1
|
Maxson ME, Das L, Goldberg MF, Porcelli SA, Chan J, Jacobs WR. Mycobacterium tuberculosis Central Metabolism Is Key Regulator of Macrophage Pyroptosis and Host Immunity. Pathogens 2023; 12:1109. [PMID: 37764917 PMCID: PMC10535942 DOI: 10.3390/pathogens12091109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic dysregulation in Mycobacterium tuberculosis results in increased macrophage apoptosis or pyroptosis. However, mechanistic links between Mycobacterium virulence and bacterial metabolic plasticity remain ill defined. In this study, we screened random transposon insertions of M. bovis BCG to identify mutants that induce pyroptotic death of the infected macrophage. Analysis of the transposon insertion sites identified a panel of fdr (functioning death repressor) genes, which were shown in some cases to encode functions central to Mycobacterium metabolism. In-depth studies of one fdr gene, fdr8 (BCG3787/Rv3727), demonstrated its important role in the maintenance of M. tuberculosis and M. bovis BCG redox balance in reductive stress conditions in the host. Our studies expand the subset of known Mycobacterium genes linking bacterial metabolic plasticity to virulence and also reveal that the broad induction of pyroptosis by an intracellular bacterial pathogen is linked to enhanced cellular immunity in vivo.
Collapse
Affiliation(s)
- Michelle E. Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Lahari Das
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | | | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | - John Chan
- Department of Medicine, New Jersey Medical School, 205 South Orange Avenue, Newark, NJ 07103, USA;
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| |
Collapse
|
2
|
Ba F, Ji X, Huang S, Zhang Y, Liu WQ, Liu Y, Ling S, Li J. Engineering Escherichia coli to Utilize Erythritol as Sole Carbon Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207008. [PMID: 36938858 DOI: 10.1002/advs.202207008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
Erythritol, one of the natural sugar alcohols, is widely used as a sugar substitute sweetener in food industries. Humans themselves are not able to catabolize erythritol and their gut microbes lack related catabolic pathways either to metabolize erythritol. Here, Escherichia coli (E. coli) is engineered to utilize erythritol as sole carbon source aiming for defined applications. First, the erythritol metabolic gene cluster is isolated and the erythritol-binding transcriptional repressor and its DNA-binding site are experimentally characterized. Transcriptome analysis suggests that carbohydrate metabolism-related genes in the engineered E. coli are overall upregulated. In particular, the enzymes of transaldolase (talA and talB) and transketolase (tktA and tktB) are notably overexpressed (e.g., the expression of tktB is improved by nearly sixfold). By overexpression of the four genes, cell growth can be increased as high as three times compared to the cell cultivation without overexpression. Finally, engineered E. coli strains can be used as a living detector to distinguish erythritol-containing soda soft drinks and can grow in the simulated intestinal fluid supplemented with erythritol. This work is expected to inspire the engineering of more hosts to respond and utilize erythritol for broad applications in metabolic engineering, synthetic biology, and biomedical engineering.
Collapse
Affiliation(s)
- Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xiangyang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yufei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
3
|
The regulon of Brucella abortus two-component system BvrR/BvrS reveals the coordination of metabolic pathways required for intracellular life. PLoS One 2022; 17:e0274397. [PMID: 36129877 PMCID: PMC9491525 DOI: 10.1371/journal.pone.0274397] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Brucella abortus is a facultative intracellular pathogen causing a severe zoonotic disease worldwide. The two-component regulatory system (TCS) BvrR/BvrS of B. abortus is conserved in members of the Alphaproteobacteria class. It is related to the expression of genes required for host interaction and intracellular survival. Here we report that bvrR and bvrS are part of an operon composed of 16 genes encoding functions related to nitrogen metabolism, DNA repair and recombination, cell cycle arrest, and stress response. Synteny of this genomic region within close Alphaproteobacteria members suggests a conserved role in coordinating the expression of carbon and nitrogen metabolic pathways. In addition, we performed a ChIP-Seq analysis after exposure of bacteria to conditions that mimic the intracellular environment. Genes encoding enzymes at metabolic crossroads of the pentose phosphate shunt, gluconeogenesis, cell envelope homeostasis, nucleotide synthesis, cell division, and virulence are BvrR/BvrS direct targets. A 14 bp DNA BvrR binding motif was found and investigated in selected gene targets such as virB1, bvrR, pckA, omp25, and tamA. Understanding gene expression regulation is essential to elucidate how Brucella orchestrates a physiological response leading to a furtive pathogenic strategy.
Collapse
|
4
|
Pan-Proteomic Analysis and Elucidation of Protein Abundance among the Closely Related Brucella Species, Brucella abortus and Brucella melitensis. Biomolecules 2020; 10:biom10060836. [PMID: 32486122 PMCID: PMC7355635 DOI: 10.3390/biom10060836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a zoonotic infection caused by bacteria of the genus Brucella. The species, B. abortus and B. melitensis, major causative agents of human brucellosis, share remarkably similar genomes, but they differ in their natural hosts, phenotype, antigenic, immunogenic, proteomic and metabolomic properties. In the present study, label-free quantitative proteomic analysis was applied to investigate protein expression level differences. Type strains and field strains were each cultured six times, cells were harvested at a midlogarithmic growth phase and proteins were extracted. Following trypsin digestion, the peptides were desalted, separated by reverse-phase nanoLC, ionized using electrospray ionization and transferred into an linear trap quadrapole (LTQ) Orbitrap Velos mass spectrometer to record full scan MS spectra (m/z 300–1700) and tandem mass spectrometry (MS/MS) spectra of the 20 most intense ions. Database matching with the reference proteomes resulted in the identification of 826 proteins. The Cluster of Gene Ontologies of the identified proteins revealed differences in bimolecular transport and protein synthesis mechanisms between these two strains. Among several other proteins, antifreeze proteins, Omp10, superoxide dismutase and 30S ribosomal protein S14 were predicted as potential virulence factors among the proteins differentially expressed. All mass spectrometry data are available via ProteomeXchange with identifier PXD006348.
