1
|
Liu Y, Hu H, Cai M, Liang X, Wu X, Wang A, Chen X, Li X, Xiao C, Huang L, Xie Y, Wu Q. Whole genome sequencing of an edible and medicinal mushroom, Russula griseocarnosa, and its association with mycorrhizal characteristics. Gene 2022; 808:145996. [PMID: 34634440 DOI: 10.1016/j.gene.2021.145996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 01/27/2023]
Abstract
Russula griseocarnosa is a well-known ectomycorrhizal mushroom, which is mainly distributed in the Southern China. Although several scholars have attempted to isolate and cultivate fungal strains, no accurate method for culture of artificial fruiting bodies has been presented owing to difficulties associated with mycelium growth on artificial media. Herein, we sequenced R. griseocarnosa genome using the second- and third-generation sequencing technologies, followed by de novo assembly of high-throughput sequencing reads, and GeneMark-ES, BLAST, CAZy, and other databases were utilized for functional gene annotation. We also constructed a phylogenetic tree using different species of fungi, and also conducted comparative genomics analysis of R. griseocarnosa against its four representative species. In addition, we evaluated the accuracy of one already sequenced genome of R. griseocarnosa based on the internal transcribed spacer (ITS) sequencing of that type of species. The assembly process resulted in identification of 230 scaffolds with a total genome size of 50.67 Mbp. The gene prediction showed that R. griseocarnosa genome included 14,229 coding sequences (CDs). In addition, 470 RNAs were predicted with 155 transfer RNAs (tRNAs), 49 ribosomal RNAs (rRNAs), 41 small noncoding RNAs (sRNAs), 42 small nuclear RNAs (snRNAs), and 183 microRNAs (miRNAs). The predicted protein sequences of R. griseocarnosa were analyzed to indicate the existence of carbohydrate-active enzymes (CAZymes), and the results revealed that 153 genes encoded CAZymes, which were distributed in 58 CAZyme families. These enzymes included 78 glycoside hydrolases (GHs), 34 glycosyl transferases (GTs), 30 auxiliary activities (AAs), 2 carbohydrate esterases (CEs), 8 carbohydrate-binding modules (CBMs), and only one polysaccharide lyase (PL). Compared with other fungi, R. griseocarnosa had fewer CAZymes, and the number and distribution of CAZymes were similar to other mycorrhizal fungi, such as Tricholoma matsutake and Suillus luteus. Well-defined effector proteins that were associated with mycorrhiza-induced small-secreted proteins (MiSSPs) were not found in R. griseocarnosa, which indicated that there may be some special effector proteins to interact with host plants in R. griseocarnosa. The genome of R. griseocarnosa may provide new insights into the energy metabolism of ectomycorrhizal (ECM) fungi, a reference to study ecosystem and evolutionary diversification of R. griseocarnosa, as well as promoting the study of artificial domestication.
Collapse
Affiliation(s)
- Yuanchao Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Manjun Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaowei Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoxian Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ao Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiangmin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Longhua Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Qingping Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Zou X, Du Y, Wang X, Wang Q, Zhang B, Chen J, Chen M, Doyle JJ, Ge S. Genome evolution in Oryza allopolyploids of various ages: Insights into the process of diploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:721-735. [PMID: 33145857 DOI: 10.1111/tpj.15066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/18/2020] [Accepted: 10/28/2020] [Indexed: 05/20/2023]
Abstract
The prevalence and recurrence of whole-genome duplication in plants and its major role in evolution have been well recognized. Despite great efforts, many aspects of genome evolution, particularly the temporal progression of genomic responses to allopolyploidy and the underlying mechanisms, remain poorly understood. The rice genus Oryza consists of both recently formed and older allopolyploid species, representing an attractive system for studying the genome evolution after allopolyploidy. In this study, through screening BAC libraries and sequencing and annotating the targeted BAC clones, we generated orthologous genomic sequences surrounding the DEP1 locus, a major grain yield QTL in cultivated rice, from four Oryza polyploids of various ages and their likely diploid genome donors or close relatives. Based on sequenced DEP1 region and published data from three other genomic regions, we investigated the temporal evolutionary dynamics of four polyploid genomes at both genetic and expression levels. In the recently formed BBCC polyploid, Oryza minuta, genome dominance was not observed and its short-term responses to allopolyploidy are mainly manifested as a high proportion of homoeologous gene pairs showing unequal expression. This could partly be explained by parental legacy, rewiring of divergent regulatory networks and epigenetic modulation. Moreover, we detected an ongoing diploidization process in this genus, and suggest that the expression divergence driven by changes of selective constraint probably plays a big role in the long-term diploidization. These findings add novel insights into our understanding of genome evolution after allopolyploidy, and could facilitate crop improvements through hybridization and polyploidization.
