1
|
Carrasco B, González M, Gebauer M, García-González R, Maldonado J, Silva H. Construction of a highly saturated linkage map in Japanese plum (Prunus salicina L.) using GBS for SNP marker calling. PLoS One 2018; 13:e0208032. [PMID: 30507961 PMCID: PMC6277071 DOI: 10.1371/journal.pone.0208032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022] Open
Abstract
This study reports the construction of high density linkage maps of Japanese plum (Prunus salicina Lindl.) using single nucleotide polymorphism markers (SNPs), obtained with a GBS strategy. The mapping population (An x Au) was obtained by crossing cv. "Angeleno" (An) as maternal line and cv. "Aurora" (Au) as the pollen donor. A total of 49,826 SNPs were identified using the peach genome V2.1 as a reference. Then a stringent filtering was carried out, which revealed 1,441 high quality SNPs in 137 An x Au offspring, which were mapped in eight linkage groups. Finally, the consensus map was built using 732 SNPs which spanned 617 cM with an average of 0.96 cM between adjacent markers. The majority of the SNPs were distributed in the intragenic region in all the linkage groups. Considering all linkage groups together, 85.6% of the SNPs were located in intragenic regions and only 14.4% were located in intergenic regions. The genetic linkage analysis was able to co-localize two to three SNPs over 37 putative orthologous genes in eight linkage groups in the Japanese plum map. These results indicate a high level of synteny and collinearity between Japanese plum and peach genomes.
Collapse
Affiliation(s)
- Basilio Carrasco
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ciencias Vegetales, Macul, Santiago, Chile
| | - Máximo González
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ciencias Vegetales, Macul, Santiago, Chile
| | - Marlene Gebauer
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ciencias Vegetales, Macul, Santiago, Chile
| | - Rolando García-González
- Sociedad BioTECNOS Ltda, R&D Department Camino a Pangal Km 2 1/2, San Javier, Región del Maule, Chile
- Facultad de Ciencias Agrarias y Forestales, Centro de Biotecnología de los Recursos Naturales (CENBio), Universidad Católica del Maule, Talca, Chile
| | - Jonathan Maldonado
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, La Pintana, Santiago, Chile
| | - Herman Silva
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, La Pintana, Santiago, Chile
| |
Collapse
|
2
|
Genotyping by Sequencing in Almond: SNP Discovery, Linkage Mapping, and Marker Design. G3-GENES GENOMES GENETICS 2018; 8:161-172. [PMID: 29141988 PMCID: PMC5765344 DOI: 10.1534/g3.117.300376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In crop plant genetics, linkage maps provide the basis for the mapping of loci that affect important traits and for the selection of markers to be applied in crop improvement. In outcrossing species such as almond (Prunus dulcis Mill. D. A. Webb), application of a double pseudotestcross mapping approach to the F1 progeny of a biparental cross leads to the construction of a linkage map for each parent. Here, we report on the application of genotyping by sequencing to discover and map single nucleotide polymorphisms in the almond cultivars “Nonpareil” and “Lauranne.” Allele-specific marker assays were developed for 309 tag pairs. Application of these assays to 231 Nonpareil × Lauranne F1 progeny provided robust linkage maps for each parent. Analysis of phenotypic data for shell hardness demonstrated the utility of these maps for quantitative trait locus mapping. Comparison of these maps to the peach genome assembly confirmed high synteny and collinearity between the peach and almond genomes. The marker assays were applied to progeny from several other Nonpareil crosses, providing the basis for a composite linkage map of Nonpareil. Applications of the assays to a panel of almond clones and a panel of rootstocks used for almond production demonstrated the broad applicability of the markers and provide subsets of markers that could be used to discriminate among accessions. The sequence-based linkage maps and single nucleotide polymorphism assays presented here could be useful resources for the genetic analysis and genetic improvement of almond.
