
Collapse
|
10
|
McNulty SM, Sullivan BA. Alpha satellite DNA biology: finding function in the recesses of the genome. Chromosome Res 2018; 26:115-138. [PMID: 29974361 DOI: 10.1007/s10577-018-9582-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/14/2018] [Indexed: 02/05/2023]
Abstract
Repetitive DNA, formerly referred to by the misnomer "junk DNA," comprises a majority of the human genome. One class of this DNA, alpha satellite, comprises up to 10% of the genome. Alpha satellite is enriched at all human centromere regions and is competent for de novo centromere assembly. Because of the highly repetitive nature of alpha satellite, it has been difficult to achieve genome assemblies at centromeres using traditional next-generation sequencing approaches, and thus, centromeres represent gaps in the current human genome assembly. Moreover, alpha satellite DNA is transcribed into repetitive noncoding RNA and contributes to a large portion of the transcriptome. Recent efforts to characterize these transcripts and their function have uncovered pivotal roles for satellite RNA in genome stability, including silencing "selfish" DNA elements and recruiting centromere and kinetochore proteins. This review will describe the genomic and epigenetic features of alpha satellite DNA, discuss recent findings of noncoding transcripts produced from distinct alpha satellite arrays, and address current progress in the functional understanding of this oft-neglected repetitive sequence. We will discuss unique challenges of studying human satellite DNAs and RNAs and point toward new technologies that will continue to advance our understanding of this largely untapped portion of the genome.
Collapse
Affiliation(s)
- Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Division of Human Genetics, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Kravtsov VY, Livanova AA, Belyakov OV, Fedortseva RF. The Frequency of Lymphocytes Containing Dumbbell-Shaped Nuclei Depends on Ionizing Radiation Dose and Correlates with Appearance of Chromosomal Aberrations. Genome Integr 2018; 9:1. [PMID: 30820312 PMCID: PMC6388537 DOI: 10.4103/genint.genint_1_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nuclear anomalies of different types appear in cells in response to the action of ionizing radiation after the passage of the first mitotic division. In this article, we present the results of the study of the frequency of occurrence of three types of nuclear anomalies ("tailed" nuclei, nucleoplasmic bridges, and dumbbell-shaped nuclei) in vitro in human lymphocytes cultured with cytochalasin B when exposed to X-rays at doses of 0.0, 0.1, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, and 2.0 Gy. To stop the cell cycle of cultured lymphocytes after the first mitotic division, a cytokinesis block was performed using cytochalasin B. Dose-dependent curves of the occurrence of lymphocytes containing "tailed" nuclei, nucleoplasmic bridges, or dumbbell-shaped nuclei after irradiation have been constructed. At the same time, frequencies of occurrence of chromosomal aberrations (dicentric and ring chromosomes) in the culture of lymphocytes exposed to the same radiation doses were studied. Comparison of the frequencies of occurrence of dicentric and ring chromosomes with frequencies of occurrence of nuclear anomalies allows us to conclude that these nuclear anomalies are formed as a result of chromosomal aberrations arising in lymphocytes under the action of ionizing radiation. More than that, most of the chromosomal aberrations are converted into dumbbell-shaped nuclei in vitro in the culture of lymphocytes in the cytochalasin block.
Collapse
Affiliation(s)
- Viacheslav Yu Kravtsov
- A.M. Nikiforov Russian Center of Emergency and Radiation Medicine, EMERCOM of Russia, Saint Petersburg, Russia.,Department of Clinical Diagnostics, S.M. Kirov Military Medical Academy, Department of Biology, Saint Petersburg, Russia
| | - Alexandra A Livanova
- Department of Clinical Diagnostics, S.M. Kirov Military Medical Academy, Department of Biology, Saint Petersburg, Russia
| | - Oleg V Belyakov
- Division of Human Health, Applied Radiation Biology and Radiotherapy Section, International Atomic Energy Agency, Vienna, Austria
| | - Regina F Fedortseva
- A.M. Nikiforov Russian Center of Emergency and Radiation Medicine, EMERCOM of Russia, Saint Petersburg, Russia
| |
Collapse
|
12
|
Eck-Varanka B, Kováts N, Horváth E, Ferincz Á, Kakasi B, Nagy ST, Imre K, Paulovits G. Eco- and genotoxicity profiling of a rapeseed biodiesel using a battery of bioassays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:170-177. [PMID: 29353167 DOI: 10.1016/j.ecoenv.2018.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
Biodiesel is considered an important renewable energy source but still there is some controversy about its environmental toxicity, especially to aquatic life. In our study, the toxicity of water soluble fraction of biodiesel was evaluated in relatively low concentrations using a battery of bioassays: Vibrio fischeri bioluminescence inhibition, Sinapis alba root growth inhibition, Daphnia magna immobilization, boar semen live/dead ratio and DNA fragmentation and Unio pictorum micronucleus test. While the S. alba test indicated nutritive (stimulating) effect of the sample, the biodiesel exerted toxic effect in the aquatic tests. D. magna was the most sensitive with EC50 value of 0.0226%. For genotoxicity assessment, the mussel micronucleus test (MNT) was applied, detecting considerable genotoxic potential of the biodiesel sample: it elucidated micronuclei formation already at low concentration of 3.3%. Although this test has never been employed in biodiesel eco/genotoxicity assessments, it seems a promising tool, based on its appropriate sensitivity, and representativity.