Collapse
Affiliation(s)
- Xinhui Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yusu Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xin Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinfeng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingsheng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jeff J Doyle
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Niihama M, Mochizuki M, Kurata N, Nonomura KI. PCR-based INDEL markers co-dominant between Oryza sativa, japonica cultivars and closely-related wild Oryza species. BREEDING SCIENCE 2015; 65:357-361. [PMID: 26366120 PMCID: PMC4542938 DOI: 10.1270/jsbbs.65.357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/06/2015] [Indexed: 06/05/2023]
Abstract
Wild relatives genetically close to cultivars are precious genetic resources for plant breeding. Oryza rufipogon, O. barthii, O. glumaepatula, O. meridionalis and O. longistaminata are such wild species, and are also categorized as AA genome species based on their structural similarities. Chromosome segment substitution lines (CSSLs) are a powerful resource in breeding and genetics, and numerous rice CSSLs have been produced. This study aimed to develop DNA markers for evaluation of CSSLs directly by PCR and subsequent gel electrophoresis. We confirmed that up to 155 of 188 markers developed for detection of japonica-indica INDELs could also detect INDELs between rice cultivars and wild AA-species accessions. Percentages of applicable markers were higher in O. rufipogon accessions (61.7 to 85.6%), and lower in accessions of other four AA species (39.8 to 51.4%). These markers were distributed throughout the rice chromosomes, and will be useful for genotyping of CSSLs and other genetic resources derived from crosses between rice cultivars and closely related wild species.
Collapse
Affiliation(s)
- Mitsuru Niihama
- Plant Genetics Laboratory, National Institute of Genetics,
Mishima, Shizuoka 411-8540,
Japan
| | - Misato Mochizuki
- Plant Genetics Laboratory, National Institute of Genetics,
Mishima, Shizuoka 411-8540,
Japan
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics,
Mishima, Shizuoka 411-8540,
Japan
- Department of Life Science, SOKENDAI (Graduate University for Advanced Studies),
Mishima, Shizuoka 411-8540,
Japan
| | - Ken-Ichi Nonomura
- Department of Life Science, SOKENDAI (Graduate University for Advanced Studies),
Mishima, Shizuoka 411-8540,
Japan
- Experimental Farm, National Institute of Genetics,
Mishima, Shizuoka 411-8540,
Japan
| |
Collapse
|
4
|
Jouet A, McMullan M, van Oosterhout C. The effects of recombination, mutation and selection on the evolution of the Rp1 resistance genes in grasses. Mol Ecol 2015; 24:3077-92. [PMID: 25907026 DOI: 10.1111/mec.13213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 03/25/2015] [Accepted: 04/09/2015] [Indexed: 01/30/2023]
Abstract
Plant immune genes, or resistance genes, are involved in a co-evolutionary arms race with a diverse range of pathogens. In agronomically important grasses, such R genes have been extensively studied because of their role in pathogen resistance and in the breeding of resistant cultivars. In this study, we evaluate the importance of recombination, mutation and selection on the evolution of the R gene complex Rp1 of Sorghum, Triticum, Brachypodium, Oryza and Zea. Analyses show that recombination is widespread, and we detected 73 independent instances of sequence exchange, involving on average 1567 of 4692 nucleotides analysed (33.4%). We were able to date 24 interspecific recombination events and found that four occurred postspeciation, which suggests that genetic introgression took place between different grass species. Other interspecific events seemed to have been maintained over long evolutionary time, suggesting the presence of balancing selection. Significant positive selection (i.e. a relative excess of nonsynonymous substitutions (dN /dS >1)) was detected in 17-95 codons (0.42-2.02%). Recombination was significantly associated with areas with high levels of polymorphism but not with an elevated dN /dS ratio. Finally, phylogenetic analyses show that recombination results in a general overestimation of the divergence time (mean = 14.3%) and an alteration of the gene tree topology if the tree is not calibrated. Given that the statistical power to detect recombination is determined by the level of polymorphism of the amplicon as well as the number of sequences analysed, it is likely that many studies have underestimated the importance of recombination relative to the mutation rate.
Collapse
Affiliation(s)
- Agathe Jouet
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mark McMullan
- The Genome Analysis Center, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
5
|
Shapiro JA. Epigenetic control of mobile DNA as an interface between experience and genome change. Front Genet 2014; 5:87. [PMID: 24795749 PMCID: PMC4007016 DOI: 10.3389/fgene.2014.00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/01/2014] [Indexed: 12/29/2022] Open
Abstract
Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration.
