1
|
Chen A, Yang Q, Ye W, Xu L, Wang Y, Sun D, Han B. Polymorphisms of CYP7A1 and HADHB Genes and Their Effects on Milk Production Traits in Chinese Holstein Cows. Animals (Basel) 2024; 14:1276. [PMID: 38731280 PMCID: PMC11083613 DOI: 10.3390/ani14091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Our preliminary research proposed the cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and hydroxyacyl-coenzyme A dehydrogenase trifunctional multienzyme complex beta subunit (HADHB) genes as candidates for association with milk-production traits in dairy cattle because of their differential expression across different lactation stages in the liver tissues of Chinese Holstein cows and their potential roles in lipid metabolism. Hence, we identified single-nucleotide polymorphisms (SNPs) of the CYP7A1 and HADHB genes and validated their genetic effects on milk-production traits in a Chinese Holstein population with the goal of providing valuable genetic markers for genomic selection (GS) in dairy cattle, This study identified five SNPs, 14:g.24676921A>G, 14:g.24676224G>A, 14:g.24675708G>T, 14:g.24665961C>T, and 14:g.24664026A>G, in the CYP7A1 gene and three SNPs, 11:g.73256269T>C, 11:g.73256227A>C, and 11:g.73242290C>T, in HADHB. The single-SNP association analysis revealed significant associations (p value ≤ 0.0461) between the eight SNPs of CYP7A1 and HADHB genes and 305-day milk, fat and protein yields. Additionally, using Haploview 4.2, we found that the five SNPs of CYP7A1 formed two haplotype blocks and that the two SNPs of HADHB formed one haplotype block; notably, all three haplotype blocks were also significantly associated with milk, fat and protein yields (p value ≤ 0.0315). Further prediction of transcription factor binding sites (TFBSs) based on Jaspar software (version 2023) showed that the 14:g.24676921A>G, 14:g.24675708G>T, 11:g.73256269T>C, and 11:g.73256227A>C SNPs could alter the 5' terminal TFBS of the CYP7A1 and HADHB genes. The 14:g.24665961C>T SNP caused changes in the structural stability of the mRNA for the CYP7A1 gene. These alterations have the potential to influence gene expression and, consequently, the phenotype associated with milk-production traits. In summary, we have confirmed the genetic effects of CYP7A1 and HADHB genes on milk-production traits in dairy cattle and identified potential functional mutations that we suggest could be used for GS of dairy cattle and in-depth mechanistic studies of animals.
Collapse
Affiliation(s)
- Ao Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (A.C.); (Q.Y.); (W.Y.); (L.X.); (Y.W.); (D.S.)
| | - Qianyu Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (A.C.); (Q.Y.); (W.Y.); (L.X.); (Y.W.); (D.S.)
| | - Wen Ye
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (A.C.); (Q.Y.); (W.Y.); (L.X.); (Y.W.); (D.S.)
| | - Lingna Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (A.C.); (Q.Y.); (W.Y.); (L.X.); (Y.W.); (D.S.)
| | - Yuzhan Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (A.C.); (Q.Y.); (W.Y.); (L.X.); (Y.W.); (D.S.)
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (A.C.); (Q.Y.); (W.Y.); (L.X.); (Y.W.); (D.S.)
- Beijing Jingwa Agricultural Innovation Center, Beijing 100193, China
| | - Bo Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (A.C.); (Q.Y.); (W.Y.); (L.X.); (Y.W.); (D.S.)
| |
Collapse
|
2
|
Wang C, Zhao Z, Zhao Y, Zhao J, Xia L, Xia Q. Macroscopic inhibition of DNA damage repair pathways by targeting AP-2α with LEI110 eradicates hepatocellular carcinoma. Commun Biol 2024; 7:342. [PMID: 38503825 PMCID: PMC10951303 DOI: 10.1038/s42003-024-05939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
DNA damage repair (DDR) genes are known to be closely associated with the progression of Hepatocellular carcinoma (HCC). Here we report a unique cluster of "deletion-up" genes in HCC, which are accordantly overexpressed in HCC patients and predict the unfavorable prognosis. Binding motif analysis and further validation with ChIP-qPCR unveil that the AP-2α directly modulate the transcription of critical DNA repair genes including TOP2A, NUDT1, POLD1, and PARP1, which facilitates the sanitation of oxidized DNA lesions. Structural analysis and the following validation identify LEI110 as a potent AP-2α inhibitor. Together, we demonstrate that LEI110 stabilizes AP-2α and sensitizes HCC cells toward DNA-damaging reagents. Altogether, we identify AP-2α as a crucial transcription modulator in HCC and propose small-molecule inhibitors targeting AP-2α are a promising novel class of anticancer agents. Our study provides insights into the concept of macroscopic inhibition of DNA damage repair-related genes in cancer treatment.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.
- Shanghai Institute of Transplantation, Shanghai, China.
| | - Zhenjun Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yudong Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
3
|
Zou H, Luo J, Guo Y, Deng L, Zeng L, Pan Y, Li P. Tyrosine phosphorylation-mediated YAP1-TFAP2A interactions coordinate transcription and trastuzumab resistance in HER2+ breast cancer. Drug Resist Updat 2024; 73:101051. [PMID: 38219531 DOI: 10.1016/j.drup.2024.101051] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Trastuzumab resistance in HER2+ breast cancer (BC) is the major reason leading to poor prognosis of BC patients. Oncogenic gene overexpression or aberrant activation of tyrosine kinase SRC is identified to be the key modulator of trastuzumab response. However, the detailed regulatory mechanisms underlying SRC activation-associated trastuzumab resistance remain poorly understood. In the present study, we discover that SRC-mediated YAP1 tyrosine phosphorylation facilitates its interaction with transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha, TFAP2A), which in turn promotes YAP1/TEAD-TFAP2A (YTT) complex-associated transcriptional outputs, thereby conferring trastuzumab resistance in HER2+ BC. Inhibition of SRC kinase activity or disruption of YTT complex sensitizes cells to trastuzumab treatment in vitro and in vivo. Additionally, we also identify YTT complex co-occupies the regulatory regions of a series of genes related to trastuzumab resistance and directly regulates their transcriptions, including EGFR, HER2, H19 and CTGF. Moreover, YTT-mediated transcriptional regulation is coordinated by SRC kinase activity. Taken together, our study reveals that SRC-mediated YTT complex formation and transcriptions are responsible for multiple mechanisms associated with trastuzumab resistance. Therefore, targeting HER2 signaling in combination with the inhibition of YTT-associated transcriptional outputs could serve as the treatment strategy to overcome trastuzumab resistance caused by SRC activation.