Collapse
Affiliation(s)
- Bettina Eck-Varanka
- University of Pannonia, Institute of Environmental Sciences, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Nora Kováts
- University of Pannonia, Institute of Environmental Sciences, Egyetem str. 10, 8200 Veszprém, Hungary.
| | - Eszter Horváth
- University of Pannonia, Institute of Environmental Sciences, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Árpád Ferincz
- Department of Aquaculture, Szent István University, Páter K. str. 1, 2100 Gödöllő, Hungary
| | - Balázs Kakasi
- University of Pannonia, Research Institute of Biomolecular and Chemical Engineering, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Szabolcs Tamás Nagy
- University of Pannonia, Georgikon Faculty, Department of Animal Sciences, Deák Ferenc str. 16, 8360 Keszthely, Hungary
| | - Kornélia Imre
- MTA-PE Air Chemistry Research Group, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Gábor Paulovits
- Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kunó str. 3, 8237 Tihany, Hungary
| |
Collapse
|
13
|
Johnson WL, Yewdell WT, Bell JC, McNulty SM, Duda Z, O'Neill RJ, Sullivan BA, Straight AF. RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. eLife 2017; 6. [PMID: 28760200 PMCID: PMC5538822 DOI: 10.7554/elife.25299] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/07/2017] [Indexed: 12/15/2022] Open
Abstract
Heterochromatin formed by the SUV39 histone methyltransferases represses transcription from repetitive DNA sequences and ensures genomic stability. How SUV39 enzymes localize to their target genomic loci remains unclear. Here, we demonstrate that chromatin-associated RNA contributes to the stable association of SUV39H1 with constitutive heterochromatin in human cells. We find that RNA associated with mitotic chromosomes is concentrated at pericentric heterochromatin, and is encoded, in part, by repetitive α-satellite sequences, which are retained in cis at their transcription sites. Purified SUV39H1 directly binds nucleic acids through its chromodomain; and in cells, SUV39H1 associates with α-satellite RNA transcripts. Furthermore, nucleic acid binding mutants destabilize the association of SUV39H1 with chromatin in mitotic and interphase cells – effects that can be recapitulated by RNase treatment or RNA polymerase inhibition – and cause defects in heterochromatin function. Collectively, our findings uncover a previously unrealized function for chromatin-associated RNA in regulating constitutive heterochromatin in human cells. DOI:http://dx.doi.org/10.7554/eLife.25299.001 Each cell in a human body contains the same DNA sequence, which serves as a set of instructions for how the body should develop and operate. However, only certain sections of DNA are “active” at any particular time and in any given type of cell. When a section of DNA is active, cells make many copies of it using a molecule called RNA. When a section of DNA in inactive, very little RNA is made. Some sections of DNA must always be kept inactive to avoid damaging the cell. DNA is packaged around proteins called histones, and enzymes that modify histones control which sections of DNA are switched on or off. One such modifying enzyme, called SUV39H1, is important for inactivating sections of DNA that could cause harm to the cell if they are active. Previous studies showed that the loss of SUV39H1 and related proteins cause abnormalities and cancer in mice. However, it is not clear how this enzyme identifies and inactivates the DNA it needs to target. Johnson, Yewdell et al. studied SUV39H1 in human cells. The experiments show that RNA binds to the SUV39H1 enzyme and controls how it interacts with DNA. Specifically, Johnson, Yewdell et al. found that sections of DNA that are inactive can still make a small amount of RNA, and that this RNA tethers SUV39H1 to the DNA to keep the DNA switched off. Mutant forms of SUV39H1 that are unable to interact with RNA fall off the DNA, which allows DNA sequences that are normally switched off to become active. The findings of Johnson, Yewdell et al. reveal a new role for RNAs in regulating whether DNA is switched on or off. The next step is to determine whether other enzymes that can also modify histones use the same mechanism to activate or inactivate DNA. Differences in how the activity of DNA is regulated between individuals plays a crucial role in generating the diversity we see in nature. Therefore, this work helps us to understand our basic biology and may provide new opportunities for treating disease. DOI:http://dx.doi.org/10.7554/eLife.25299.002