Collapse
|
5
|
Garcia DC, Cheng X, Land ML, Standaert RF, Morrell-Falvey JL, Doktycz MJ. Computationally Guided Discovery and Experimental Validation of Indole-3-acetic Acid Synthesis Pathways. ACS Chem Biol 2019; 14:2867-2875. [PMID: 31693336 DOI: 10.1021/acschembio.9b00725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Elucidating the interaction networks associated with secondary metabolite production in microorganisms is an ongoing challenge made all the more daunting by the rate at which DNA sequencing technology reveals new genes and potential pathways. Developing the culturing methods, expression conditions, and genetic systems needed for validating pathways in newly discovered microorganisms is often not possible. Therefore, new tools and techniques are needed for defining complex metabolic pathways. Here, we describe an in vitro computationally assisted pathway description approach that employs bioinformatic searches of genome databases, protein structural modeling, and protein-ligand-docking simulations to predict the gene products most likely to be involved in a particular secondary metabolite production pathway. This information is then used to direct in vitro reconstructions of the pathway and subsequent confirmation of pathway activity using crude enzyme preparations. As a test system, we elucidated the pathway for biosynthesis of indole-3-acetic acid (IAA) in the plant-associated microbe Pantoea sp. YR343. This organism is capable of metabolizing tryptophan into the plant phytohormone IAA. BLAST analyses identified a likely three-step pathway involving an amino transferase, an indole pyruvate decarboxylase, and a dehydrogenase. However, multiple candidate enzymes were identified at each step, resulting in a large number of potential pathway reconstructions (32 different enzyme combinations). Our approach shows the effectiveness of crude extracts to rapidly elucidate enzymes leading to functional pathways. Results are compared to affinity purified enzymes for select combinations and found to yield similar relative activities. Further, in vitro testing of the pathway reconstructions revealed the "underground" nature of IAA metabolism in Pantoea sp. YR343 and the various mechanisms used to produce IAA. Importantly, our experiments illustrate the scalable integration of computational tools and cell-free enzymatic reactions to identify and validate metabolic pathways in a broadly applicable manner.
Collapse
Affiliation(s)
- David C. Garcia
- Biological and Nanoscale Systems Group, Biosciences Division Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996-4519, United States
| | - Xiaolin Cheng
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Miriam L. Land
- Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert F. Standaert
- Biological and Nanoscale Systems Group, Biosciences Division Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, East Tennessee State University, Johnson City, Tennessee 37604, United States
| | - Jennifer L. Morrell-Falvey
- Biological and Nanoscale Systems Group, Biosciences Division Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Mitchel J. Doktycz
- Biological and Nanoscale Systems Group, Biosciences Division Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996-4519, United States
| |
Collapse
|
6
|
Park WB, Im YB, Shim S, Yoo HS. Analysis of protein expression in Brucella abortus mutants with different growth rates by two-dimensional gel electrophoresis and LC-MS/MS peptide analysis. J Vet Sci 2018; 19:216-231. [PMID: 29032658 PMCID: PMC5879070 DOI: 10.4142/jvs.2018.19.2.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/12/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022] Open
Abstract
Brucella abortus is a bacterium that causes brucellosis and is the causative agent of worldwide zoonoses. Pathogenesis of the B. abortus infection is complicated, and several researchers have attempted to elucidate the infection mechanism of B. abortus. While several proteins have been revealed as pathogenic factors by previous researchers, the underlying mechanism of B. abortus infection is unresolved. In this study, we identified proteins showing different expression levels in B. abortus mutants with different biological characteristics that were generated by random insertion of a transposon. Five mutants were selected based on biological characteristics, in particular, their growth features. Total proteins of mutant and wild-type B. abortus were purified and subjected to two-dimensional gel electrophoresis. Thirty protein spots of each mutant with expression increases or decreases were selected; those with a change of more than 2-fold were compared with the wild-type. Selected spots underwent liquid chromatography tandem mass spectrometry for peptide analysis. DnaK and ClpB, involved in protein aggregation, increased. SecA and GAPDH, associated with energy metabolism, decreased in some mutants with a growth rate slower than that of the wild-type. Mutants with slower growth showed a decrease in energy metabolism-related proteins, while mutants with faster growth showed an increase in pathogenicity-related proteins.
Collapse
Affiliation(s)
- Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Young Bin Im
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
7
|
Yang Z, Tsui SKW. Functional Annotation of Proteins Encoded by the Minimal Bacterial Genome Based on Secondary Structure Element Alignment. J Proteome Res 2018; 17:2511-2520. [PMID: 29757649 DOI: 10.1021/acs.jproteome.8b00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In synthetic biology, one of the key focuses is building a minimal artificial cell which can provide basic chassis for functional study. Recently, the J. Craig Venter Institute published the latest version of the minimal bacterial genome JCVI-syn3.0, which only encoded 438 essential proteins. However, among them functions of 149 proteins remain unknown because of the lack of effective annotation method. Here, we report a secondary structure element alignment method called SSEalign based on an effective training data set extracting from various bacterial genomes. The experimentally validated homologous genes in different species were selected as training positives, while unrelated genes in different species were selected as training negatives. Moreover, SSEalign used a set of well-defined basic alignment elements with the backtracking line search algorithm to derive the best parameters for accurate prediction. Experimental results showed that SSEalign achieved 88.2% test accuracy, which is better than the existing prediction methods. SSEalign was subsequently applied to identify the functions of those unannotated proteins in the latest published minimal bacteria genome JCVI-syn3.0. Results indicated that at least 136 proteins out of 149 unannotated proteins in the JCVI-syn3.0 genome could be annotated by SSEalign. Our method is effective for the identification of protein homology in JCVI-syn3.0 and can be used to annotate those hypothetical proteins in other bacterial genomes.