Collapse
Affiliation(s)
- Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China.
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China.
| |
Collapse
|
4
|
A unique Smith-Magenis patient with a de novo intragenic deletion on the maternally inherited overexpressed RAI1 allele. Eur J Hum Genet 2022; 30:1233-1238. [PMID: 35821519 PMCID: PMC9626456 DOI: 10.1038/s41431-022-01143-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/01/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
RAI1 is a dosage-sensitive gene whose decreased or increased expression by recurrent and non-recurrent 17p11.2 deletions or duplications causes Smith-Magenis (SMS) or Potocki-Lupski syndromes (PTLS), respectively. Here we report on a 21-year-old female patient showing SMS phenotype who was found to carry a 3.4 kb de novo intragenic RAI1 deletion. Interestingly, a significant increase in RAI1 transcript levels was identified in the patient's, brother's and mother's peripheral blood cells. Allele-specific dosage analysis revealed that the patient's maternally inherited overexpressed RAI1 allele harbors the intragenic deletion, confirming the SMS diagnosis due to the presence of a single wild-type RAI1 functional allele. The mother and brother do not present any PTLS neurologic/behavioral clinical features. Extensive sequencing of RAI1 promoter and predicted regulatory regions showed no potential causative variants accounting for gene overexpression. However, the mother and both children share a novel private missense variant in RAI1 exon 3, currently classified as a VUS (uncertain significance), though predicted by two bioinformatic tools to disrupt the binding site of one specific transcription factor. The reported familial case, the second showing RAI1 overexpression in the absence of RAI1 duplication, may help to understand the regulation of RAI1 dosage sensitivity although its phenotypic effect remains to be determined.
Collapse
|
5
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Determination of WWOX Function in Modulating Cellular Pathways Activated by AP-2α and AP-2γ Transcription Factors in Bladder Cancer. Cells 2022; 11:cells11091382. [PMID: 35563688 PMCID: PMC9106060 DOI: 10.3390/cells11091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Following the invention of high-throughput sequencing, cancer research focused on investigating disease-related alterations, often inadvertently omitting tumor heterogeneity. This research was intended to limit the impact of heterogeneity on conclusions related to WWOX/AP-2α/AP-2γ in bladder cancer which differently influenced carcinogenesis. The study examined the signaling pathways regulated by WWOX-dependent AP-2 targets in cell lines as biological replicates using high-throughput sequencing. RT-112, HT-1376 and CAL-29 cell lines were subjected to two stable lentiviral transductions. Following CAGE-seq and differential expression analysis, the most important genes were identified and functionally annotated. Western blot was performed to validate the selected observations. The role of genes in biological processes was assessed and networks were visualized. Ultimately, principal component analysis was performed. The studied genes were found to be implicated in MAPK, Wnt, Ras, PI3K-Akt or Rap1 signaling. Data from pathways were collected, explaining the differences/similarities between phenotypes. FGFR3, STAT6, EFNA1, GSK3B, PIK3CB and SOS1 were successfully validated at the protein level. Afterwards, a definitive network was built using 173 genes. Principal component analysis revealed that the various expression of these genes explains the phenotypes. In conclusion, the current study certified that the signaling pathways regulated by WWOX and AP-2α have more in common than that regulated by AP-2γ. This is because WWOX acts as an EMT inhibitor, AP-2γ as an EMT enhancer while AP-2α as a MET inducer. Therefore, the relevance of AP-2γ in targeted therapy is now more evident. Some of the differently regulated genes can find application in bladder cancer treatment.
Collapse
|
6
|
Johnson KC, Anderson KJ, Courtois ET, Gujar AD, Barthel FP, Varn FS, Luo D, Seignon M, Yi E, Kim H, Estecio MRH, Zhao D, Tang M, Navin NE, Maurya R, Ngan CY, Verburg N, de Witt Hamer PC, Bulsara K, Samuels ML, Das S, Robson P, Verhaak RGW. Single-cell multimodal glioma analyses identify epigenetic regulators of cellular plasticity and environmental stress response. Nat Genet 2021; 53:1456-1468. [PMID: 34594038 PMCID: PMC8570135 DOI: 10.1038/s41588-021-00926-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Glioma intratumoral heterogeneity enables adaptation to challenging microenvironments and contributes to therapeutic resistance. We integrated 914 single-cell DNA methylomes, 55,284 single-cell transcriptomes and bulk multi-omic profiles across 11 adult IDH mutant or IDH wild-type gliomas to delineate sources of intratumoral heterogeneity. We showed that local DNA methylation disorder is associated with cell-cell DNA methylation differences, is elevated in more aggressive tumors, links with transcriptional disruption and is altered during the environmental stress response. Glioma cells under in vitro hypoxic and irradiation stress increased local DNA methylation disorder and shifted cell states. We identified a positive association between genetic and epigenetic instability that was supported in bulk longitudinally collected DNA methylation data. Increased DNA methylation disorder associated with accelerated disease progression and recurrently selected DNA methylation changes were enriched for environmental stress response pathways. Our work identified an epigenetically facilitated adaptive stress response process and highlights the importance of epigenetic heterogeneity in shaping therapeutic outcomes.