Collapse
|
3
|
Zhang L, Yang X, Qi X, Guo C, Jing Z. Characterizing the transcriptome and microsatellite markers for almond ( Amygdalus communis L.) using the Illumina sequencing platform. Hereditas 2017; 155:14. [PMID: 29075165 PMCID: PMC5649074 DOI: 10.1186/s41065-017-0049-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 10/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The almond tree (Prunus amygdalus Batsch) is an important nut tree grown in subtropical regions that produces nutrient-rich nuts. However, a paucity of genomic information and DNA markers has restricted the development of modern breeding technologies for almond trees. RESULTS In this study, almonds were sequenced with Illumina paired-end sequencing technology to obtain transcriptome data and develop simple sequence repeats (SSR) markers. We generated approximately 64 million clean reads from the various tissues of mixed almonds, and a total of 42,135 unigenes with an average length of 988 bp were obtained in the present study. A total of 27,586 unigenes (57.7% of all unigenes generated) were annotated using several databases. A total of 112,812 unigenes were annotated with the Gene Ontology (GO) database and assigned to 82 functional sub-groups, and 29,075 unigenes were assigned to the KOG database and classified into 25 function classifications. There were 9470 unigenes assigned to 129 Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways from five categories in the KEGG pathway database. We further identified 8641 SSR markers from 48,012 unigenes. A total of 100 SSR markers were randomly selected to validate quality, and 82 markers could amplify the specific products of A. communis L., whereas 70 markers were successfully transferable to five species (A. ledebouriana, A. mongolica, A. pedunculata, A. tangutica, and A. triloba). CONCLUSIONS Our study was the first to produce public transcriptome data from almonds. The development of SSR markers will promote genetics research and breeding programmes for almonds.
Collapse
Affiliation(s)
- Linsen Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People's Republic of China
| | - Xiaoni Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People's Republic of China
| | - Xiangning Qi
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People's Republic of China
| | - Chunhui Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People's Republic of China
| | - Zhaobin Jing
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People's Republic of China
| |
Collapse
|
4
|
Hewitt S, Kilian B, Hari R, Koepke T, Sharpe R, Dhingra A. Evaluation of multiple approaches to identify genome-wide polymorphisms in closely related genotypes of sweet cherry ( Prunus avium L.). Comput Struct Biotechnol J 2017; 15:290-298. [PMID: 28392892 PMCID: PMC5376269 DOI: 10.1016/j.csbj.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/02/2017] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
Identification of genetic polymorphisms and subsequent development of molecular markers is important for marker assisted breeding of superior cultivars of economically important species. Sweet cherry (Prunus avium L.) is an economically important non-climacteric tree fruit crop in the Rosaceae family and has undergone a genetic bottleneck due to breeding, resulting in limited genetic diversity in the germplasm that is utilized for breeding new cultivars. Therefore, it is critical to recognize the best platforms for identifying genome-wide polymorphisms that can help identify, and consequently preserve, the diversity in a genetically constrained species. For the identification of polymorphisms in five closely related genotypes of sweet cherry, a gel-based approach (TRAP), reduced representation sequencing (TRAPseq), a 6k cherry SNParray, and whole genome sequencing (WGS) approaches were evaluated in the identification of genome-wide polymorphisms in sweet cherry cultivars. All platforms facilitated detection of polymorphisms among the genotypes with variable efficiency. In assessing multiple SNP detection platforms, this study has demonstrated that a combination of appropriate approaches is necessary for efficient polymorphism identification, especially between closely related cultivars of a species. The information generated in this study provides a valuable resource for future genetic and genomic studies in sweet cherry, and the insights gained from the evaluation of multiple approaches can be utilized for other closely related species with limited genetic diversity in the breeding germplasm.
Collapse
Affiliation(s)
- Seanna Hewitt
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, United States; Department of Horticulture, Washington State University, Pullman, WA 99164-6414, United States
| | - Benjamin Kilian
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, United States; Department of Horticulture, Washington State University, Pullman, WA 99164-6414, United States
| | - Ramyya Hari
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, United States
| | - Tyson Koepke
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, United States; Department of Horticulture, Washington State University, Pullman, WA 99164-6414, United States
| | - Richard Sharpe
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, United States; Department of Horticulture, Washington State University, Pullman, WA 99164-6414, United States
| | - Amit Dhingra
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, United States; Department of Horticulture, Washington State University, Pullman, WA 99164-6414, United States
| |
Collapse
|
5
|
Lenz RR, Dai W. Mapping X-Disease Phytoplasma Resistance in Prunus virginiana. FRONTIERS IN PLANT SCIENCE 2017; 8:2057. [PMID: 29238359 PMCID: PMC5712551 DOI: 10.3389/fpls.2017.02057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/17/2017] [Indexed: 05/10/2023]
Abstract
Phytoplasmas such as "Candidatus Phytoplasma pruni," the causal agent of X-disease of stone fruits, lack detailed biological analysis. This has limited the understanding of plant resistance mechanisms. Chokecherry (Prunus virginiana L.) is a promising model to be used for the plant-phytoplasma interaction due to its documented ability to resist X-disease infection. A consensus chokecherry genetic map "Cho" was developed with JoinMap 4.0 by joining two parental maps. The new map contains a complete set of 16 linkage groups, spanning a genetic distance of 2,172 cM with an average marker density of 3.97 cM. Three significant quantitative trait loci (QTL) associated with X-disease resistance were identified contributing to a total of 45.9% of the phenotypic variation. This updated genetic linkage map and the identified QTL will provide the framework needed to facilitate molecular genetics, genomics, breeding, and biotechnology research concerning X-disease in chokecherry and other Prunus species.