Collapse
Affiliation(s)
- Whitney L Johnson
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - William T Yewdell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Jason C Bell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Zachary Duda
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, United States
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, United States
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
14
|
Abstract
Genomic variation is a source of functional diversity that is typically studied in genic and non-coding regulatory regions. However, the extent of variation within noncoding portions of the human genome, particularly highly repetitive regions, and the functional consequences are not well understood. Satellite DNA, including α satellite DNA found at human centromeres, comprises up to 10% of the genome, but is difficult to study because its repetitive nature hinders contiguous sequence assemblies. We recently described variation within α satellite DNA that affects centromere function. On human chromosome 17 (HSA17), we showed that size and sequence polymorphisms within primary array D17Z1 are associated with chromosome aneuploidy and defective centromere architecture. However, HSA17 can counteract this instability by assembling the centromere at a second, "backup" array lacking variation. Here, we discuss our findings in a broader context of human centromere assembly, and highlight areas of future study to uncover links between genomic and epigenetic features of human centromeres.
Collapse
Affiliation(s)
- Lori L Sullivan
- a Department of Molecular Genetics and Microbiology , Duke University Medical Center , Durham , NC , USA
| | - Kimberline Chew
- a Department of Molecular Genetics and Microbiology , Duke University Medical Center , Durham , NC , USA
| | - Beth A Sullivan
- a Department of Molecular Genetics and Microbiology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
15
|
Ureshino H, Kizuka H, Kusaba K, Sano H, Nishioka A, Shindo T, Kubota Y, Ando T, Kojima K, Kimura S. 5q- syndrome-like features as the first manifestation of myelodysplastic syndrome in a patient with an unbalanced whole-arm translocation der(5;19)(p10;q10). Int J Hematol 2016; 105:692-696. [PMID: 27914067 DOI: 10.1007/s12185-016-2160-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 11/28/2022]
Abstract
Derivative (5;19)(p10;q10) [der(5;19)(p10;q10)] is a rare chromosomal abnormality in myelodysplastic syndrome (MDS), and is genetically similar to deletion 5q [del(5q)]. However, MDS with der(5;19)(p10;q10) and 5q- syndrome are generally characterized as distinct subtypes. Here, we report a case of a patient with 5q- syndrome-like features as the first manifestation of MDS with der(5; 19)(p10;q10). A 59-year-old woman was admitted to our hospital for anemia without leukopenia and thrombocytopenia. She had received chemotherapy comprising carboplatin and docetaxel for endometrial cancer eight years before. Bone marrow aspirate (BM) revealed low blast counts with trilineage dysplastic cells, and fluorescent in situ hybridization revealed the loss of colony-stimulating factor 1 receptor (CSF1R) signals at 5q33-34. Although the initial manifestation was 5q- syndrome, G-banded metaphase analysis and spectral karyotyping analysis revealed der(5;19)(p10;q10). Consequently, a diagnosis of therapy-related MDS (t-MDS) was made. She failed to respond to azacitidine and lenalidomide therapy. Consequently, transfusion-dependent anemia and thrombocytopenia developed with increasing myeloblasts. Cytarabine, aclarubicin, and granulocyte colony-stimulating factor therapy also failed, and unfortunately the patient died. Thus, MDS with der(5;19)(p10;q10) may represent a platinum agent-related t-MDS that is highly resistant to chemotherapy.