Collapse
Affiliation(s)
- Kevin C. Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.,These authors contributed equally,Co-corresponding authors: and
| | - Kevin J. Anderson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.,These authors contributed equally
| | - Elise T. Courtois
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Amit D. Gujar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Floris P. Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Frederick S. Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Diane Luo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Martine Seignon
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Eunhee Yi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Hoon Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Marcos RH Estecio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Dacheng Zhao
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Ming Tang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, US
| | - Nicholas E. Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Rahul Maurya
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Chew Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Niels Verburg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Brain Tumor Center Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Philip C de Witt Hamer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Brain Tumor Center Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Ketan Bulsara
- Division of Neurosurgery, The University of Connecticut Health Center, Farmington, CT, US
| | | | - Sunit Das
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for SickKids, University of Toronto.,Institute of Medical Science, University of Toronto.,Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.,Genetics and Genome Sciences, University of Connecticut School of Medicine
| | - Roel GW Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.,Co-corresponding authors: and
| |
Collapse
|
7
|
Koukoulas K, Giakountis A, Karagiota A, Samiotaki M, Panayotou G, Simos G, Mylonis I. ERK signalling controls productive HIF-1 binding to chromatin and cancer cell adaptation to hypoxia through HIF-1α interaction with NPM1. Mol Oncol 2021; 15:3468-3489. [PMID: 34388291 PMCID: PMC8637566 DOI: 10.1002/1878-0261.13080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022] Open
Abstract
The hypoxia-inducible factor HIF-1 is essential for oxygen homeostasis. Despite its well-understood oxygen-dependent expression, regulation of its transcriptional activity remains unclear. We show that phosphorylation by ERK1/2, in addition to promoting HIF-1α nuclear accumulation, also enhances its interaction with chromatin and stimulates direct binding to nucleophosmin (NPM1), a histone chaperone and chromatin remodeler. NPM1 is required for phosphorylation-dependent recruitment of HIF-1 to hypoxia-response elements (HREs), its interaction with acetylated histones and high expression of HIF-1 target genes under hypoxia. Transcriptome analysis revealed a significant number of hypoxia-related genes commonly regulated by NPM1 and HIF-1. These NPM1/HIF-1α co-upregulated genes are enriched in three different cancer types and their expression correlates with hypoxic tumor status and worse patient prognosis. In concert, silencing of NPM1 expression or disruption of its association with HIF-1α inhibits metabolic adaptation of cancer cells and triggers apoptotic death upon hypoxia. We suggest that ERK-mediated phosphorylation of HIF-1α regulates its physical interaction with NPM1, which is essential for productive association of HIF-1 with hypoxia target genes and their optimal transcriptional activation, required for survival under low oxygen or tumor growth.
Collapse
Affiliation(s)
- Kreon Koukoulas
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis Larissa, 41500, Greece.,Institute for Bio-innovation, BSRC "Alexander Fleming", Vari, 16672, Greece
| | - Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece
| | - Martina Samiotaki
- Institute for Bio-innovation, BSRC "Alexander Fleming", Vari, 16672, Greece
| | - George Panayotou
- Institute for Bio-innovation, BSRC "Alexander Fleming", Vari, 16672, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis Larissa, 41500, Greece.,Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, H4A 3T2, Canada
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece
| |
Collapse
|
8
|
The Glyoxalase System in Age-Related Diseases: Nutritional Intervention as Anti-Ageing Strategy. Cells 2021; 10:cells10081852. [PMID: 34440621 PMCID: PMC8393707 DOI: 10.3390/cells10081852] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
The glyoxalase system is critical for the detoxification of advanced glycation end-products (AGEs). AGEs are toxic compounds resulting from the non-enzymatic modification of biomolecules by sugars or their metabolites through a process called glycation. AGEs have adverse effects on many tissues, playing a pathogenic role in the progression of molecular and cellular aging. Due to the age-related decline in different anti-AGE mechanisms, including detoxifying mechanisms and proteolytic capacities, glycated biomolecules are accumulated during normal aging in our body in a tissue-dependent manner. Viewed in this way, anti-AGE detoxifying systems are proposed as therapeutic targets to fight pathological dysfunction associated with AGE accumulation and cytotoxicity. Here, we summarize the current state of knowledge related to the protective mechanisms against glycative stress, with a special emphasis on the glyoxalase system as the primary mechanism for detoxifying the reactive intermediates of glycation. This review focuses on glyoxalase 1 (GLO1), the first enzyme of the glyoxalase system, and the rate-limiting enzyme of this catalytic process. Although GLO1 is ubiquitously expressed, protein levels and activities are regulated in a tissue-dependent manner. We provide a comparative analysis of GLO1 protein in different tissues. Our findings indicate a role for the glyoxalase system in homeostasis in the eye retina, a highly oxygenated tissue with rapid protein turnover. We also describe modulation of the glyoxalase system as a therapeutic target to delay the development of age-related diseases and summarize the literature that describes the current knowledge about nutritional compounds with properties to modulate the glyoxalase system.
Collapse
|
9
|
Coppo R, Orso F, Virga F, Dalmasso A, Baruffaldi D, Nie L, Clapero F, Dettori D, Quirico L, Grassi E, Defilippi P, Provero P, Valdembri D, Serini G, Sadeghi MM, Mazzone M, Taverna D. ESDN inhibits melanoma progression by blocking E-selectin expression in endothelial cells via STAT3. Cancer Lett 2021; 510:13-23. [PMID: 33862151 DOI: 10.1016/j.canlet.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
An interactive crosstalk between tumor and stroma cells is essential for metastatic melanoma progression. We evidenced that ESDN/DCBLD2/CLCP1 plays a crucial role in endothelial cells during the spread of melanoma. Precisely, increased extravasation and metastasis formation were revealed in ESDN-null mice injected with melanoma cells, even if the primary tumor growth, vessel permeability, and angiogenesis were not enhanced. Interestingly, improved adhesion of melanoma cells to ESDN-depleted endothelial cells was observed, due to the presence of higher levels of E-selectin transcripts/proteins in ESDN-defective cells. In accordance with these results, anticorrelation was observed between ESDN and E-selectin in human endothelial cells. Most importantly, our data revealed that cimetidine, an E-selectin inhibitor, was able to block cell adhesion, extravasation, and metastasis formation in ESDN-null mice, underlying a major role of ESDN in E-selectin transcription upregulation, which according to our data, may presumably be linked to STAT3. Based on our results, we propose a protective role for ESDN during the spread of melanoma and reveal its therapeutic potential.