Collapse
|
6
|
Guajardo V, Solís S, Sagredo B, Gainza F, Muñoz C, Gasic K, Hinrichsen P. Construction of High Density Sweet Cherry (Prunus avium L.) Linkage Maps Using Microsatellite Markers and SNPs Detected by Genotyping-by-Sequencing (GBS). PLoS One 2015; 10:e0127750. [PMID: 26011256 PMCID: PMC4444190 DOI: 10.1371/journal.pone.0127750] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/17/2015] [Indexed: 11/18/2022] Open
Abstract
Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage maps have been constructed using mainly microsatellite markers (SSRs) and, recently, using single nucleotide polymorphism markers (SNPs) from a cherry 6K SNP array. Genotyping-by-sequencing (GBS), a new methodology based on high-throughput sequencing, holds great promise for identification of high number of SNPs and construction of high density linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical position for each SNP was determined using the peach genome, Peach v1.0, as reference, and a homogeneous distribution of markers along the eight peach scaffolds was obtained. On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of linkage maps. Parental and consensus high density maps were constructed by genotyping 166 siblings from a ‘Rainier’ x ‘Rivedel’ (Ra x Ri) cross. Using Ra x Ri population, 462, 489 and 985 markers were mapped into eight linkage groups in ‘Rainier’, ‘Rivedel’ and the Ra x Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps spanned 549.5, 582.6 and 731.3 cM for ‘Rainier’, ‘Rivedel’ and consensus maps, respectively, with an average distance of 1.2 cM between adjacent markers for both ‘Rainier’ and ‘Rivedel’ maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed between obtained maps and with Peach v1.0. These new high density linkage maps provide valuable information on the sweet cherry genome, and serve as the basis for identification of QTLs and genes relevant for the breeding of the species.
Collapse
Affiliation(s)
- Verónica Guajardo
- Centro de Estudios Avanzados en Fruticultura (CEAF), Los Choapinos, Rengo, Chile
| | - Simón Solís
- Centro de Estudios Avanzados en Fruticultura (CEAF), Los Choapinos, Rengo, Chile
| | - Boris Sagredo
- Instituto de Investigaciones Agropecuarias, INIA Rayentué, Rengo, Chile
| | - Felipe Gainza
- Centro de Estudios Avanzados en Fruticultura (CEAF), Los Choapinos, Rengo, Chile
| | - Carlos Muñoz
- Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Ksenija Gasic
- Department of Agricultural and Environmental Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Patricio Hinrichsen
- Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
- * E-mail:
| |
Collapse
|
7
|
Tan LQ, Wang LY, Wei K, Zhang CC, Wu LY, Qi GN, Cheng H, Zhang Q, Cui QM, Liang JB. Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS One 2013; 8:e81611. [PMID: 24303059 PMCID: PMC3841144 DOI: 10.1371/journal.pone.0081611] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022] Open
Abstract
Despite the worldwide consumption and high economic importance of tea, the plant (Camellia sinensis) is not well studied in molecular biology. Under the few circumstances in which the plant is studied, C. sinensis flowers, which are important for reproduction and cross-breeding, receive less emphasis than investigation of its leaves or roots. Using high-throughput Illumina RNA sequencing, we analyzed a C. sinensis floral transcriptome, and 26.9 million clean reads were assembled into 75,531 unigenes averaging 402 bp. Among them, 50,792 (67.2%) unigenes were annotated with a BLAST search against the NCBI Non-Redundant (NR) database and 10,290 (16.67%) were detected that contained one or more simple sequence repeats (SSRs). From these SSR-containing sequences, 2,439 candidate SSR markers were developed and 720 were experimentally tested, validating 431 (59.9%) novel polymorphic SSR markers for C. sinensis. Then, a consensus SSR-based linkage map was constructed that covered 1,156.9 cM with 237 SSR markers distributed in 15 linkage groups. Both transcriptome information and the genetic map of C. sinensis presented here offer a valuable foundation for molecular biology investigations such as functional gene isolation, quantitative trait loci mapping, and marker-assisted selection breeding in this important species.