Collapse
Affiliation(s)
- Zhiyuan Yang
- College of Life Information Science & Instrument Engineering , Hangzhou Dianzi University , Hangzhou 310018 , China.,School of Biomedical Sciences , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong.,Hong Kong Bioinformatics Centre , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong.,Hong Kong Bioinformatics Centre , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong.,Centre for Microbial Genomics and Proteomics , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong
| |
Collapse
|
8
|
Herrou J, Czyż DM, Fiebig A, Willett JW, Kim Y, Wu R, Babnigg G, Crosson S. Molecular control of gene expression by Brucella BaaR, an IclR-type transcriptional repressor. J Biol Chem 2018; 293:7437-7456. [PMID: 29567835 PMCID: PMC5949995 DOI: 10.1074/jbc.ra118.002045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/19/2018] [Indexed: 01/06/2023] Open
Abstract
The general stress response sigma factor σE1 directly and indirectly regulates the transcription of dozens of genes that influence stress survival and host infection in the zoonotic pathogen Brucella abortus Characterizing the functions of σE1-regulated genes therefore would contribute to our understanding of B. abortus physiology and infection biology. σE1 indirectly activates transcription of the IclR family regulator Bab2_0215, but the function of this regulator remains undefined. Here, we present a structural and functional characterization of Bab2_0215, which we have named B rucella adipic acid-activated regulator (BaaR). We found that BaaR adopts a classic IclR-family fold and directly represses the transcription of two operons with predicted roles in carboxylic acid oxidation. BaaR binds two sites on chromosome II between baaR and a divergently transcribed hydratase/dehydrogenase (acaD2), and it represses transcription of both genes. We identified three carboxylic acids (adipic acid, tetradecanedioic acid, and ϵ-aminocaproic acid) and a lactone (ϵ-caprolactone) that enhance transcription from the baaR and acaD2 promoters. However, neither the activating acids nor caprolactone enhanced transcription by binding directly to BaaR. Induction of baaR transcription by adipic acid required the gene bab2_0213, which encodes a major facilitator superfamily transporter, suggesting that Bab2_0213 transports adipic acid across the inner membrane. We conclude that a suite of structurally related organic molecules activate transcription of genes repressed by BaaR. Our study provides molecular-level understanding of a gene expression program in B. abortus that is downstream of σE1.
Collapse
Affiliation(s)
- Julien Herrou
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | - Daniel M Czyż
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | - Aretha Fiebig
- Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | - Jonathan W Willett
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | | | - Ruiying Wu
- Argonne National Laboratory, Argonne, Illinois 60439
| | | | - Sean Crosson
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439; Microbiology, University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
9
|
Zai X, Yang Q, Yin Y, Li R, Qian M, Zhao T, Li Y, Zhang J, Fu L, Xu J, Chen W. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses. Front Microbiol 2017; 8:2347. [PMID: 29238329 PMCID: PMC5712581 DOI: 10.3389/fmicb.2017.02347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022] Open
Abstract
Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS) via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs) that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular homeostasis and metabolic balance under stress. In conclusion, our results provide a better understanding of the global metabolic adaptations of B. abortus associated with distinct environmental stresses. The identification of proteins necessary for stress resistance is crucial toward elucidating the infectious process in order to control brucellosis, and may facilitate the discovery of novel therapeutic targets and effective vaccines.
Collapse
Affiliation(s)
- Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaoling Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Mengying Qian
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Taoran Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
10
|
Zai X, Yang Q, Liu K, Li R, Qian M, Zhao T, Li Y, Yin Y, Dong D, Fu L, Li S, Xu J, Chen W. A comprehensive proteogenomic study of the human Brucella vaccine strain 104 M. BMC Genomics 2017; 18:402. [PMID: 28535754 PMCID: PMC5442703 DOI: 10.1186/s12864-017-3800-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/16/2017] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Brucella spp. are Gram-negative, facultative intracellular pathogens that cause brucellosis in both humans and animals. The B. abortus vaccine strain 104 M is the only vaccine available in China for the prevention of brucellosis in humans. Although the B. abortus 104 M genome has been fully sequenced, the current genome annotations are not yet complete. In addition, the main mechanisms underpinning its residual toxicity and vaccine-induced immune protection have yet to be elucidated. Mapping the proteome of B. abortus 104 M will help to improve genome annotation quality, thereby facilitating a greater understanding of its biology. RESULTS In this study, we utilized a proteogenomic approach that combined subcellular fractionation and peptide fractionation to perform a whole-proteome analysis and genome reannotation of B. abortus 104 M using high-resolution mass spectrometry. In total, 1,729 proteins (56.3% of 3,072) including 218 hypothetical proteins were identified using the culture conditions that were employed this study. The annotations of the B. abortus 104 M genome were also refined following identification and validation by reverse transcription-PCR. In addition, 14 pivotal virulence factors and 17 known protective antigens known to be involved in residual toxicity and immune protection were confirmed at the protein level following induction by the 104 M vaccine. Moreover, a further insight into the cell biology of multichromosomal bacteria was obtained following the elucidation of differences in protein expression levels between the small and large chromosomes. CONCLUSIONS The work presented in this report used a proteogenomic approach to perform whole-proteome analysis and genome reannotation in B. abortus 104 M; this work helped to improve genome annotation quality. Our analysis of virulence factors, protective antigens and other protein effectors provided the basis for further research to elucidate the mechanisms of residual toxicity and immune protection induced by the 104 M vaccine. Finally, the potential link between replication dynamics, gene function, and protein expression levels in this multichromosomal bacterium was detailed.
Collapse
Affiliation(s)
- Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaoling Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Kun Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Mengying Qian
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Taoran Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Dayong Dong
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shanhu Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
11
|
Gómez LA, Alvarez FI, Fernández PA, Flores MR, Molina RE, Coloma RF, Oñate AA. Immunogenicity and Protective Response Induced by Recombinant Plasmids Based on the BAB1_0267 and BAB1_0270 Open Reading Frames of Brucella abortus 2308 in BALB/c Mice. Front Cell Infect Microbiol 2016; 6:117. [PMID: 27747197 PMCID: PMC5041321 DOI: 10.3389/fcimb.2016.00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/16/2016] [Indexed: 01/05/2023] Open
Abstract
Immunogenicity induced by recombinant plasmids based on the BAB1_0267 and BAB1_0270 open reading frames (ORFs) of Brucella abortus 2308 was evaluated. Bioinformatics analyses indicate that the BAB1_0267 and BAB1_0270 ORFs encode a protein with a SH3 domain and a Zn-dependent metalloproteinase, respectively. Both ORFs have important effects on intracellular survival and replication of B. abortus 2308, mediated via professional and non-professional phagocytic cells. Our results show that immunization with the recombinant plasmid based on the BAB1_0267 ORF significantly increases the production of IgG1, levels of IFN-γ and the lymphoproliferative response of splenocytes. However, BAB1_0267 did not provide significant levels of protection. The plasmid based on the BAB1_0270 significantly increased IgG2a production, levels of IFN-γ and TNF-α, and the lymphoproliferative response of splenocytes. These results demonstrate that immunization with the BAB1_0270 derived recombinant plasmid induce a Th1-type immune response, correlated with a heightened resistance to B. abortus 2308 infection in mice. It is concluded that the Th1-type immune response against bacterial Zn-dependent metalloproteinase induces a protective response in mice, and that pV270 recombinant plasmid is an effective candidate microbicide against brucellosis.