Collapse
Affiliation(s)
- Roberto Coppo
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesca Orso
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federico Virga
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; VIB Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Alberto Dalmasso
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Desirée Baruffaldi
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lei Nie
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Fabiana Clapero
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy
| | - Daniela Dettori
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lorena Quirico
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Grassi
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paola Defilippi
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paolo Provero
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milano, Italy
| | - Donatella Valdembri
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy
| | - Guido Serini
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Massimiliano Mazzone
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; VIB Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
10
|
Aragonès G, Rowan S, G Francisco S, Yang W, Weinberg J, Taylor A, Bejarano E. Glyoxalase System as a Therapeutic Target against Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:antiox9111062. [PMID: 33143048 PMCID: PMC7692619 DOI: 10.3390/antiox9111062] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia, a defining characteristic of diabetes, combined with oxidative stress, results in the formation of advanced glycation end products (AGEs). AGEs are toxic compounds that have adverse effects on many tissues including the retina and lens. AGEs promote the formation of reactive oxygen species (ROS), which, in turn, boost the production of AGEs, resulting in positive feedback loops, a vicious cycle that compromises tissue fitness. Oxidative stress and the accumulation of AGEs are etiologically associated with the pathogenesis of multiple diseases including diabetic retinopathy (DR). DR is a devastating microvascular complication of diabetes mellitus and the leading cause of blindness in working-age adults. The onset and development of DR is multifactorial. Lowering AGEs accumulation may represent a potential therapeutic approach to slow this sight-threatening diabetic complication. To set DR in a physiological context, in this review we first describe relations between oxidative stress, formation of AGEs, and aging in several tissues of the eye, each of which is associated with a major age-related eye pathology. We summarize mechanisms of AGEs generation and anti-AGEs detoxifying systems. We specifically feature the potential of the glyoxalase system in the retina in the prevention of AGEs-associated damage linked to DR. We provide a comparative analysis of glyoxalase activity in different tissues from wild-type mice, supporting a major role for the glyoxalase system in the detoxification of AGEs in the retina, and present the manipulation of this system as a therapeutic strategy to prevent the onset of DR.
Collapse
Affiliation(s)
- Gemma Aragonès
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Sheldon Rowan
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02155, USA
- Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02155, USA
| | - Sarah G Francisco
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Wenxin Yang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02155, USA
- Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02155, USA
- Correspondence: (A.T.); (E.B.); Tel.: +617-556-3156 (A.T.)
| | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
- Correspondence: (A.T.); (E.B.); Tel.: +617-556-3156 (A.T.)
| |
Collapse
|
11
|
Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke. Cell 2019; 177:1262-1279.e25. [PMID: 31056284 DOI: 10.1016/j.cell.2019.03.032] [Citation(s) in RCA: 617] [Impact Index Per Article: 123.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/29/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Ferroptosis, a non-apoptotic form of programmed cell death, is triggered by oxidative stress in cancer, heat stress in plants, and hemorrhagic stroke. A homeostatic transcriptional response to ferroptotic stimuli is unknown. We show that neurons respond to ferroptotic stimuli by induction of selenoproteins, including antioxidant glutathione peroxidase 4 (GPX4). Pharmacological selenium (Se) augments GPX4 and other genes in this transcriptional program, the selenome, via coordinated activation of the transcription factors TFAP2c and Sp1 to protect neurons. Remarkably, a single dose of Se delivered into the brain drives antioxidant GPX4 expression, protects neurons, and improves behavior in a hemorrhagic stroke model. Altogether, we show that pharmacological Se supplementation effectively inhibits GPX4-dependent ferroptotic death as well as cell death induced by excitotoxicity or ER stress, which are GPX4 independent. Systemic administration of a brain-penetrant selenopeptide activates homeostatic transcription to inhibit cell death and improves function when delivered after hemorrhagic or ischemic stroke.
Collapse
|
12
|
The DCBLD receptor family: emerging signaling roles in development, homeostasis and disease. Biochem J 2019; 476:931-950. [PMID: 30902898 DOI: 10.1042/bcj20190022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023]
Abstract
The discoidin, CUB, and LCCL domain-containing (DCBLD) receptor family are composed of the type-I transmembrane proteins DCBLD1 and DCBLD2 (also ESDN and CLCP1). These proteins are highly conserved across vertebrates and possess similar domain structure to that of neuropilins, which act as critical co-receptors in developmental processes. Although DCBLD1 remains largely uncharacterized, the functional and mechanistic roles of DCBLD2 are emerging. This review provides a comprehensive discussion of this presumed receptor family, ranging from structural and signaling aspects to their associations with cancer, physiology, and development.
