1
|
Baisvar VS, Kushwaha B, Kumar R, Kumar MS, Singh M, Rai A, Sarkar UK. BAC-FISH Based Physical Map of Endangered Catfish Clarias magur for Chromosome Cataloguing and Gene Isolation through Positional Cloning. Int J Mol Sci 2022; 23:ijms232415958. [PMID: 36555603 PMCID: PMC9781557 DOI: 10.3390/ijms232415958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Construction of a physical chromosome map of a species is important for positional cloning, targeted marker development, fine mapping of genes, selection of candidate genes for molecular breeding, as well as understanding the genome organization. The genomic libraries in the form of bacterial artificial chromosome (BAC) clones are also a very useful resource for physical mapping and identification and isolation of full-length genes and the related cis acting elements. Some BAC-FISH based studies reported in the past were gene based physical chromosome maps of Clarias magur (magur) to understand the genome organization of the species and to establish the relationships with other species in respect to genes' organization and evolution in the past. In the present study, we generated end sequences of the BAC clones and analyzed those end sequences within the scaffolds of the draft genome of magur to identify and map the genes bioinformatically for each clone. A total of 36 clones mostly possessing genes were identified and used in probe construction and their subsequent hybridization on the metaphase chromosomes of magur. This study successfully mapped all 36 specific clones on 16 chromosome pairs, out of 25 pairs of magur chromosomes. These clones are now recognized as chromosome-specific makers, which are an aid in individual chromosome identification and fine assembly of the genome sequence, and will ultimately help in developing anchored genes' map on the chromosomes of C. magur for understanding their organization, inheritance of important fishery traits and evolution of magur with respect to channel catfish, zebrafish and other species.
Collapse
Affiliation(s)
- Vishwamitra Singh Baisvar
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| | - Basdeo Kushwaha
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| | - Ravindra Kumar
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
- Correspondence:
| | - Murali Sanjeev Kumar
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| | - Mahender Singh
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR—Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Uttam Kumar Sarkar
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| |
Collapse
|
2
|
Borzęcka E, Hawliczek-Strulak A, Bolibok L, Gawroński P, Tofil K, Milczarski P, Stojałowski S, Myśków B, Targońska-Karasek M, Grądzielewska A, Smolik M, Kilian A, Bolibok-Brągoszewska H. Effective BAC clone anchoring with genotyping-by-sequencing and Diversity Arrays Technology in a large genome cereal rye. Sci Rep 2018; 8:8428. [PMID: 29849048 PMCID: PMC5976670 DOI: 10.1038/s41598-018-26541-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/16/2018] [Indexed: 11/09/2022] Open
Abstract
Identification of bacterial artificial chromosome (BAC) clones containing specific sequences is a prerequisite for many applications, such as physical map anchoring or gene cloning. Existing BAC library screening strategies are either low-throughput or require a considerable initial input of resources for platform establishment. We describe a high-throughput, reliable, and cost-effective BAC library screening approach deploying genotyping platforms which are independent from the availability of sequence information: a genotyping-by-sequencing (GBS) method DArTSeq and the microarray-based Diversity Arrays Technology (DArT). The performance of these methods was tested in a very large and complex rye genome. The DArTseq approach delivered superior results: a several fold higher efficiency of addressing genetic markers to BAC clones and anchoring of BAC clones to genetic map and also a higher reliability. Considering the sequence independence of the platform, the DArTseq-based library screening can be proposed as an attractive method to speed up genomics research in resource poor species.