Collapse
Affiliation(s)
- Leonardo A Gómez
- Laboratory of Molecular Immunology, Department of Immunology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Francisco I Alvarez
- Laboratory of Molecular Immunology, Department of Immunology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Pablo A Fernández
- Laboratory of Molecular Immunology, Department of Immunology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Manuel R Flores
- Laboratory of Molecular Immunology, Department of Immunology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Raúl E Molina
- Laboratory of Molecular Immunology, Department of Immunology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Roberto F Coloma
- Laboratory of Molecular Immunology, Department of Immunology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Angel A Oñate
- Laboratory of Molecular Immunology, Department of Immunology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| |
Collapse
|
12
|
Zhu X, Xie S, Armengaud J, Xie W, Guo Z, Kang S, Wu Q, Wang S, Xia J, He R, Zhang Y. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline. Mol Cell Proteomics 2016; 15:1791-807. [PMID: 26902207 PMCID: PMC5083088 DOI: 10.1074/mcp.m115.050989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest.
Collapse
Affiliation(s)
- Xun Zhu
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Jean Armengaud
- ¶CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory, BP 17171, F-30200, Bagnols-sur-Cèze, F-30207, France
| | - Wen Xie
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhaojiang Guo
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Kang
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jixing Xia
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongjun He
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Youjun Zhang
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China;
| |
Collapse
|
13
|
Kumar D, Mondal AK, Kutum R, Dash D. Proteogenomics of rare taxonomic phyla: A prospective treasure trove of protein coding genes. Proteomics 2015; 16:226-40. [PMID: 26773550 DOI: 10.1002/pmic.201500263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023]
Abstract
Sustainable innovations in sequencing technologies have resulted in a torrent of microbial genome sequencing projects. However, the prokaryotic genomes sequenced so far are unequally distributed along their phylogenetic tree; few phyla contain the majority, the rest only a few representatives. Accurate genome annotation lags far behind genome sequencing. While automated computational prediction, aided by comparative genomics, remains a popular choice for genome annotation, substantial fraction of these annotations are erroneous. Proteogenomics utilizes protein level experimental observations to annotate protein coding genes on a genome wide scale. Benefits of proteogenomics include discovery and correction of gene annotations regardless of their phylogenetic conservation. This not only allows detection of common, conserved proteins but also the discovery of protein products of rare genes that may be horizontally transferred or taxonomy specific. Chances of encountering such genes are more in rare phyla that comprise a small number of complete genome sequences. We collated all bacterial and archaeal proteogenomic studies carried out to date and reviewed them in the context of genome sequencing projects. Here, we present a comprehensive list of microbial proteogenomic studies, their taxonomic distribution, and also urge for targeted proteogenomics of underexplored taxa to build an extensive reference of protein coding genes.
Collapse
Affiliation(s)
- Dhirendra Kumar
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| | - Anupam Kumar Mondal
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| | - Rintu Kutum
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| | - Debasis Dash
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| |
Collapse
|
14
|
Silva TMA, Mol JPS, Winter MG, Atluri V, Xavier MN, Pires SF, Paixão TA, Andrade HM, Santos RL, Tsolis RM. The predicted ABC transporter AbcEDCBA is required for type IV secretion system expression and lysosomal evasion by Brucella ovis. PLoS One 2014; 9:e114532. [PMID: 25474545 PMCID: PMC4256435 DOI: 10.1371/journal.pone.0114532] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/10/2014] [Indexed: 12/23/2022] Open
Abstract
Brucella ovis is a major cause of reproductive failure in rams and it is one of the few well-described Brucella species that is not zoonotic. Previous work showed that a B. ovis mutant lacking a species-specific ABC transporter (ΔabcBA) was attenuated in mice and was unable to survive in macrophages. The aim of this study was to evaluate the role of this ABC transporter during intracellular survival of B. ovis. In HeLa cells, B. ovis WT was able to survive and replicate at later time point (48 hpi), whereas an ΔabcBA mutant was attenuated at 24 hpi. The reduced survival of the ΔabcBA mutant was associated with a decreased ability to exclude the lysosomal marker LAMP1 from its vacuolar membrane, suggesting a failure to establish a replicative niche. The ΔabcBA mutant showed a reduced abundance of the Type IV secretion system (T4SS) proteins VirB8 and VirB11 in both rich and acid media, when compared to WT B. ovis. However, mRNA levels of virB1, virB8, hutC, and vjbR were similar in both strains. These results support the notion that the ABC transporter encoded by abcEDCBA or its transported substrate acts at a post-transcriptional level to promote the optimal expression of the B. ovis T4SS within infected host cells.
Collapse
Affiliation(s)
- Teane M. A. Silva
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana P. S. Mol
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria G. Winter
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Vidya Atluri
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Mariana N. Xavier
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Simone F. Pires
- Departamento de Parasitologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hélida M. Andrade
- Departamento de Parasitologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (RLS); (RMT)
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- * E-mail: (RLS); (RMT)
| |
Collapse
|
15
|
Wareth G, Melzer F, Weise C, Neubauer H, Roesler U, Murugaiyan J. Proteomics-based identification of immunodominant proteins of Brucellae using sera from infected hosts points towards enhanced pathogen survival during the infection. Biochem Biophys Res Commun 2014; 456:202-6. [PMID: 25446124 DOI: 10.1016/j.bbrc.2014.11.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/15/2014] [Indexed: 01/07/2023]
Abstract
Brucella (B.) species lack classical virulence factors, but escape effectively the immune response of the host. The species Brucella abortus and Brucella melitensis infect predominantly cattle and small ruminants such as sheep or goats, respectively, but account also for most human cases. These two species share remarkably similar genomes but different proteomes have been demonstrated. This might be one of the reasons for their host specificity. A comprehensive identification of immunodominant proteins of these two species using antibodies present in the serum of naturally infected ruminants might provide insight on the mechanism of their infection in different hosts. In the present study, whole-cell protein extracts of B. abortus and B. melitensis were separated using SDS-PAGE and western blotting was performed using field sera from cows, buffaloes, sheep and goats. Protein bands that matched with western blot signals were excised, digested with trypsin and subjected to protein identification using MALDI-TOF MS. Identified proteins included heat shock proteins, enzymes, binding proteins and hypothetical proteins. Antibodies against the same set of antigen were found for all species investigated, except for superoxide dismutase of B. melitensis for which antibodies were demonstrated only in sheep serum. Brucellae appear to express these proteins mainly for their survival in the host system during infection.