Collapse
|
13
|
Lin X, Yang H, Wang L, Li W, Diao S, Du J, Wang S, Dong R, Li J, Fan Z. AP2a enhanced the osteogenic differentiation of mesenchymal stem cells by inhibiting the formation of YAP/RUNX2 complex and BARX1 transcription. Cell Prolif 2018; 52:e12522. [PMID: 30443989 PMCID: PMC6430486 DOI: 10.1111/cpr.12522] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Objectives Bone regeneration by bone tissue engineering is a therapeutic option for bone defects. Improving the osteogenic differentiation of mesenchymal stem cells (MSCs) is essential for successful bone regeneration. We previously showed that AP2a enhances the osteogenic differentiation in MSCs. The present study investigated the mechanism of how AP2a regulates the direct differentiation. Materials and methods Co‐immunoprecipitation and ChIP assays were carried out to investigate the underlying mechanism in MSCs differentiation. The osteogenic differentiation potential was determined by mineralization ability and the expression of osteogenic marker in vitro and the in vivo bone‐like tissue generation in nude mice. Results We show that AP2a can compete with RUNX2, a key transcription factor in osteogenic differentiation, to recruit YAP and release the inhibition of RUNX2 activity from YAP by forming YAP‐AP2a protein complex. YAP‐AP2a protein complex also interacts with the BARX1 promoter through AP2a, inhibit the transcription of BARX1. Moreover, BARX1 inhibits osteogenic differentiation of MSCs. Conclusions Our discoveries revealed that AP2a may regulate the osteogenic differentiation in an indirect way through competing with RUNX2 to relieve the RUNX2 activity which inhibited by YAP, and also in a direct way via targeting the BARX1 and directly repressed its transcription. Thus, our discoveries shed new light on the mechanism of direct differentiation of MSCs and provide candidate targets for improving the osteogenic differentiation and enhancing bone tissue regeneration.
Collapse
Affiliation(s)
- Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Implant Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China
| | - Lijun Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Wenzhi Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Pediatrics, Capital Medical University School of Stomatology, Beijing, China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China
| | - Jun Li
- Department of Implant Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
14
|
Antognelli C, Talesa VN. Glyoxalases in Urological Malignancies. Int J Mol Sci 2018; 19:ijms19020415. [PMID: 29385039 PMCID: PMC5855637 DOI: 10.3390/ijms19020415] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Urological cancers include a spectrum of malignancies affecting organs of the reproductive and/or urinary systems, such as prostate, kidney, bladder, and testis. Despite improved primary prevention, detection and treatment, urological cancers are still characterized by an increasing incidence and mortality worldwide. While advances have been made towards understanding the molecular bases of these diseases, a complete understanding of the pathological mechanisms remains an unmet research goal that is essential for defining safer pharmacological therapies and prognostic factors, especially for the metastatic stage of these malignancies for which no effective therapies are currently being used. Glyoxalases, consisting of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), are enzymes that catalyze the glutathione-dependent metabolism of cytotoxic methylglyoxal (MG), thus protecting against cellular damage and apoptosis. They are generally overexpressed in numerous cancers as a survival strategy by providing a safeguard through enhancement of MG detoxification. Increasing evidence suggests that glyoxalases, especially Glo1, play an important role in the initiation and progression of urological malignancies. In this review, we highlight the critical role of glyoxalases as regulators of tumorigenesis in the prostate through modulation of various critical signaling pathways, and provide an overview of the current knowledge on glyoxalases in bladder, kidney and testis cancers. We also discuss the promise and challenges for Glo1 inhibitors as future anti-prostate cancer (PCa) therapeutics and the potential of glyoxalases as biomarkers for PCa diagnosis.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | | |
Collapse
|
15
|
Ambele MA, Pepper MS. Identification of transcription factors potentially involved in human adipogenesis in vitro. Mol Genet Genomic Med 2017; 5:210-222. [PMID: 28546992 PMCID: PMC5441431 DOI: 10.1002/mgg3.269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/26/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Increased adiposity in humans leads to obesity, which is a major risk factor for cardiovascular disease, type 2 diabetes, and cancer. We previously conducted an extensive unbiased in vitro transcriptomic analysis of adipogenesis, using human adipose-derived stromal cells (ASCs). Here, we have applied computational methods to these data to identify transcription factors (TFs) that constitute the upstream gene regulatory networks potentially, driving adipocyte formation in human ASCs. METHODS We used Affymetrix Transcription Analysis Console™ v3.0 for calculating differentially expressed genes. MATCH™ and F-MATCH™ algorithms for TF identification. STRING v10 to predict protein-protein interactions between TFs. RESULTS A number of TFs that were reported to have a significant role in adipogenesis, as well as novel TFs that have not previously been described in this context, were identified. Thus, 32 upstream TFs were identified, with most belonging to the C2H2-type zinc finger and HOX families, which are potentially involved in regulating most of the differentially expressed genes observed during adipocyte differentiation. Furthermore, 17 important upstream TFs were found to have increased regulatory effects on their downstream target genes and were consistently up-regulated during the differentiation process. A strong hypothetical functional interaction was observed among these TFs, which supports their common role in the downstream regulation of gene expression during adipogenesis. CONCLUSION Our results support several previous findings on TFs involved in adipogenesis and thereby validate the comprehensive and systematic in silico approach described in this study. In silico analysis also allowed for the identification of novel regulators of adipocyte differentiation.
Collapse
Affiliation(s)
- Melvin Anyasi Ambele
- Department of Immunology and Institute for Cellular and Molecular MedicineSAMRC Extramural Unit for Stem Cell Research and TherapyFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael Sean Pepper
- Department of Immunology and Institute for Cellular and Molecular MedicineSAMRC Extramural Unit for Stem Cell Research and TherapyFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
16
|
Ganief T, Gqamana P, Garnett S, Hoare J, Stein DJ, Joska J, Soares N, Blackburn JM. Quantitative proteomic analysis of HIV-1 Tat-induced dysregulation in SH-SY5Y neuroblastoma cells. Proteomics 2017; 17. [PMID: 28101920 DOI: 10.1002/pmic.201600236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 11/11/2022]
Abstract
Despite affecting up to 70% of HIV-positive patients and being the leading cause of dementia in patients under 40 years, the molecular mechanisms involved in the onset of HIV-associated neurocognitive disorders (HAND) are not well understood. To address this, we performed SILAC-based quantitative proteomic analysis on HIV-Tat treated SH-SY5Y neuroblastoma cells. Isolated protein was fractionated by SDS-PAGE and analyzed by nLC-MS/MS on an Orbitrap Velos. Using MaxQuant, we identified and quantified 3077 unique protein groups, of which 407 were differentially regulated. After applying an additional standard deviation-based cutoff, 29 of these were identified as highly significantly and stably dysregulated. GO term analysis shows dysregulation in both protein translation machinery as well as cytoskeletal regulation that have both been implicated in other dementias. In addition, several key cytoskeletal regulatory proteins such as ARHGEF17, the Rho GTPase, SHROOM3, and CMRP1 are downregulated. Together, these data demonstrate that HIV-Tat can dysregulate neuronal cytoskeletal regulatory proteins that could lead to the major HAND clinical manifestation-synapse loss.
