1
|
Foflonker F, Blaby-Haas CE. Colocality to Cofunctionality: Eukaryotic Gene Neighborhoods as a Resource for Function Discovery. Mol Biol Evol 2021; 38:650-662. [PMID: 32886760 PMCID: PMC7826186 DOI: 10.1093/molbev/msaa221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diverging from the classic paradigm of random gene order in eukaryotes, gene proximity can be leveraged to systematically identify functionally related gene neighborhoods in eukaryotes, utilizing techniques pioneered in bacteria. Current methods of identifying gene neighborhoods typically rely on sequence similarity to characterized gene products. However, this approach is not robust for nonmodel organisms like algae, which are evolutionarily distant from well-characterized model organisms. Here, we utilize a comparative genomic approach to identify evolutionarily conserved proximal orthologous gene pairs conserved across at least two taxonomic classes of green algae. A total of 317 gene neighborhoods were identified. In some cases, gene proximity appears to have been conserved since before the streptophyte–chlorophyte split, 1,000 Ma. Using functional inferences derived from reconstructed evolutionary relationships, we identified several novel functional clusters. A putative mycosporine-like amino acid, “sunscreen,” neighborhood contains genes similar to either vertebrate or cyanobacterial pathways, suggesting a novel mosaic biosynthetic pathway in green algae. One of two putative arsenic-detoxification neighborhoods includes an organoarsenical transporter (ArsJ), a glyceraldehyde 3-phosphate dehydrogenase-like gene, homologs of which are involved in arsenic detoxification in bacteria, and a novel algal-specific phosphoglycerate kinase-like gene. Mutants of the ArsJ-like transporter and phosphoglycerate kinase-like genes in Chlamydomonas reinhardtii were found to be sensitive to arsenate, providing experimental support for the role of these identified neighbors in resistance to arsenate. Potential evolutionary origins of neighborhoods are discussed, and updated annotations for formerly poorly annotated genes are presented, highlighting the potential of this strategy for functional annotation.
Collapse
|
2
|
Ascencio D, Diss G, Gagnon-Arsenault I, Dubé AK, DeLuna A, Landry CR. Expression attenuation as a mechanism of robustness against gene duplication. Proc Natl Acad Sci U S A 2021; 118:e2014345118. [PMID: 33526669 PMCID: PMC7970654 DOI: 10.1073/pnas.2014345118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene duplication is ubiquitous and a major driver of phenotypic diversity across the tree of life, but its immediate consequences are not fully understood. Deleterious effects would decrease the probability of retention of duplicates and prevent their contribution to long-term evolution. One possible detrimental effect of duplication is the perturbation of the stoichiometry of protein complexes. Here, we measured the fitness effects of the duplication of 899 essential genes in the budding yeast using high-resolution competition assays. At least 10% of genes caused a fitness disadvantage when duplicated. Intriguingly, the duplication of most protein complex subunits had small to nondetectable effects on fitness, with few exceptions. We selected four complexes with subunits that had an impact on fitness when duplicated and measured the impact of individual gene duplications on their protein-protein interactions. We found that very few duplications affect both fitness and interactions. Furthermore, large complexes such as the 26S proteasome are protected from gene duplication by attenuation of protein abundance. Regulatory mechanisms that maintain the stoichiometric balance of protein complexes may protect from the immediate effects of gene duplication. Our results show that a better understanding of protein regulation and assembly in complexes is required for the refinement of current models of gene duplication.
Collapse
Affiliation(s)
- Diana Ascencio
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Guillaume Diss
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre K Dubé
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Christian R Landry
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada;
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Lallemand T, Leduc M, Landès C, Rizzon C, Lerat E. An Overview of Duplicated Gene Detection Methods: Why the Duplication Mechanism Has to Be Accounted for in Their Choice. Genes (Basel) 2020; 11:E1046. [PMID: 32899740 PMCID: PMC7565063 DOI: 10.3390/genes11091046] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Gene duplication is an important evolutionary mechanism allowing to provide new genetic material and thus opportunities to acquire new gene functions for an organism, with major implications such as speciation events. Various processes are known to allow a gene to be duplicated and different models explain how duplicated genes can be maintained in genomes. Due to their particular importance, the identification of duplicated genes is essential when studying genome evolution but it can still be a challenge due to the various fates duplicated genes can encounter. In this review, we first describe the evolutionary processes allowing the formation of duplicated genes but also describe the various bioinformatic approaches that can be used to identify them in genome sequences. Indeed, these bioinformatic approaches differ according to the underlying duplication mechanism. Hence, understanding the specificity of the duplicated genes of interest is a great asset for tool selection and should be taken into account when exploring a biological question.