Collapse
Affiliation(s)
- Ewa Borzęcka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Anna Hawliczek-Strulak
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Leszek Bolibok
- Department of Silviculture, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Katarzyna Tofil
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Paweł Milczarski
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Slowackiego 17, 71-434, Szczecin, Poland
| | - Stefan Stojałowski
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Slowackiego 17, 71-434, Szczecin, Poland
| | - Beata Myśków
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Slowackiego 17, 71-434, Szczecin, Poland
| | - Małgorzata Targońska-Karasek
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Agnieszka Grądzielewska
- Institute of Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Miłosz Smolik
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Slowackiego 17, 71-434, Szczecin, Poland
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, University of Canberra, Kirinari st, ACT 2617, Bruce, Australia
| | - Hanna Bolibok-Brągoszewska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
3
|
Akpinar BA, Lucas S, Budak H. A large-scale chromosome-specific SNP discovery guideline. Funct Integr Genomics 2016; 17:97-105. [PMID: 27900504 DOI: 10.1007/s10142-016-0536-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/06/2016] [Accepted: 11/09/2016] [Indexed: 12/01/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) are the most prevalent type of variation in genomes that are increasingly being used as molecular markers in diversity analyses, mapping and cloning of genes, and germplasm characterization. However, only a few studies reported large-scale SNP discovery in Aegilops tauschii, restricting their potential use as markers for the low-polymorphic D genome. Here, we report 68,592 SNPs found on the gene-related sequences of the 5D chromosome of Ae. tauschii genotype MvGB589 using genomic and transcriptomic sequences from seven Ae. tauschii accessions, including AL8/78, the only genotype for which a draft genome sequence is available at present. We also suggest a workflow to compare SNP positions in homologous regions on the 5D chromosome of Triticum aestivum, bread wheat, to mark single nucleotide variations between these closely related species. Overall, the identified SNPs define a density of 4.49 SNPs per kilobyte, among the highest reported for the genic regions of Ae. tauschii so far. To our knowledge, this study also presents the first chromosome-specific SNP catalog in Ae. tauschii that should facilitate the association of these SNPs with morphological traits on chromosome 5D to be ultimately targeted for wheat improvement.
Collapse
Affiliation(s)
- Bala Ani Akpinar
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Orhanlı, 34956, Tuzla, Istanbul, Turkey
| | - Stuart Lucas
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Orhanlı, 34956, Tuzla, Istanbul, Turkey
| | - Hikmet Budak
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Orhanlı, 34956, Tuzla, Istanbul, Turkey. .,Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
4
|
Cao W, Fu B, Wu K, Li N, Zhou Y, Gao Z, Lin M, Li G, Wu X, Ma Z, Jia H. Construction and characterization of three wheat bacterial artificial chromosome libraries. Int J Mol Sci 2014; 15:21896-912. [PMID: 25464379 PMCID: PMC4284684 DOI: 10.3390/ijms151221896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/22/2014] [Accepted: 11/24/2014] [Indexed: 11/29/2022] Open
Abstract
We have constructed three bacterial artificial chromosome (BAC) libraries of wheat cultivar Triticum aestivum Wangshuibai, germplasms T. monococcum TA2026 and TA2033. A total of 1,233,792,170,880 and 263,040 clones were picked and arrayed in 384-well plates. On the basis of genome sizes of 16.8 Gb for hexaploid wheat and 5.6 Gb for diploid wheat, the three libraries represented 9.05-, 2.60-, and 3.71-fold coverage of the haploid genomes, respectively. An improved descending pooling system for BAC libraries screening was established. This improved strategy can save 80% of the time and 68% of polymerase chain reaction (PCR) with the same successful rate as the universal 6D pooling strategy.
Collapse
Affiliation(s)
- Wenjin Cao
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bisheng Fu
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kun Wu
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Na Li
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yan Zhou
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhongxia Gao
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Musen Lin
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guoqiang Li
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xinyi Wu
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhengqiang Ma
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haiyan Jia
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Cao HX, Schmidt R. Intergenomic single nucleotide polymorphisms as a tool for bacterial artificial chromosome contig building of homoeologous Brassica napus regions. BMC Genomics 2014; 15:560. [PMID: 24996518 PMCID: PMC4102721 DOI: 10.1186/1471-2164-15-560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 06/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homoeologous sequences pose a particular challenge if bacterial artificial chromosome (BAC) contigs shall be established for specific regions of an allopolyploid genome. Single nucleotide polymorphisms (SNPs) differentiating between homoeologous genomes (intergenomic SNPs) may represent a suitable screening tool for such purposes, since they do not only identify homoeologous sequences but also differentiate between them. RESULTS Sequence alignments between Brassica rapa (AA) and Brassica oleracea (CC) sequences mapping to corresponding regions on chromosomes A1 and C1, respectively were used to identify single nucleotide polymorphisms between the A and C genomes. A large fraction of these polymorphisms was also present in Brassica napus (AACC), an allopolyploid species that originated from hybridisation of A and C genome species. Intergenomic SNPs mapping throughout homoeologous chromosome segments spanning approximately one Mbp each were included in Illumina's GoldenGate® Genotyping Assay and used to screen multidimensional pools of a Brassica napus bacterial artificial chromosome library with tenfold genome coverage. Based on the results of 50 SNP assays, a BAC contig for the Brassica napus A subgenome was established that spanned the entire region of interest. The C subgenome region was represented in three BAC contigs. CONCLUSIONS This proof-of-concept study shows that sequence resources of diploid progenitor genomes can be used to deduce intergenomic SNPs suitable for multiplex polymerase chain reaction (PCR)-based screening of multidimensional BAC pools of a polyploid organism. Owing to their high abundance and ease of identification, intergenomic SNPs represent a versatile tool to establish BAC contigs for homoeologous regions of a polyploid genome.