Collapse
Affiliation(s)
- Gamal Wareth
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität Berlin, Germany; Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Falk Melzer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Christoph Weise
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität Berlin, Germany
| | - Jayaseelan Murugaiyan
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität Berlin, Germany.
| |
Collapse
|
16
|
Kucharova V, Wiker HG. Proteogenomics in microbiology: taking the right turn at the junction of genomics and proteomics. Proteomics 2014; 14:2360-675. [PMID: 25263021 DOI: 10.1002/pmic.201400168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022]
Abstract
High-accuracy and high-throughput proteomic methods have completely changed the way we can identify and characterize proteins. MS-based proteomics can now provide a unique supplement to genomic data and add a new level of information to the interpretation of genomic sequences. Proteomics-driven genome annotation has become especially relevant in microbiology where genomes are sequenced on a daily basis and limitations of an in silico driven annotation process are well recognized. In this review paper, we outline different strategies on how one can design a proteogenomic experiment, for example on genome-sequenced (synonymous proteogenomics) versus unsequenced organisms (ortho-proteogenomics) or with the aid of other "omic" data such as RNA-seq. We touch upon many challenges that are encountered during a typical proteogenomic study, mostly concerning bioinformatics methods and downstream data analysis, but also related to creation and use of sequence databases. A large list of proteogenomic case studies of different microorganisms is provided to illustrate the mapping of MS/MS-derived peptide spectra to genomic DNA sequences. These investigations have led to accurate determination of translational initiation sites, pointed out eventual read-throughs or programmed frameshifts, detected signal peptide processing or other protein maturation events, removed questionable annotation assignments, and provided evidence for predicted hypothetical proteins.
Collapse
Affiliation(s)
- Veronika Kucharova
- Department of Clinical Science, The Gade Research Group for Infection and Immunity, University of Bergen, Norway
| | | |
Collapse
|
17
|
Ortiz-Román L, Riquelme-Neira R, RobertoVidal, Oñate A. Roles of genomic island 3 (GI-3) BAB1_0267 and BAB1_0270 open reading frames (ORFs) in the virulence of Brucella abortus 2308. Vet Microbiol 2014; 172:279-84. [DOI: 10.1016/j.vetmic.2014.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/29/2014] [Accepted: 05/04/2014] [Indexed: 12/25/2022]
|
18
|
Kumar D, Yadav AK, Kadimi PK, Nagaraj SH, Grimmond SM, Dash D. Proteogenomic analysis of Bradyrhizobium japonicum USDA110 using GenoSuite, an automated multi-algorithmic pipeline. Mol Cell Proteomics 2013; 12:3388-97. [PMID: 23882027 PMCID: PMC3820949 DOI: 10.1074/mcp.m112.027169] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/19/2013] [Indexed: 11/06/2022] Open
Abstract
We present GenoSuite, an integrated proteogenomic pipeline to validate, refine and discover protein coding genes using high-throughput mass spectrometry (MS) data from prokaryotes. To demonstrate the effectiveness of GenoSuite, we analyzed proteomics data of Bradyrhizobium japonicum (USDA110), a model organism to study agriculturally important rhizobium-legume symbiosis. Our analysis confirmed 31% of known genes, refined 49 gene models for their translation initiation site (TIS) and discovered 59 novel protein coding genes. Notably, a novel protein which redefined the boundary of a crucial cytochrome P450 system related operon was discovered, known to be highly expressed in the anaerobic symbiotic bacteroids. A focused analysis on N-terminally acetylated peptides indicated downstream TIS for gene blr0594. Finally, ortho-proteogenomic analysis revealed three novel genes in recently sequenced B. japonicum USDA6(T) genome. The discovery of large number of missing genes and correction of gene models have expanded the proteomic landscape of B. japonicum and presents an unparalleled utility of proteogenomic analyses and versatility of GenoSuite for annotating prokaryotic genomes including pathogens.
Collapse
Affiliation(s)
- Dhirendra Kumar
- From the ‡G.N. Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Mathura Road, Delhi 110025, India
| | - Amit Kumar Yadav
- From the ‡G.N. Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Mathura Road, Delhi 110025, India
| | - Puneet Kumar Kadimi
- From the ‡G.N. Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Mathura Road, Delhi 110025, India
| | - Shivashankar H. Nagaraj
- §Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sean M. Grimmond
- §Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Debasis Dash
- From the ‡G.N. Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Mathura Road, Delhi 110025, India
| |
Collapse
|
19
|
de Barsy M, Greub G. Functional genomics of intracellular bacteria. Brief Funct Genomics 2013; 12:341-53. [DOI: 10.1093/bfgp/elt012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Ferreira AC, Chambel L, Tenreiro T, Cardoso R, Flor L, Dias IT, Pacheco T, Garin-Bastuji B, Le Flèche P, Vergnaud G, Tenreiro R, de Sá MIC. MLVA16 typing of Portuguese human and animal Brucella melitensis and Brucella abortus isolates. PLoS One 2012; 7:e42514. [PMID: 22905141 PMCID: PMC3419166 DOI: 10.1371/journal.pone.0042514] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/06/2012] [Indexed: 12/30/2022] Open
Abstract
To investigate the epidemiological relationship of isolates from different Portuguese geographical regions and to assess the diversity among isolates, the MLVA16Orsay assay (panels 1, 2A and 2B) was performed with a collection of 126 Brucella melitensis (46 human and 80 animal isolates) and 157 B. abortus field isolates, seven vaccine strains and the representative reference strains of each species. The MLVA16Orsay showed a similar high discriminatory power (HGDI 0.972 and 0.902) for both species but panel 1 and 2A markers displayed higher diversity (HGDI 0.693) in B. abortus compared to B. melitensis isolates (HGDI 0.342). The B. melitensis population belong to the “Americas” (17%) and “East Mediterranean” (83%) groups. No isolate belonged to the “West Mediterranean” group. Eighty-five percent of the human isolates (39 in 46) fit in the “East-Mediterranean” group where a single lineage known as MLVA11 genotype 116 is responsible for the vast majority of Brucella infections in humans. B. abortus isolates formed a consistent group with bv1 and bv3 isolates in different clusters. Four MLVA11 genotypes were observed for the first time in isolates from S. Jorge and Terceira islands from Azores. From the collection of isolates analysed in this study we conclude that MLVA16Orsay provided a clear view of Brucella spp. population, confirming epidemiological linkage in outbreak investigations. In particular, it suggests recent and ongoing colonisation of Portugal with one B. melitensis lineage usually associated with East Mediterranean countries.