Collapse
Affiliation(s)
- Tanguy Lallemand
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Martin Leduc
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Claudine Landès
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), Université d’Evry Val d’Essonne, Université Paris-Saclay, UMR CNRS 8071, ENSIIE, USC INRAE, 23 bvd de France, CEDEX, 91037 Evry Paris, France;
| | - Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
4
|
Fervers P, Fervers F, Makałowski W, Jąkalski M. Life cycle adapted upstream open reading frames (uORFs) in Trypanosoma congolense: A post-transcriptional approach to accurate gene regulation. PLoS One 2018; 13:e0201461. [PMID: 30092050 PMCID: PMC6084854 DOI: 10.1371/journal.pone.0201461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/15/2018] [Indexed: 11/18/2022] Open
Abstract
The presented work explores the regulatory influence of upstream open reading frames (uORFs) on gene expression in Trypanosoma congolense. More than 31,000 uORFs in total were identified and characterized here. We found evidence for the uORFs’ appearance in the transcriptome to be correlated with proteomic expression data, clearly indicating their repressive potential in T. congolense, which has to rely on post-transcriptional gene expression regulation due to its unique genomic organization. Our data show that uORF’s translation repressive potential does not only correlate with elemental sequence features such as length, position and quantity, but involves more subtle components, in particular the codon and amino acid profiles. This corresponds with the popular mechanistic model of a ribosome shedding initiation factors during the translation of a uORF, which can prevent reinitiation at the downstream start codon of the actual protein-coding sequence, due to the former extensive consumption of crucial translation components. We suggest that uORFs with uncommon codon and amino acid usage can slow down the translation elongation process in T. congolense, systematically deplete the limited factors, and restrict downstream reinitiation, setting up a bottleneck for subsequent translation of the protein-coding sequence. Additionally we conclude that uORFs dynamically influence the T. congolense life cycle. We found evidence that transition to epimastigote form could be supported by gain of uORFs due to alternative trans-splicing, which down-regulate housekeeping genes’ expression and render the trypanosome in a metabolically reduced state of endurance.
Collapse
Affiliation(s)
- Philipp Fervers
- University of Münster, Faculty of Medicine, Institute of Bioinformatics, Münster, Germany
| | - Florian Fervers
- Karlsruhe Institute of Technology, Department of Informatics, Karlsruhe, Germany
| | - Wojciech Makałowski
- University of Münster, Faculty of Medicine, Institute of Bioinformatics, Münster, Germany
- * E-mail: (MJ); (WM)
| | - Marcin Jąkalski
- University of Münster, Faculty of Medicine, Institute of Bioinformatics, Münster, Germany
- * E-mail: (MJ); (WM)
| |
Collapse
|
5
|
Dhami MK, Hartwig T, Fukami T. Genetic basis of priority effects: insights from nectar yeast. Proc Biol Sci 2017; 283:rspb.2016.1455. [PMID: 27708148 DOI: 10.1098/rspb.2016.1455] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/07/2016] [Indexed: 01/15/2023] Open
Abstract
Priority effects, in which the order of species arrival dictates community assembly, can have a major influence on species diversity, but the genetic basis of priority effects remains unknown. Here, we suggest that nitrogen scavenging genes previously considered responsible for starvation avoidance may drive priority effects by causing rapid resource depletion. Using single-molecule sequencing, we de novo assembled the genome of the nectar-colonizing yeast, Metschnikowia reukaufii, across eight scaffolds and complete mitochondrion, with gap-free coverage over gene spaces. We found a high rate of tandem gene duplication in this genome, enriched for nitrogen metabolism and transport. Both high-capacity amino acid importers, GAP1 and PUT4, present as tandem gene arrays, were highly expressed in synthetic nectar and regulated by the availability and quality of amino acids. In experiments with competitive nectar yeast, Candida rancensis, amino acid addition alleviated suppression of C. rancensis by early arrival of M. reukaufii, corroborating that amino acid scavenging may contribute to priority effects. Because niche pre-emption via rapid resource depletion may underlie priority effects in a broad range of microbial, plant and animal communities, nutrient scavenging genes like the ones we considered here may be broadly relevant to understanding priority effects.