Collapse
Affiliation(s)
- Tariq Ganief
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Putuma Gqamana
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Shaun Garnett
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Jackie Hoare
- Department of Psychiatry, University of Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry, University of Cape Town, South Africa.,MRC Unit on Anxiety and Stress Disorders, University of Cape Town, South Africa
| | - John Joska
- Department of Psychiatry, University of Cape Town, South Africa
| | - Nelson Soares
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| |
Collapse
|
17
|
McKay GJ, Kavanagh DH, Crean JK, Maxwell AP. Bioinformatic Evaluation of Transcriptional Regulation of WNT Pathway Genes with reference to Diabetic Nephropathy. J Diabetes Res 2016; 2016:7684038. [PMID: 26697505 PMCID: PMC4677197 DOI: 10.1155/2016/7684038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 05/18/2015] [Accepted: 05/24/2015] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE WNT/β-catenin pathway members have been implicated in interstitial fibrosis and glomerular sclerosis disease processes characteristic of diabetic nephropathy (DN), processes partly controlled by transcription factors (TFs) that bind to gene promoter regions attenuating regulation. We sought to identify predicted cis-acting transcription factor binding sites (TFBSs) overrepresented within WNT pathway members. METHODS We assessed 62 TFBS motif frequencies from the JASPAR databases in 65 WNT pathway genes. P values were estimated on the hypergeometric distribution for each TF. Gene expression profiles of enriched motifs were examined in DN-related datasets to assess clinical significance. RESULTS Transcription factor AP-2 alpha (TFAP2A), myeloid zinc finger 1 (MZF1), and specificity protein 1 (SP1) were significantly enriched within WNT pathway genes (P values < 6.83 × 10(-29), 1.34 × 10(-11), and 3.01 × 10(-6), resp.). MZF1 expression was significantly increased in DN in a whole kidney dataset (fold change = 1.16; 16% increase; P = 0.03). TFAP2A expression was decreased in an independent dataset (fold change = -1.02; P = 0.03). No differential expression of SP1 was detected. CONCLUSIONS Three TFBS profiles are significantly enriched within WNT pathway genes highlighting the potential of in silico analyses for identification of pathway regulators. Modification of TF binding may possibly limit DN progression, offering potential therapeutic benefit.
Collapse
Affiliation(s)
- Gareth J. McKay
- Centre for Public Health, Queen's University Belfast, Belfast BT12 6BA, UK
- *Gareth J. McKay:
| | - David H. Kavanagh
- Centre for Public Health, Queen's University Belfast, Belfast BT12 6BA, UK
| | - John K. Crean
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|
18
|
Taskesen E, Babaei S, Reinders MMJ, de Ridder J. Integration of gene expression and DNA-methylation profiles improves molecular subtype classification in acute myeloid leukemia. BMC Bioinformatics 2015; 16 Suppl 4:S5. [PMID: 25734246 PMCID: PMC4347619 DOI: 10.1186/1471-2105-16-s4-s5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Acute Myeloid Leukemia (AML) is characterized by various cytogenetic and molecular abnormalities. Detection of these abnormalities is important in the risk-classification of patients but requires laborious experimentation. Various studies showed that gene expression profiles (GEP), and the gene signatures derived from GEP, can be used for the prediction of subtypes in AML. Similarly, successful prediction was also achieved by exploiting DNA-methylation profiles (DMP). There are, however, no studies that compared classification accuracy and performance between GEP and DMP, neither are there studies that integrated both types of data to determine whether predictive power can be improved. Approach Here, we used 344 well-characterized AML samples for which both gene expression and DNA-methylation profiles are available. We created three different classification strategies including early, late and no integration of these datasets and used them to predict AML subtypes using a logistic regression model with Lasso regularization. Results We illustrate that both gene expression and DNA-methylation profiles contain distinct patterns that contribute to discriminating AML subtypes and that an integration strategy can exploit these patterns to achieve synergy between both data types. We show that concatenation of features from both data sets, i.e. early integration, improves the predictive power compared to classifiers trained on GEP or DMP alone. A more sophisticated strategy, i.e. the late integration strategy, employs a two-layer classifier which outperforms the early integration strategy. Conclusion We demonstrate that prediction of known cytogenetic and molecular abnormalities in AML can be further improved by integrating GEP and DMP profiles.
Collapse
|
19
|
Koiwai K, Kubota T, Watanabe N, Hori K, Koiwai O, Masai H. Definition of the transcription factor TdIF1 consensus-binding sequence through genomewide mapping of its binding sites. Genes Cells 2015; 20:242-54. [PMID: 25619743 DOI: 10.1111/gtc.12216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/04/2014] [Indexed: 12/26/2022]
Abstract
TdIF1 was originally identified as a protein that directly binds to terminal deoxynucleotidyltransferase, TdT. Through in vitro selection assays (SELEX), we recently showed that TdIF1 recognizes both AT-tract and a specific DNA sequence motif, 5'-TGCATG-3', and can up-regulate the expression of RAB20 through the latter motif. However, whether TdIF1 binds to these sequences in the cells has not been clear and its other target genes remain to be identified. Here, we determined in vivo TdIF1-binding sequences (TdIF1-invivoBMs) on the human chromosomes through ChIP-seq analyses. The result showed a 160-base pair cassette containing 'AT-tract~palindrome (inverted repeat)~AT-tract' as a likely target sequence of TdIF1. Interestingly, the core sequence of the palindrome in the TdIF1-invivoBMs shares significant similarity to the above 5'-TGCATG-3' motif determined by SELEX in vitro. Furthermore, spacer sequences between AT-tract and the palindrome contain many potential transcription factor binding sites. In luciferase assays, TdIF1 can up-regulate transcription activity of the promoters containing the TdIF1-invivoBM, and this effect is mainly through the palindrome. Clusters of this motif were found in the potential target genes. Gene ontology analysis and RT-qPCR showed the enrichment of some candidate targets of TdIF1 among the genes involved in the regulation of ossification. Potential modes of transcription activation by TdIF1 are discussed.