Collapse
Affiliation(s)
- Hiroshi Ureshino
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Haruna Kizuka
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Kana Kusaba
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Haruhiko Sano
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Atsujiro Nishioka
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Takero Shindo
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Yasushi Kubota
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Toshihiko Ando
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Kensuke Kojima
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
16
|
Sinitsky MY, Minina VI, Gafarov NI, Asanov MA, Larionov AV, Ponasenko AV, Volobaev VP, Druzhinin VG. Assessment of DNA damage in underground coal miners using the cytokinesis-block micronucleus assay in peripheral blood lymphocytes. Mutagenesis 2016; 31:669-675. [DOI: 10.1093/mutage/gew038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Aldrup-MacDonald ME, Kuo ME, Sullivan LL, Chew K, Sullivan BA. Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles. Genome Res 2016; 26:1301-1311. [PMID: 27510565 PMCID: PMC5052062 DOI: 10.1101/gr.206706.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/08/2016] [Indexed: 01/27/2023]
Abstract
Alpha satellite is a tandemly organized type of repetitive DNA that comprises 5% of the genome and is found at all human centromeres. A defined number of 171-bp monomers are organized into chromosome-specific higher-order repeats (HORs) that are reiterated thousands of times. At least half of all human chromosomes have two or more distinct HOR alpha satellite arrays within their centromere regions. We previously showed that the two alpha satellite arrays of Homo sapiens Chromosome 17 (HSA17), D17Z1 and D17Z1-B, behave as centromeric epialleles, that is, the centromere, defined by chromatin containing the centromeric histone variant CENPA and recruitment of other centromere proteins, can form at either D17Z1 or D17Z1-B. Some individuals in the human population are functional heterozygotes in that D17Z1 is the active centromere on one homolog and D17Z1-B is active on the other. In this study, we aimed to understand the molecular basis for how centromere location is determined on HSA17. Specifically, we focused on D17Z1 genomic variation as a driver of epiallele formation. We found that D17Z1 arrays that are predominantly composed of HOR size and sequence variants were functionally less competent. They either recruited decreased amounts of the centromere-specific histone variant CENPA and the HSA17 was mitotically unstable, or alternatively, the centromere was assembled at D17Z1-B and the HSA17 was stable. Our study demonstrates that genomic variation within highly repetitive, noncoding DNA of human centromere regions has a pronounced impact on genome stability and basic chromosomal function.
Collapse
Affiliation(s)
- Megan E Aldrup-MacDonald
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Molly E Kuo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Lori L Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Kimberline Chew
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; Division of Human Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
18
|
Bhatia A, Kumar Y. Cancer cell micronucleus: an update on clinical and diagnostic applications. APMIS 2012; 121:569-81. [PMID: 23278233 DOI: 10.1111/apm.12033] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Micronucleus (MN) is the small nucleus that forms whenever a chromosome or its fragment is not incorporated into one of the daughter nuclei during cell division. Any form of genotoxic stress due to extraneous or internal factors leads to formation of a MN, which serves as an indicator of chromosomal instability. Chromosomal damage and formation of MN are believed to play a significant role in the pathogenesis of many malignancies. Studies have shown that MN assay can be used as a tool for risk prediction, screening, diagnosis, prognosis and as a treatment-response indicator in cancers. With the advancements in technology, greater details are becoming available regarding the molecular events in carcinogenesis. The micronuclei (MNi) in the cancer cells are now being used as tools to understand the pathogenetics of the malignancies. However, despite large number of studies on MNi in lymphocytes or exfoliated cells of cancer patients, the data regarding a cancer cell MN remain scarce. This review article tries to unleash some of the mysteries related to the formation of MN inside the cancer cell. Also, it discusses the possible effects and the events post MN formation in the cancer cell.
Collapse
Affiliation(s)
- Alka Bhatia
- Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh, India.
| | | |
Collapse
|
19
|
Koumbaris G, Hatzisevastou-Loukidou H, Alexandrou A, Ioannides M, Christodoulou C, Fitzgerald T, Rajan D, Clayton S, Kitsiou-Tzeli S, Vermeesch JR, Skordis N, Antoniou P, Kurg A, Georgiou I, Carter NP, Patsalis PC. FoSTeS, MMBIR and NAHR at the human proximal Xp region and the mechanisms of human Xq isochromosome formation. Hum Mol Genet 2011; 20:1925-36. [PMID: 21349920 PMCID: PMC3428953 DOI: 10.1093/hmg/ddr074] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The recently described DNA replication-based mechanisms of fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR) were previously shown to catalyze complex exonic, genic and genomic rearrangements. By analyzing a large number of isochromosomes of the long arm of chromosome X (i(Xq)), using whole-genome tiling path array comparative genomic hybridization (aCGH), ultra-high resolution targeted aCGH and sequencing, we provide evidence that the FoSTeS and MMBIR mechanisms can generate large-scale gross chromosomal rearrangements leading to the deletion and duplication of entire chromosome arms, thus suggesting an important role for DNA replication-based mechanisms in both the development of genomic disorders and cancer. Furthermore, we elucidate the mechanisms of dicentric i(Xq) (idic(Xq)) formation and show that most idic(Xq) chromosomes result from non-allelic homologous recombination between palindromic low copy repeats and highly homologous palindromic LINE elements. We also show that non-recurrent-breakpoint idic(Xq) chromosomes have microhomology-associated breakpoint junctions and are likely catalyzed by microhomology-mediated replication-dependent recombination mechanisms such as FoSTeS and MMBIR. Finally, we stress the role of the proximal Xp region as a chromosomal rearrangement hotspot.