Collapse
Affiliation(s)
- Manpreet K Dhami
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Thomas Hartwig
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Thierry A, Khanna V, Dujon B. Massive Amplification at an Unselected Locus Accompanies Complex Chromosomal Rearrangements in Yeast. G3 (BETHESDA, MD.) 2016; 6:1201-15. [PMID: 26945028 PMCID: PMC4856073 DOI: 10.1534/g3.115.024547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/20/2016] [Indexed: 12/13/2022]
Abstract
Gene amplification has been observed in different organisms in response to environmental constraints, such as limited nutrients or exposure to a variety of toxic compounds, conferring them with specific phenotypic adaptations via increased expression levels. However, the presence of multiple gene copies in natural genomes has generally not been found in the absence of specific functional selection. Here, we show that the massive amplification of a chromosomal locus (up to 880 copies per cell) occurs in the absence of any direct selection, and is associated with low-order amplifications of flanking segments in complex chromosomal alterations. These results were obtained from mutants with restored phenotypes that spontaneously appeared from genetically engineered strains of the yeast Saccharomyces cerevisiae suffering from severe fitness reduction. Grossly extended chromosomes (macrotene) were formed, with complex structural alterations but sufficient stability to propagate unchanged over successive generations. Their detailed molecular analysis, including complete genome sequencing, identification of sequence breakpoints, and comparisons between mutants, revealed novel mechanisms causing their formation, whose combined action underlies the astonishing dynamics of eukaryotic chromosomes and their consequences.
Collapse
Affiliation(s)
- Agnès Thierry
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS (UMR3525), Sorbonne Universités, UPMC, Université Paris 06 (UFR927), F-75724 CEDEX 15, France
| | - Varun Khanna
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS (UMR3525), Sorbonne Universités, UPMC, Université Paris 06 (UFR927), F-75724 CEDEX 15, France
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS (UMR3525), Sorbonne Universités, UPMC, Université Paris 06 (UFR927), F-75724 CEDEX 15, France
| |
Collapse
|
7
|
Demeke MM, Foulquié-Moreno MR, Dumortier F, Thevelein JM. Rapid evolution of recombinant Saccharomyces cerevisiae for Xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genet 2015; 11:e1005010. [PMID: 25738959 PMCID: PMC4352087 DOI: 10.1371/journal.pgen.1005010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/16/2015] [Indexed: 01/06/2023] Open
Abstract
Circular DNA elements are involved in genome plasticity, particularly of tandem repeats. However, amplifications of DNA segments in Saccharomyces cerevisiae reported so far involve pre-existing repetitive sequences such as ribosomal DNA, Ty elements and Long Terminal Repeats (LTRs). Here, we report the generation of an eccDNA, (extrachromosomal circular DNA element) in a region without any repetitive sequences during an adaptive evolution experiment. We performed whole genome sequence comparison between an efficient D-xylose fermenting yeast strain developed by metabolic and evolutionary engineering, and its parent industrial strain. We found that the heterologous gene XylA that had been inserted close to an ARS sequence in the parent strain has been amplified about 9 fold in both alleles of the chromosomal locus of the evolved strain compared to its parent. Analysis of the amplification process during the adaptive evolution revealed formation of a XylA-carrying eccDNA, pXI2-6, followed by chromosomal integration in tandem arrays over the course of the evolutionary adaptation. Formation of the eccDNA occurred in the absence of any repetitive DNA elements, probably using a micro-homology sequence of 8 nucleotides flanking the amplified sequence. We isolated the pXI2-6 eccDNA from an intermediate strain of the evolutionary adaptation process, sequenced it completely and showed that it confers high xylose fermentation capacity when it is transferred to a new strain. In this way, we have provided clear evidence that gene amplification can occur through generation of eccDNA without the presence of flanking repetitive sequences and can serve as a rapid means of adaptation to selection pressure. Xylose is an important component of lignocellulose hydrolysates used for the production of bioethanol, but the yeast Saccharomyces cerevisiae is unable to utilize xylose. Insertion of a bacterial xylose isomerase gene and improvement of growth on xylose by evolutionary adaptation resulted in amplification of this gene and efficient xylose fermentation capacity. Further analysis of the final and intermediate strains from the evolutionary adaptation process revealed interesting features about the mechanisms involved in gene amplification events, which have occurred frequently in natural evolution. We now show that a circular DNA element was spontaneously created by the yeast, encompassing the xylose isomerase gene and an ARS element, present by coincidence adjacent of the inserted xylose isomerase gene. ARS elements are the sites where DNA polymerase initiates duplication of DNA. Interestingly, this has revealed for the first time in yeast that circular DNA plasmids can be created from genomic DNA in the absence of flanking repetitive sequences.