Collapse
Affiliation(s)
- Ana Cristina Ferreira
- Laboratório Nacional de Investigação Veterinária, Instituto Nacional de Recursos Biológicos, IP, Lisboa, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sun YH, de Jong MF, den Hartigh AB, Roux CM, Rolán HG, Tsolis RM. The small protein CydX is required for function of cytochrome bd oxidase in Brucella abortus. Front Cell Infect Microbiol 2012; 2:47. [PMID: 22919638 PMCID: PMC3417669 DOI: 10.3389/fcimb.2012.00047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 03/17/2012] [Indexed: 01/01/2023] Open
Abstract
A large number of hypothetical genes potentially encoding small proteins of unknown function are annotated in the Brucella abortus genome. Individual deletion of 30 of these genes identified four mutants, in BAB1_0355, BAB2_0726, BAB2_0470, and BAB2_0450 that were highly attenuated for infection. BAB2_0726, an YbgT-family protein located at the 3′ end of the cydAB genes encoding cytochrome bd ubiquinal oxidase, was designated cydX. A B. abortus cydX mutant lacked cytochrome bd oxidase activity, as shown by increased sensitivity to H2O2, decreased acid tolerance and increased resistance to killing by respiratory inhibitors. The C terminus, but not the N terminus, of CydX was located in the periplasm, suggesting that CydX is an integral cytoplasmic membrane protein. Phenotypic analysis of the cydX mutant, therefore, suggested that CydX is required for full function of cytochrome bd oxidase, possibly via regulation of its assembly or activity.
Collapse
Affiliation(s)
- Yao-Hui Sun
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis CA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Sandalakis V, Psaroulaki A, De Bock PJ, Christidou A, Gevaert K, Tsiotis G, Tselentis Y. Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics. J Proteome Res 2012; 11:2374-85. [PMID: 22360387 DOI: 10.1021/pr201122w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mutations in the rpoB gene have already been shown to contribute to rifampicin resistance in many bacterial strains including Brucella species. Resistance against this antibiotic easily occurs and resistant strains have already been detected in human samples. We here present the first research project that combines proteomic, genomic, and microbiological analysis to investigate rifampicin resistance in an in vitro developed rifampicin resistant strain of Brucella abortus 2308. In silico analysis of the rpoB gene was performed and several antibiotics used in the therapy of Brucellosis were used for cross resistance testing. The proteomic profiles were examined and compared using MS-driven comparative proteomics. The resistant strain contained an already described mutation in the rpoB gene, V154F. A correlation between rifampicin resistance and reduced susceptibility on trimethoprim/sulfamethoxazole was detected by E-test and supported by the proteomics results. Using 12 836 MS/MS spectra we identified 6753 peptides corresponding to 456 proteins. The resistant strain presented 39 differentially regulated proteins most of which are involved in various metabolic pathways. Results from our research suggest that rifampicin resistance in Brucella mostly involves mutations in the rpoB gene, excitation of several metabolic processes, and perhaps the use of the already existing secretion mechanisms at a more efficient level.
Collapse
Affiliation(s)
- Vassilios Sandalakis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
23
|
Williams AJ, Ekins S, Tkachenko V. Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation. Drug Discov Today 2012; 17:685-701. [PMID: 22426180 DOI: 10.1016/j.drudis.2012.02.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/17/2012] [Accepted: 02/28/2012] [Indexed: 01/25/2023]
Abstract
In recent years there has been a dramatic increase in the number of freely accessible online databases serving the chemistry community. The internet provides chemistry data that can be used for data-mining, for computer models, and integration into systems to aid drug discovery. There is however a responsibility to ensure that the data are high quality to ensure that time is not wasted in erroneous searches, that models are underpinned by accurate data and that improved discoverability of online resources is not marred by incorrect data. In this article we provide an overview of some of the experiences of the authors using online chemical compound databases, critique the approaches taken to assemble data and we suggest approaches to deliver definitive reference data sources.
Collapse
Affiliation(s)
- Antony J Williams
- Royal Society of Chemistry, US Office, 904 Tamaras Circle, Wake Forest, NC 27587, USA.
| | | | | |
Collapse
|
24
|
Eskra L, Covert J, Glasner J, Splitter G. Differential expression of iron acquisition genes by Brucella melitensis and Brucella canis during macrophage infection. PLoS One 2012; 7:e31747. [PMID: 22403618 PMCID: PMC3293887 DOI: 10.1371/journal.pone.0031747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/12/2012] [Indexed: 12/27/2022] Open
Abstract
Brucella spp. cause chronic zoonotic disease often affecting individuals and animals in impoverished economic or public health conditions; however, these bacteria do not have obvious virulence factors. Restriction of iron availability to pathogens is an effective strategy of host defense. For brucellae, virulence depends on the ability to survive and replicate within the host cell where iron is an essential nutrient for the growth and survival of both mammalian and bacterial cells. Iron is a particularly scarce nutrient for bacteria with an intracellular lifestyle. Brucella melitensis and Brucella canis share ∼99% of their genomes but differ in intracellular lifestyles. To identify differences, gene transcription of these two pathogens was examined during infection of murine macrophages and compared to broth grown bacteria. Transcriptome analysis of B. melitensis and B. canis revealed differences of genes involved in iron transport. Gene transcription of the TonB, enterobactin, and ferric anguibactin transport systems was increased in B. canis but not B. melitensis during infection of macrophages. The data suggest differences in iron requirements that may contribute to differences observed in the lifestyles of these closely related pathogens. The initial importance of iron for B. canis but not for B. melitensis helps elucidate differing intracellular survival strategies for two closely related bacteria and provides insight for controlling these pathogens.