Collapse
Affiliation(s)
- Li-Qiang Tan
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, P. R. China
- College of Horticulture, Sichuan Agricultural University, Yaan, P. R. China
| | - Li-Yuan Wang
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, P. R. China
- * E-mail: (HC); (LYW); (GNQ)
| | - Kang Wei
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, P. R. China
| | - Cheng-Cai Zhang
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, P. R. China
| | - Li-Yun Wu
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, P. R. China
| | - Gui-Nian Qi
- College of Horticulture, Sichuan Agricultural University, Yaan, P. R. China
- * E-mail: (HC); (LYW); (GNQ)
| | - Hao Cheng
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, P. R. China
- * E-mail: (HC); (LYW); (GNQ)
| | - Qiang Zhang
- Tea Research Institute, Enshi Academy of Agricultural Sciences, Enshi, P. R. China
| | - Qing-Mei Cui
- Tea Research Institute, Enshi Academy of Agricultural Sciences, Enshi, P. R. China
| | - Jin-Bo Liang
- Tea Research Institute, Enshi Academy of Agricultural Sciences, Enshi, P. R. China
| |
Collapse
|
8
|
Klagges C, Campoy JA, Quero-García J, Guzmán A, Mansur L, Gratacós E, Silva H, Rosyara UR, Iezzoni A, Meisel LA, Dirlewanger E. Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars. PLoS One 2013; 8:e54743. [PMID: 23382953 PMCID: PMC3561380 DOI: 10.1371/journal.pone.0054743] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/14/2012] [Indexed: 11/28/2022] Open
Abstract
Despite the agronomical importance and high synteny with other Prunus species, breeding improvements for cherry have been slow compared to other temperate fruits, such as apple or peach. However, the recent release of the peach genome v1.0 by the International Peach Genome Initiative and the sequencing of cherry accessions to identify Single Nucleotide Polymorphisms (SNPs) provide an excellent basis for the advancement of cherry genetic and genomic studies. The availability of dense genetic linkage maps in phenotyped segregating progenies would be a valuable tool for breeders and geneticists. Using two sweet cherry (Prunus avium L.) intra-specific progenies derived from crosses between 'Black Tartarian' × 'Kordia' (BT×K) and 'Regina' × 'Lapins'(R×L), high-density genetic maps of the four parental lines and the two segregating populations were constructed. For BT×K and R×L, 89 and 121 F(1) plants were used for linkage mapping, respectively. A total of 5,696 SNP markers were tested in each progeny. As a result of these analyses, 723 and 687 markers were mapped into eight linkage groups (LGs) in BT×K and R×L, respectively. The resulting maps spanned 752.9 and 639.9 cM with an average distance of 1.1 and 0.9 cM between adjacent markers in BT×K and R×L, respectively. The maps displayed high synteny and co-linearity between each other, with the Prunus bin map, and with the peach genome v1.0 for all eight LGs (LG1-LG8). These maps provide a useful tool for investigating traits of interest in sweet cherry and represent a qualitative advance in the understanding of the cherry genome and its synteny with other members of the Rosaceae family.
Collapse
Affiliation(s)
- Carolina Klagges
- Universidad Andrés Bello, Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Santiago, Chile
| | - José Antonio Campoy
- INRA, UR419, Unité de Recherches sur les Espèces Fruitières (UREF), Centre de Bordeaux, Villenave d’Ornon, France
| | - José Quero-García
- INRA, UR419, Unité de Recherches sur les Espèces Fruitières (UREF), Centre de Bordeaux, Villenave d’Ornon, France
| | - Alejandra Guzmán
- Estación Experimental La Palma, Facultad de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Levi Mansur
- Estación Experimental La Palma, Facultad de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Eduardo Gratacós
- Estación Experimental La Palma, Facultad de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Herman Silva
- Laboratorio de Genómica Funcional y Bioinformática, Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Umesh R. Rosyara
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Amy Iezzoni
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Lee A. Meisel
- Universidad Andrés Bello, Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Santiago, Chile
- INTA-Universidad de Chile, Santiago, Chile
| | - Elisabeth Dirlewanger
- INRA, UR419, Unité de Recherches sur les Espèces Fruitières (UREF), Centre de Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
9
|
Rabbi IY, Kulembeka HP, Masumba E, Marri PR, Ferguson M. An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:329-42. [PMID: 22419105 DOI: 10.1007/s00122-012-1836-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/24/2012] [Indexed: 05/05/2023]
Abstract
Cassava (Manihot esculenta Crantz) is one of the most important food security crops in the tropics and increasingly being adopted for agro-industrial processing. Genetic improvement of cassava can be enhanced through marker-assisted breeding. For this, appropriate genomic tools are required to dissect the genetic architecture of economically important traits. Here, a genome-wide SNP-based genetic map of cassava anchored in SSRs is presented. An outbreeder full-sib (F1) family was genotyped on two independent SNP assay platforms: an array of 1,536 SNPs on Illumina's GoldenGate platform was used to genotype a first batch of 60 F1. Of the 1,358 successfully converted SNPs, 600 which were polymorphic in at least one of the parents and was subsequently converted to KBiosciences' KASPar assay platform for genotyping 70 additional F1. High-precision genotyping of 163 informative SSRs using capillary electrophoresis was also carried out. Linkage analysis resulted in a final linkage map of 1,837 centi-Morgans (cM) containing 568 markers (434 SNPs and 134 SSRs) distributed across 19 linkage groups. The average distance between adjacent markers was 3.4 cM. About 94.2% of the mapped SNPs and SSRs have also been localized on scaffolds of version 4.1 assembly of the cassava draft genome sequence. This more saturated genetic linkage map of cassava that combines SSR and SNP markers should find several applications in the improvement of cassava including aligning scaffolds of the cassava genome sequence, genetic analyses of important agro-morphological traits, studying the linkage disequilibrium landscape and comparative genomics.