Collapse
Affiliation(s)
- Mekonnen M. Demeke
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KULeuven, Leuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - María R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KULeuven, Leuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Françoise Dumortier
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KULeuven, Leuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KULeuven, Leuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
- * E-mail:
| |
Collapse
|
8
|
Gaillardin C. Hemiascomycetous Yeasts. Yeast 2012. [DOI: 10.1002/9783527659180.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Audemard E, Schiex T, Faraut T. Detecting long tandem duplications in genomic sequences. BMC Bioinformatics 2012; 13:83. [PMID: 22568762 PMCID: PMC3464658 DOI: 10.1186/1471-2105-13-83] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 05/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. RESULTS In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,(a) we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS < 1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. CONCLUSIONS ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations.
Collapse
Affiliation(s)
- Eric Audemard
- Unité de Biométrie et Intelligence Artificielle, UR 875, INRA, Toulouse, France.
| | | | | |
Collapse
|
10
|
Walker MB, King BL, Paigen K. Clusters of ancestrally related genes that show paralogy in whole or in part are a major feature of the genomes of humans and other species. PLoS One 2012; 7:e35274. [PMID: 22563380 PMCID: PMC3338513 DOI: 10.1371/journal.pone.0035274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/14/2012] [Indexed: 11/22/2022] Open
Abstract
Arrangements of genes along chromosomes are a product of evolutionary processes, and we can expect that preferable arrangements will prevail over the span of evolutionary time, often being reflected in the non-random clustering of structurally and/or functionally related genes. Such non-random arrangements can arise by two distinct evolutionary processes: duplications of DNA sequences that give rise to clusters of genes sharing both sequence similarity and common sequence features and the migration together of genes related by function, but not by common descent [1], [2], [3]. To provide a background for distinguishing between the two, which is important for future efforts to unravel the evolutionary processes involved, we here provide a description of the extent to which ancestrally related genes are found in proximity. Towards this purpose, we combined information from five genomic datasets, InterPro, SCOP, PANTHER, Ensembl protein families, and Ensembl gene paralogs. The results are provided in publicly available datasets (http://cgd.jax.org/datasets/clustering/paraclustering.shtml) describing the extent to which ancestrally related genes are in proximity beyond what is expected by chance (i.e. form paraclusters) in the human and nine other vertebrate genomes, as well as the D. melanogaster, C. elegans, A. thaliana, and S. cerevisiae genomes. With the exception of Saccharomyces, paraclusters are a common feature of the genomes we examined. In the human genome they are estimated to include at least 22% of all protein coding genes. Paraclusters are far more prevalent among some gene families than others, are highly species or clade specific and can evolve rapidly, sometimes in response to environmental cues. Altogether, they account for a large portion of the functional clustering previously reported in several genomes.
Collapse
Affiliation(s)
| | - Benjamin L. King
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Kenneth Paigen
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
11
|
Despons L, Uzunov Z, Louis VL. Tandem gene arrays, plastic chromosomal organizations. C R Biol 2011; 334:639-46. [DOI: 10.1016/j.crvi.2011.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/19/2011] [Indexed: 12/30/2022]
|
12
|
|