Collapse
Affiliation(s)
- Kotaro Koiwai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Geng X, Ma J, Zhang F, Xu C. Glyoxalase I in Tumor Cell Proliferation and Survival and as a Potential Target for Anticancer Therapy. Oncol Res Treat 2014; 37:570-4. [DOI: 10.1159/000367800] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/08/2014] [Indexed: 11/19/2022]
|
21
|
Transcriptional regulatory network analysis of the over-expressed genes in adipose tissue. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0145-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Penna E, Orso F, Cimino D, Vercellino I, Grassi E, Quaglino E, Turco E, Taverna D. miR-214 coordinates melanoma progression by upregulating ALCAM through TFAP2 and miR-148b downmodulation. Cancer Res 2013; 73:4098-111. [PMID: 23667173 DOI: 10.1158/0008-5472.can-12-3686] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is one of the most aggressive human cancers, but the mechanisms governing its metastatic dissemination are not fully understood. Upregulation of miR-214 and ALCAM and the loss of TFAP2 expression have been implicated in this process, with TFAP2 a direct target of miR-214. Here, we link miR-214 and ALCAM as well as identify a core role for miR-214 in organizing melanoma metastasis. miR-214 upregulated ALCAM, acting transcriptionally through TFAP2 and also posttranscriptionally through miR-148b (itself controlled by TFAP2), both negative regulators of ALCAM. We also identified several miR-214-mediated prometastatic functions directly promoted by ALCAM. Silencing ALCAM in miR-214-overexpressing melanoma cells reduced cell migration and invasion without affecting growth or anoikis in vitro, and it also impaired extravasation and metastasis formation in vivo. Conversely, cell migration and extravasation was reduced in miR-214-overexpressing cells by upregulation of either miR-148b or TFAP2. These findings were consistent with patterns of expression of miR-214, ALCAM, and miR-148b in human melanoma specimens. Overall, our results define a pathway involving miR-214, miR-148b, TFAP2, and ALCAM that is critical for establishing distant metastases in melanoma.
Collapse
Affiliation(s)
- Elisa Penna
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Inhibition of neural crest formation by Kctd15 involves regulation of transcription factor AP-2. Proc Natl Acad Sci U S A 2013; 110:2870-5. [PMID: 23382213 DOI: 10.1073/pnas.1300203110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The neural crest develops in vertebrate embryos within a discrete domain at the neural plate boundary and eventually gives rise to a migrating population of cells that differentiate into a multitude of derivatives. We have shown that the broad-complex, tramtrack and bric a brac (BTB) domain-containing factor potassium channel tetramerization domain containing 15 (Kctd15) inhibits neural crest formation, and we proposed that its function is to delimit the neural crest domain. Here we report that Kctd15 is a highly effective inhibitor of transcription factor activating enhancer binding protein 2 (AP-2) in zebrafish embryos and in human cells; AP-2 is known to be critical for several steps of neural crest development. Kctd15 interacts with AP-2α but does not interfere with its nuclear localization or binding to cognate sites in the genome. Kctd15 binds specifically to the activation domain of AP-2α and efficiently inhibits transcriptional activation by a hybrid protein composed of the regulatory protein Gal4 DNA binding and AP-2α activation domains. Mutation of one proline residue in the activation domain to an alanine (P59A) yields a protein that is highly active but largely insensitive to Kctd15. These results indicate that Kctd15 acts in the embryo at least in part by specifically binding to the activation domain of AP-2α, thereby blocking the function of this critical factor in the neural crest induction hierarchy.
Collapse
|
24
|
Osella-Abate S, Novelli M, Quaglino P, Orso F, Ubezio B, Tomasini C, Berardengo E, Bernengo MG, Taverna D. Expression of AP-2α, AP-2γ and ESDN in primary melanomas: correlation with histopathological features and potential prognostic value. J Dermatol Sci 2012; 68:202-4. [PMID: 23036739 DOI: 10.1016/j.jdermsci.2012.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
|
25
|
Cancer-type regulation of MIG-6 expression by inhibitors of methylation and histone deacetylation. PLoS One 2012; 7:e38955. [PMID: 22701735 PMCID: PMC3373526 DOI: 10.1371/journal.pone.0038955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing is one of the mechanisms leading to inactivation of a tumor suppressor gene, either by DNA methylation or histone modification in a promoter regulatory region. Mitogen inducible gene 6 (MIG-6), mainly known as a negative feedback inhibitor of the epidermal growth factor receptor (EGFR) family, is a tumor suppressor gene that is associated with many human cancers. To determine if MIG-6 is inactivated by epigenetic alteration, we identified a group of human lung cancer and melanoma cell lines in which its expression is either low or undetectable and studied the effects of methylation and of histone deacetylation on its expression. The DNA methyltransferase (DNMT) inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) induced MIG-6 expression in melanoma cell lines but little in lung cancer lines. By contrast, the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) induced MIG-6 expression in lung cancer lines but had little effect in melanoma lines. However, the MIG-6 promoter itself did not appear to be directly affected by either methylation or histone deacetylation, indicating an indirect regulatory mechanism. Luciferase reporter assays revealed that a short segment of exon 1 in the MIG-6 gene is responsible for TSA response in the lung cancer cells; thus, the MIG-6 gene can be epigenetically silenced through an indirect mechanism without having a physical alteration in its promoter. Furthermore, our data also suggest that MIG-6 gene expression is differentially regulated in lung cancer and melanoma.