Collapse
Affiliation(s)
| | - Renate Schmidt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Stadt Seeland, Germany.
| |
Collapse
|
6
|
Zeng Q, Yuan F, Xu X, Shi X, Nie X, Zhuang H, Chen X, Wang Z, Wang X, Huang L, Han D, Kang Z. Construction and characterization of a bacterial artificial chromosome library for the hexaploid wheat line 92R137. BIOMED RESEARCH INTERNATIONAL 2014; 2014:845806. [PMID: 24895618 PMCID: PMC4026951 DOI: 10.1155/2014/845806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/26/2014] [Accepted: 04/18/2014] [Indexed: 11/18/2022]
Abstract
For map-based cloning of genes conferring important traits in the hexaploid wheat line 92R137, a bacterial artificial chromosome (BAC) library, including two sublibraries, was constructed using the genomic DNA of 92R137 digested with restriction enzymes HindIII and BamHI. The BAC library was composed of total 765,696 clones, of which 390,144 were from the HindIII digestion and 375,552 from the BamHI digestion. Through pulsed-field gel electrophoresis (PFGE) analysis of 453 clones randomly selected from the HindIII sublibrary and 573 clones from the BamHI sublibrary, the average insert sizes were estimated as 129 and 113 kb, respectively. Thus, the HindIII sublibrary was estimated to have a 3.01-fold coverage and the BamHI sublibrary a 2.53-fold coverage based on the estimated hexaploid wheat genome size of 16,700 Mb. The 765,696 clones were arrayed in 1,994 384-well plates. All clones were also arranged into plate pools and further arranged into 5-dimensional (5D) pools. The probability of identifying a clone corresponding to any wheat DNA sequence (such as gene Yr26 for stripe rust resistance) from the library was estimated to be more than 99.6%. Through polymerase chain reaction screening the 5D pools with Xwe173, a marker tightly linked to Yr26, six BAC clones were successfully obtained. These results demonstrate that the BAC library is a valuable genomic resource for positional cloning of Yr26 and other genes of interest.
Collapse
Affiliation(s)
- Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Zhuang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianming Chen
- Wheat Genetics, Quality, Physiology, and Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Consolidation of the genetic and cytogenetic maps of turbot (Scophthalmus maximus) using FISH with BAC clones. Chromosoma 2014; 123:281-91. [PMID: 24473579 DOI: 10.1007/s00412-014-0452-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
Bacterial artificial chromosomes (BAC) have been widely used for fluorescence in situ hybridization (FISH) mapping of chromosome landmarks in different organisms, including a few in teleosts. In this study, we used BAC-FISH to consolidate the previous genetic and cytogenetic maps of the turbot (Scophthalmus maximus), a commercially important pleuronectiform. The maps consisted of 24 linkage groups (LGs) but only 22 chromosomes. All turbot LGs were assigned to specific chromosomes using BAC probes obtained from a turbot 5× genomic BAC library. It consisted of 46,080 clones with inserts of at least 100 kb and <5 % empty vectors. These BAC probes contained gene-derived or anonymous markers, most of them linked to quantitative trait loci (QTL) related to productive traits. BAC clones were mapped by FISH to unique marker-specific chromosomal positions, which showed a notable concordance with previous genetic mapping data. The two metacentric pairs were cytogenetically assigned to LG2 and LG16, and the nucleolar organizer region (NOR)-bearing pair was assigned to LG15. Double-color FISH assays enabled the consolidation of the turbot genetic map into 22 linkage groups by merging LG8 with LG18 and LG21 with LG24. In this work, a first-generation probe panel of BAC clones anchored to the turbot linkage and cytogenetical map was developed. It is a useful tool for chromosome traceability in turbot, but also relevant in the context of pleuronectiform karyotypes, which often show small hardly identifiable chromosomes. This panel will also be valuable for further integrative genomics of turbot within Pleuronectiformes and teleosts, especially for fine QTL mapping for aquaculture traits, comparative genomics, and whole-genome assembly.