Collapse
Affiliation(s)
- Ismail Yusuf Rabbi
- International Institute of Tropical Agriculture, PMB 5320 Oyo Road, Ibadan, Nigeria.
| | | | | | | | | |
Collapse
|
10
|
Font i Forcada C, Fernández i Martí A, Socias i Company R. Mapping quantitative trait loci for kernel composition in almond. BMC Genet 2012; 13:47. [PMID: 22720975 PMCID: PMC3432608 DOI: 10.1186/1471-2156-13-47] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/04/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Almond breeding is increasingly taking into account kernel quality as a breeding objective. Information on the parameters to be considered in evaluating almond quality, such as protein and oil content, as well as oleic acid and tocopherol concentration, has been recently compiled. The genetic control of these traits has not yet been studied in almond, although this information would improve the efficiency of almond breeding programs. RESULTS A map with 56 simple sequence repeat or microsatellite (SSR) markers was constructed for an almond population showing a wide range of variability for the chemical components of the almond kernel. A total of 12 putative quantitative trait loci (QTL) controlling these chemical traits have been detected in this analysis, corresponding to seven genomic regions of the eight almond linkage groups (LG). Some QTL were clustered in the same region or shared the same molecular markers, according to the correlations already found between the chemical traits. The logarithm of the odds (LOD) values for any given trait ranged from 2.12 to 4.87, explaining from 11.0 to 33.1 % of the phenotypic variance of the trait. CONCLUSIONS The results produced in the study offer the opportunity to include the new genetic information in almond breeding programs. Increases in the positive traits of kernel quality may be looked for simultaneously whenever they are genetically independent, even if they are negatively correlated. We have provided the first genetic framework for the chemical components of the almond kernel, with twelve QTL in agreement with the large number of genes controlling their metabolism.
Collapse
Affiliation(s)
- Carolina Font i Forcada
- Unidad de Fruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Av, Montañana 930, 50059 Zaragoza, Spain
| | | | | |
Collapse
|
11
|
Martínez-Gómez P, Sánchez-Pérez R, Rubio M. Clarifying omics concepts, challenges, and opportunities for Prunus breeding in the postgenomic era. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:268-83. [PMID: 22394278 DOI: 10.1089/omi.2011.0133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The recent sequencing of the complete genome of the peach, together with the availability of new high-throughput genome, transcriptome, proteome, and metabolome analysis technologies, offers new possibilities for Prunus breeders in what has been described as the postgenomic era. In this context, new biological challenges and opportunities for the application of these technologies in the development of efficient marker-assisted selection strategies in Prunus breeding include genome resequencing using DNA-Seq, the study of RNA regulation at transcriptional and posttranscriptional levels using tilling microarray and RNA-Seq, protein and metabolite identification and annotation, and standardization of phenotype evaluation. Additional biological opportunities include the high level of synteny among Prunus genomes. Finally, the existence of biases presents another important biological challenge in attaining knowledge from these new high-throughput omics disciplines. On the other hand, from the philosophical point of view, we are facing a revolution in the use of new high-throughput analysis techniques that may mean a scientific paradigm shift in Prunus genetics and genomics theories. The evaluation of scientific progress is another important question in this postgenomic context. Finally, the incommensurability of omics theories in the new high-throughput analysis context presents an additional philosophical challenge.
Collapse
|