Collapse
Affiliation(s)
- Linda Eskra
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jill Covert
- Department of Surgical and Radiological Sciences, University of California Davis, Davis, California, United States of America
| | - Jeremy Glasner
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gary Splitter
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zhao L, Liu L, Leng W, Wei C, Jin Q. A proteogenomic analysis of Shigella flexneri using 2D LC-MALDI TOF/TOF. BMC Genomics 2011; 12:528. [PMID: 22032405 PMCID: PMC3219829 DOI: 10.1186/1471-2164-12-528] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND New strategies for high-throughput sequencing are constantly appearing, leading to a great increase in the number of completely sequenced genomes. Unfortunately, computational genome annotation is out of step with this progress. Thus, the accurate annotation of these genomes has become a bottleneck of knowledge acquisition. RESULTS We exploited a proteogenomic approach to improve conventional genome annotation by integrating proteomic data with genomic information. Using Shigella flexneri 2a as a model, we identified total 823 proteins, including 187 hypothetical proteins. Among them, three annotated ORFs were extended upstream through comprehensive analysis against an in-house N-terminal extension database. Two genes, which could not be translated to their full length because of stop codon 'mutations' induced by genome sequencing errors, were revised and annotated as fully functional genes. Above all, seven new ORFs were discovered, which were not predicted in S. flexneri 2a str.301 by any other annotation approaches. The transcripts of four novel ORFs were confirmed by RT-PCR assay. Additionally, most of these novel ORFs were overlapping genes, some even nested within the coding region of other known genes. CONCLUSIONS Our findings demonstrate that current Shigella genome annotation methods are not perfect and need to be improved. Apart from the validation of predicted genes at the protein level, the additional features of proteogenomic tools include revision of annotation errors and discovery of novel ORFs. The complementary dataset could provide more targets for those interested in Shigella to perform functional studies.
Collapse
Affiliation(s)
- Lina Zhao
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | | | | |
Collapse
|
26
|
Iannino F, Ugalde JE, Iñón de Iannino N. Brucella abortus efp gene is required for an efficient internalization in HeLa cells. Microb Pathog 2011; 52:31-40. [PMID: 21983596 DOI: 10.1016/j.micpath.2011.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 12/24/2022]
Abstract
Numerous chromosomal virulence genes (chv) have been shown to play an important role in the ability of Agrobacterium tumefaciens to transform plants. The A. tumefaciens chvH gene encodes a protein similar in sequence to the Escherichia coli elongation factor P (EF-P). In A. tumefaciens this factor is required for tumor formation and for full expression of the vir genes, exerting its activity at a post-transcriptional level. Cross-complementation assays suggest that the chvH gene and the efp gene of E. coli are functionally homologous. We have cloned and characterized the efp homolog gene in Brucella abortus which has 45% identity to A. tumefaciens chvH and 35% identity to E. coli efp. The gene complemented detergent sensitivity and virulence in the chvH A. tumefaciens mutant, suggesting that both genes are functionally homologous; the growth rate in complex medium also increased to wild type levels. An efp mutant in B. abortus 2308 grew slower in complex media and showed more sensitivity to detergents. Infection assays in J774 macrophage like cells revealed no significant differences between the wild type and the efp mutant strains. The recovery of this mutant from spleens of inoculated mice was equivalent compared to that of the parental strain suggesting that B. abortus efp is not required for virulence in an animal model. However the efp mutant revealed significant differences at 1 h-4 h post-infection in HeLa infection assays compared to the wild type strain, indicating that cellular internalization was affected in non-professional phagocytes. Double immunofluorescence assays for detecting extracellular and intracellular bacteria, demonstrated that the mutant attaches to HeLa cells as the wild type but is deficient in the internalization process, thus indicating that efp is involved in the penetration of Brucella in non-professional phagocytes.
Collapse
Affiliation(s)
- Florencia Iannino
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Consejo de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Av. Gral. Paz 5445, Buenos Aires, Argentina
| | | | | |
Collapse
|
27
|
Céspedes S, Salgado P, Retamal-Díaz A, Vidal R, Oñate A. Roles of genomic island 3 (GI-3) BAB1_0278 and BAB1_0263 open reading frames (ORFs) in the virulence of Brucella abortus in BALB/c mice. Vet Microbiol 2011; 156:1-7. [PMID: 22005180 DOI: 10.1016/j.vetmic.2011.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/16/2011] [Accepted: 09/21/2011] [Indexed: 12/30/2022]
Abstract
The genomic island 3 (GI-3) shared by Brucella melitensis and Brucella abortus contains 29 genes encoding mostly unknown proteins. Within this island, the open reading frames (ORFs) BAB1_0278 and BAB1_0263 are present, BAB1_0278 encodes a hypothetical protein of 64 amino acids sharing a domain with the GcrA superfamily, whereas the amino acid sequence of BAB1_0263 showed 42% identity with an iron regulated Lsr2 protein. We obtained one deletion mutant for each one of these ORFs present within the B. abortus GI-3 named BA-278 and BA-263, respectively. Both mutants were evaluated with respect to their ability to invade and replicate in nonprofessional and professional phagocytes (HeLa and J774.A1 cells) and their virulence in mice. Both mutants invaded efficiently HeLa and J774. A1 cells, however, 48-h post-infection the BA-278 mutant showed a lower intracellular persistence. The deletion of the ORF BAB1_0278, also affected the persistence of B. abortus in the spleens of mice, unlike to the deletion of the ORF BAB1_0263. These results allow us to conclude that BAB1_0278 ORF contributes to virulence of Brucella, since it is necessary to establish an optimal infectious process.