Collapse
Affiliation(s)
- George Koumbaris
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | | | - Angelos Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Marios Ioannides
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Christodoulos Christodoulou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Tomas Fitzgerald
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Diana Rajan
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen Clayton
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sophia Kitsiou-Tzeli
- Department of Medical Genetics, University of Athens, St Sophia Children’s Hospital, Athens 11527, Greece
| | - Joris R. Vermeesch
- Centre for Human Genetics, University Hospital, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Nicos Skordis
- Pediatric Endocrine Unit, Makarios III Hospital, Nicosia 1474, Cyprus
| | - Pavlos Antoniou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Ants Kurg
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | | | - Nigel P. Carter
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Philippos C. Patsalis
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
20
|
Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 2011; 26:125-32. [PMID: 21164193 DOI: 10.1093/mutage/geq052] [Citation(s) in RCA: 827] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Micronuclei (MN) and other nuclear anomalies such as nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) are biomarkers of genotoxic events and chromosomal instability. These genome damage events can be measured simultaneously in the cytokinesis-block micronucleus cytome (CBMNcyt) assay. The molecular mechanisms leading to these events have been investigated over the past two decades using molecular probes and genetically engineered cells. In this brief review, we summarise the wealth of knowledge currently available that best explains the formation of these important nuclear anomalies that are commonly seen in cancer and are indicative of genome damage events that could increase the risk of developmental and degenerative diseases. MN can originate during anaphase from lagging acentric chromosome or chromatid fragments caused by misrepair of DNA breaks or unrepaired DNA breaks. Malsegregation of whole chromosomes at anaphase may also lead to MN formation as a result of hypomethylation of repeat sequences in centromeric and pericentromeric DNA, defects in kinetochore proteins or assembly, dysfunctional spindle and defective anaphase checkpoint genes. NPB originate from dicentric chromosomes, which may occur due to misrepair of DNA breaks, telomere end fusions, and could also be observed when defective separation of sister chromatids at anaphase occurs due to failure of decatenation. NBUD represent the process of elimination of amplified DNA, DNA repair complexes and possibly excess chromosomes from aneuploid cells.
Collapse
Affiliation(s)
- M Fenech
- Department of Nutritional Genomics and DNA Damage Diagnostics, Commonwealth Scientific and Industrial Research Organisation Food and Nutritional Sciences, Gate 13 Kintore Avenue, PO Box 10041, Adelaide BC, South Australia 5000, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Velichko AK, Kantidze OL, Razin SV. HP1α is not necessary for the structural maintenance of centromeric heterochromatin. Epigenetics 2011; 6:380-7. [PMID: 20962594 DOI: 10.4161/epi.6.3.13866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatin protein 1 (HP1) was discovered as a protein essential for maintaining the silent transcriptional status of genes located within or close to centromeric regions of Drosophila chromosomes. Mammals express three variants of HP1; of these, HP1α is a direct homolog of Drosophila HP1. The prevailing view states that HP1 is a structural component of heterochromatin and is essential for compact DNA packaging. HP1 contains a chromodomain that binds to di- and- tri-methylated lysine 9 of histone H3. Additionally, it contains a chromoshadow domain that allows HP1 to dimerize and interact with other proteins. HP1 is thought to form "bridges" between neighboring rows of nucleosomes in heterochromatin. In mammalian cells, a significant portion of HP1α is located in the centromeric regions of chromosomes. In this study, we show that the majority of HP1α is removed from centromeres upon heat shock. This occurs without a loss of H3K9 trimethylation and does not correlate with a decompaction of centromeres. Furthermore, HP1α is not degraded and remains bound to chromatin. Therefore, it is likely that HP1α is simply redistributed to euchromatic regions. We propose that this redistribution is essential for reversal of the transcriptional status of euchromatic and heterochromatic compartments.
Collapse
Affiliation(s)
- Artem K Velichko
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|