Collapse
|
8
|
A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci U S A 2013; 110:7940-5. [PMID: 23610408 DOI: 10.1073/pnas.1219082110] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions.
Collapse
|
9
|
You FM, Deal KR, Wang J, Britton MT, Fass JN, Lin D, Dandekar AM, Leslie CA, Aradhya M, Luo MC, Dvorak J. Genome-wide SNP discovery in walnut with an AGSNP pipeline updated for SNP discovery in allogamous organisms. BMC Genomics 2012; 13:354. [PMID: 22849334 PMCID: PMC3527177 DOI: 10.1186/1471-2164-13-354] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/05/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND A genome-wide set of single nucleotide polymorphisms (SNPs) is a valuable resource in genetic research and breeding and is usually developed by re-sequencing a genome. If a genome sequence is not available, an alternative strategy must be used. We previously reported the development of a pipeline (AGSNP) for genome-wide SNP discovery in coding sequences and other single-copy DNA without a complete genome sequence in self-pollinating (autogamous) plants. Here we updated this pipeline for SNP discovery in outcrossing (allogamous) species and demonstrated its efficacy in SNP discovery in walnut (Juglans regia L.). RESULTS The first step in the original implementation of the AGSNP pipeline was the construction of a reference sequence and the identification of single-copy sequences in it. To identify single-copy sequences, multiple genome equivalents of short SOLiD reads of another individual were mapped to shallow genome coverage of long Sanger or Roche 454 reads making up the reference sequence. The relative depth of SOLiD reads was used to filter out repeated sequences from single-copy sequences in the reference sequence. The second step was a search for SNPs between SOLiD reads and the reference sequence. Polymorphism within the mapped SOLiD reads would have precluded SNP discovery; hence both individuals had to be homozygous. The AGSNP pipeline was updated here for using SOLiD or other type of short reads of a heterozygous individual for these two principal steps. A total of 32.6X walnut genome equivalents of SOLiD reads of vegetatively propagated walnut scion cultivar 'Chandler' were mapped to 48,661 'Chandler' bacterial artificial chromosome (BAC) end sequences (BESs) produced by Sanger sequencing during the construction of a walnut physical map. A total of 22,799 putative SNPs were initially identified. A total of 6,000 Infinium II type SNPs evenly distributed along the walnut physical map were selected for the construction of an Infinium BeadChip, which was used to genotype a walnut mapping population having 'Chandler' as one of the parents. Genotyping results were used to adjust the filtering parameters of the updated AGSNP pipeline. With the adjusted filtering criteria, 69.6% of SNPs discovered with the updated pipeline were real and could be mapped on the walnut genetic map. A total of 13,439 SNPs were discovered by BES re-sequencing. BESs harboring SNPs were in 677 FPC contigs covering 98% of the physical map of the walnut genome. CONCLUSION The updated AGSNP pipeline is a versatile SNP discovery tool for a high-throughput, genome-wide SNP discovery in both autogamous and allogamous species. With this pipeline, a large set of SNPs were identified in a single walnut cultivar.
Collapse
Affiliation(s)
- Frank M You
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Advances in BAC-based physical mapping and map integration strategies in plants. J Biomed Biotechnol 2012; 2012:184854. [PMID: 22500080 PMCID: PMC3303678 DOI: 10.1155/2012/184854] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/26/2011] [Accepted: 11/11/2011] [Indexed: 12/29/2022] Open
Abstract
In the advent of next-generation sequencing (NGS) platforms, map-based sequencing strategy has been recently suppressed being too expensive and laborious. The detailed studies on NGS drafts alone indicated these assemblies remain far from gold standard reference quality, especially when applied on complex genomes. In this context the conventional BAC-based physical mapping has been identified as an important intermediate layer in current hybrid sequencing strategy. BAC-based physical map construction and its integration with high-density genetic maps have benefited from NGS and high-throughput array platforms. This paper addresses the current advancements of BAC-based physical mapping and high-throughput map integration strategies to obtain densely anchored well-ordered physical maps. The resulted maps are of immediate utility while providing a template to harness the maximum benefits of the current NGS platforms.
Collapse
|