Collapse
Affiliation(s)
- Sandra Céspedes
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | | | | | | | | |
Collapse
|
28
|
Liang L, Tan X, Juarez S, Villaverde H, Pablo J, Nakajima-Sasaki R, Gotuzzo E, Saito M, Hermanson G, Molina D, Felgner S, Morrow WJW, Liang X, Gilman RH, Davies DH, Tsolis RM, Vinetz JM, Felgner PL. Systems biology approach predicts antibody signature associated with Brucella melitensis infection in humans. J Proteome Res 2011; 10:4813-24. [PMID: 21863892 PMCID: PMC3189706 DOI: 10.1021/pr200619r] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A complete understanding of the factors that determine selection of antigens recognized by the humoral immune response following infectious agent challenge is lacking. Here we illustrate a systems biology approach to identify the antibody signature associated with Brucella melitensis (Bm) infection in humans and predict proteomic features of serodiagnostic antigens. By taking advantage of a full proteome microarray expressing previously cloned 1406 and newly cloned 1640 Bm genes, we were able to identify 122 immunodominant antigens and 33 serodiagnostic antigens. The reactive antigens were then classified according to annotated functional features (COGs), computationally predicted features (e.g., subcellular localization, physical properties), and protein expression estimated by mass spectrometry (MS). Enrichment analyses indicated that membrane association and secretion were significant enriching features of the reactive antigens, as were proteins predicted to have a signal peptide, a single transmembrane domain, and outer membrane or periplasmic location. These features accounted for 67% of the serodiagnostic antigens. An overlay of the seroreactive antigen set with proteomic data sets generated by MS identified an additional 24%, suggesting that protein expression in bacteria is an additional determinant in the induction of Brucella-specific antibodies. This analysis indicates that one-third of the proteome contains enriching features that account for 91% of the antigens recognized, and after B. melitensis infection the immune system develops significant antibody titers against 10% of the proteins with these enriching features. This systems biology approach provides an empirical basis for understanding the breadth and specificity of the immune response to B. melitensis and a new framework for comparing the humoral responses against other microorganisms.
Collapse
Affiliation(s)
- Li Liang
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, California 92697, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Skultety L, Hajduch M, Flores-Ramirez G, Miernyk JA, Ciampor F, Toman R, Sekeyova Z. Proteomic comparison of virulent phase I and avirulent phase II of Coxiella burnetii, the causative agent of Q fever. J Proteomics 2011; 74:1974-84. [PMID: 21616182 DOI: 10.1016/j.jprot.2011.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/20/2011] [Accepted: 05/09/2011] [Indexed: 01/06/2023]
Abstract
Coxiella burnetii, a category B biological warfare agent, causes multiple outbreaks of the zoonotic disease Q fever world-wide, each year. The virulent phase I and avirulent phase II variants of the Nine Mile RSA 493 and 439 strains of C. burnetii were propagated in embryonated hen eggs and then purified by centrifugation through Renografin gradients. Total protein fractions were isolated from each phase and subjected to analysis by one-dimensional electrophoresis plus tandem mass spectrometry. A total of 235 and 215 non-redundant proteins were unambiguously identified from the phase I and II cells, respectively. Many of these proteins had not been previously reported in proteomic studies of C. burnetii. The newly identified proteins should provide additional insight into the pathogenesis of Q fever. Several of the identified proteins are involved in the biosynthesis and metabolism of components of the extracellular matrix. Forty-four of the proteins have been annotated as having distinct roles in the pathogenesis or survival of C. burnetii within the harsh phagolysosomal environment. We propose that nine enzymes specifically involved with lipopolysaccharide biosynthesis and metabolism, and that are distinctively present in phase I cells, are virulence-associated proteins.
Collapse
Affiliation(s)
- Ludovit Skultety
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK. Proteomics for development of vaccine. J Proteomics 2011; 74:2596-616. [PMID: 21310271 DOI: 10.1016/j.jprot.2011.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The success of genome projects has provided us with a vast amount of information on genes of many pathogenic species and has raised hopes for rapid progress in combating infectious diseases, both by construction of new effective vaccines and by creating a new generation of therapeutic drugs. Proteomics, a strategy complementary to the genomic-based approach, when combined with immunomics (looking for immunogenic proteins) and vaccinomics (characterization of host response to immunization), delivers valuable information on pathogen-host cell interaction. It also speeds the identification and detailed characterization of new antigens, which are potential candidates for vaccine development. This review begins with an overview of the global status of vaccinology based on WHO data. The main part of this review describes the impact of proteomic strategies on advancements in constructing effective antibacterial, antiviral and anticancer vaccines. Diverse aspects of disease mechanisms and disease preventions have been investigated by proteomics.
Collapse
Affiliation(s)
- Monika Adamczyk-Poplawska
- Department of Virology, Institute of Microbiology, Biology Faculty, Warsaw University, Warsaw, Poland
| | | | | |
Collapse
|
31
|
Krug K, Nahnsen S, Macek B. Mass spectrometry at the interface of proteomics and genomics. MOLECULAR BIOSYSTEMS 2010; 7:284-91. [PMID: 20967315 DOI: 10.1039/c0mb00168f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the onset of modern DNA sequencing technologies, genomics is experiencing a revolution in terms of quantity and quality of sequencing data. Rapidly growing numbers of sequenced genomes and metagenomes present a tremendous challenge for bioinformatics tools that predict protein-coding regions. Experimental evidence of expressed genomic regions, both at the RNA and protein level, is becoming invaluable for genome annotation and training of gene prediction algorithms. Evidence of gene expression at the protein level using mass spectrometry-based proteomics is increasingly used in refinement of raw genome sequencing data. In a typical "proteogenomics" experiment, the whole proteome of an organism is extracted, digested into peptides and measured by a mass spectrometer. The peptide fragmentation spectra are identified by searching against a six-frame translation of the raw genomic assembly, thus enabling the identification of hitherto unpredicted protein-coding genomic regions. Application of mass spectrometry to genome annotation presents a range of challenges to the standard workflows in proteomics, especially in terms of proteome coverage and database search strategies. Here we provide an overview of the field and argue that the latest mass spectrometry technologies that enable high mass accuracy at high acquisition rates will prove to be especially well suited for proteogenomics applications.
Collapse
Affiliation(s)
- Karsten Krug
- Proteome Center Tuebingen, Interdepartmental Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | | | | |
Collapse
|