Collapse
|
26
|
Park TJ, Kim JH, Park BL, Cheong HS, Bae JS, Pasaje CF, Park JS, Uh ST, Kim MK, Choi IS, Park CS, Shin HD. Potential association of DCBLD2 polymorphisms with fall rates of FEV(1) by aspirin provocation in Korean asthmatics. J Korean Med Sci 2012; 27:343-9. [PMID: 22468095 PMCID: PMC3314844 DOI: 10.3346/jkms.2012.27.4.343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 01/17/2012] [Indexed: 11/30/2022] Open
Abstract
Aspirin exacerbated respiratory disease (AERD) is a clinical syndrome characterized by chronic rhinosinusitis with nasal polyposis and aspirin hypersensitivity. The aspirin-induced bronchospasm is mediated by mast cell and eosinophilic inflammation. Recently, it has been reported that the expression of discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2) is up-regulated in lung cancers and is regulated by transcription factor AP-2 alpha (TFAP2A), a component of activator protein-2 (AP-2) that is known to regulate IL-8 production in human lung fibroblasts and epithelial cells. To investigate the associations between AERD and DCBLD2 polymorphisms, 12 common variants were genotyped in 163 AERD subjects and 429 aspirin tolerant asthma (ATA) controls. Among these variants, seven SNPs (rs1371687, rs7615856, rs828621, rs828618, rs828616, rs1062196, and rs8833) and one haplotype (DCBLD2-ht1) show associations with susceptibility to AERD. In further analysis, this study reveals significant associations between the SNPs or haplotypes and the percentage of forced expiratory volume in one second (FEV(1)) decline following aspirin challenge using multiple linear regression analysis. Furthermore, a non-synonymous SNP rs16840208 (Asp723Asn) shows a strong association with FEV(1) decline in AERD patients. Although further studies for the non-synonymous Asp723Asn variation are needed, our findings suggest that DCBLD2 could be related to FEV(1)-related phenotypes in asthmatics.
Collapse
Affiliation(s)
- Tae-Joon Park
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jeong-Hyun Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Byung-Lae Park
- Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, Korea
| | - Joon Seol Bae
- Department of Life Science, Sogang University, Seoul, Korea
| | | | - Jong-Sook Park
- Genome Research Center for Allergy and Respiratory Diseases, Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Soo-Taek Uh
- Genome Research Center for Allergy and Respiratory Diseases, Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Mi-Kyeong Kim
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Inseon S. Choi
- Department of Allergy, Chonnam National University Medical School and Research Institute of Medical Sciences, Gwangju, Korea
| | - Choon-Sik Park
- Genome Research Center for Allergy and Respiratory Diseases, Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, Seoul, Korea
- Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, Korea
| |
Collapse
|
27
|
Glyoxalase in ageing. Semin Cell Dev Biol 2011; 22:293-301. [DOI: 10.1016/j.semcdb.2011.02.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 11/15/2022]
|
28
|
Galimi F, Torti D, Sassi F, Isella C, Corà D, Gastaldi S, Ribero D, Muratore A, Massucco P, Siatis D, Paraluppi G, Gonella F, Maione F, Pisacane A, David E, Torchio B, Risio M, Salizzoni M, Capussotti L, Perera T, Medico E, Di Renzo MF, Comoglio PM, Trusolino L, Bertotti A. Genetic and expression analysis of MET, MACC1, and HGF in metastatic colorectal cancer: response to met inhibition in patient xenografts and pathologic correlations. Clin Cancer Res 2011; 17:3146-56. [PMID: 21447729 DOI: 10.1158/1078-0432.ccr-10-3377] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE We determined the gene copy numbers for MET, for its transcriptional activator MACC1 and for its ligand hepatocyte growth factor (HGF) in liver metastases from colorectal carcinoma (mCRC). We correlated copy numbers with mRNA levels and explored whether gain and/or overexpression of MET and MACC1 predict response to anti-Met therapies. Finally, we assessed whether their genomic or transcriptional deregulation correlates with pathologic and molecular parameters of aggressive disease. EXPERIMENTAL DESIGN One hundred three mCRCs were analyzed. Copy numbers and mRNA were determined by quantitative PCR (qPCR). Thirty nine samples were implanted and expanded in NOD (nonobese diabetic)/SCID (severe combined immunodeficient) mice to generate cohorts that were treated with the Met inhibitor JNJ-38877605. In silico analysis of MACC1 targets relied on genome-wide mapping of promoter regions and on expression data from two CRC datasets. RESULTS No focal, high-grade amplifications of MET, MACC1, or HGF were detected. Chromosome 7 polysomy and gain of the p-arm were observed in 21% and 8% of cases, respectively, and significantly correlated with higher expression of both Met and MACC1. Met inhibition in patient-derived xenografts did not modify tumor growth. Copy number gain and overexpression of MACC1 correlated with unfavorable pathologic features better than overexpression of Met. Bioinformatic analysis of putative MACC1 targets identified elements besides Met, whose overexpression cosegregated with aggressive forms of colorectal cancer. CONCLUSIONS Experiments in patient-derived xenografts suggest that mCRCs do not rely on Met genomic gain and/or overexpression for growth. On the basis of pathologic correlations and bioinformatic analysis, MACC1 could contribute to CRC progression through mechanisms other than or additional to Met transcriptional upregulation.
Collapse
Affiliation(s)
- Francesco Galimi
- Laboratories of Molecular Pharmacology, Institute for Cancer Research and Treatment IRCC, Candiolo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|