Collapse
Affiliation(s)
- James A. Shapiro
- Department of Biochemistry and Molecular Biology, University of ChicagoChicago, IL, USA
| |
Collapse
|
6
|
Appels R, Barrero R, Bellgard M. Advances in biotechnology and informatics to link variation in the genome to phenotypes in plants and animals. Funct Integr Genomics 2013; 13:1-9. [PMID: 23494190 PMCID: PMC3605488 DOI: 10.1007/s10142-013-0319-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/02/2013] [Accepted: 03/03/2013] [Indexed: 11/27/2022]
Abstract
Advances in our understanding of genome structure provide consistent evidence for the existence of a core genome representing species classically defined by phenotype, as well as conditionally dispensable components of the genome that shows extensive variation between individuals of a given species. Generally, conservation of phenotypic features between species reflects conserved features of the genome; however, this is evidently not necessarily always the case as demonstrated by the analysis of the tunicate chordate Oikopleura dioica. In both plants and animals, the methylation activity of DNA and histones continues to present new variables for modifying (eventually) the phenotype of an organism and provides for structural variation that builds on the point mutations, rearrangements, indels, and amplification of retrotransposable elements traditionally considered. The translation of the advances in the structure/function analysis of the genome to industry is facilitated through the capture of research outputs in "toolboxes" that remain accessible in the public domain.
Collapse
Affiliation(s)
- R. Appels
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150 Australia
| | - R. Barrero
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150 Australia
| | - M. Bellgard
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150 Australia
| |
Collapse
|
7
|
Tian Z, Zhao M, She M, Du J, Cannon SB, Liu X, Xu X, Qi X, Li MW, Lam HM, Ma J. Genome-wide characterization of nonreference transposons reveals evolutionary propensities of transposons in soybean. THE PLANT CELL 2012; 24:4422-36. [PMID: 23175746 PMCID: PMC3531843 DOI: 10.1105/tpc.112.103630] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/14/2012] [Accepted: 10/31/2012] [Indexed: 05/04/2023]
Abstract
Preferential accumulation of transposable elements (TEs), particularly long terminal repeat retrotransposons (LTR-RTs), in recombination-suppressed pericentromeric regions seems to be a general pattern of TE distribution in flowering plants. However, whether such a pattern was formed primarily by preferential TE insertions into pericentromeric regions or by selection against TE insertions into euchromatin remains obscure. We recently investigated TE insertions in 31 resequenced wild and cultivated soybean (Glycine max) genomes and detected 34,154 unique nonreference TE insertions mappable to the reference genome. Our data revealed consistent distribution patterns of the nonreference LTR-RT insertions and those present in the reference genome, whereas the distribution patterns of the nonreference DNA TE insertions and the accumulated ones were significantly different. The densities of the nonreference LTR-RT insertions were found to negatively correlate with the rates of local genetic recombination, but no significant correlation between the densities of nonreference DNA TE insertions and the rates of local genetic recombination was detected. These observations suggest that distinct insertional preferences were primary factors that resulted in different levels of effectiveness of purifying selection, perhaps as an effect of local genomic features, such as recombination rates and gene densities that reshaped the distribution patterns of LTR-RTs and DNA TEs in soybean.
Collapse
Affiliation(s)
- Zhixi Tian
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meixia Zhao
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Maoyun She
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Jianchang Du
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Steven B. Cannon
- United States Department of Agriculture–Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, Iowa 10011
| | - Xin Liu
- Beijing Genome Institute-Shenzhen and the Key Laboratory of Genomics of the Minister of Agriculture, Shenzhen 518083, China
| | - Xun Xu
- Beijing Genome Institute-Shenzhen and the Key Laboratory of Genomics of the Minister of Agriculture, Shenzhen 518083, China
| | - Xinpeng Qi
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 1 SAR, China
| | - Man-Wah Li
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 1 SAR, China
| | - Hon-Ming Lam
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 1 SAR, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
8
|
Wang Q, Dooner HK. Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:212-221. [PMID: 22621343 DOI: 10.1111/j.1365-313x.2012.05059.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genome structure exhibits remarkable plasticity within Zea mays. To examine how haplotype structure has evolved within the Andropogoneae tribe, we have analyzed the bz gene-rich region of maize (Zea mays), the Zea teosintes mays ssp. mexicana, luxurians and diploperennis, Tripsacum dactyloides, Coix lacryma-jobi and Sorghum propinquum. We sequenced and annotated BAC clones from these species and re-annotated the orthologous Sorghum bicolor region. Gene colinearity in the region is well conserved within the genus Zea. However, the orthologous regions of Coix and Sorghum exhibited several micro-rearrangements relative to Zea, including addition, truncation and deletion of genes. The stc1 gene, involved in the production of a terpenoid insect defense signal, is evolving particularly fast, and its progressive disappearance from some species is occurring by microhomology-mediated recombination. LTR retrotransposons are the main contributors to the dynamic evolution of the bz region. Common transposon insertion sites occur among haplotypes from different Zea mays sub-species, but not outside the species. As in Zea, different patterns of interspersion between genes and retrotransposons are observed in Sorghum. We estimate that the mean divergence times between maize and Tripsacum, Coix and Sorghum are 8.5, 12.1 and 12.4 million years ago, respectively, and that between Coix and Sorghum is 9.3 million years ago. A comparison of the bz orthologous regions of Zea, Sorghum and Coix with those of Brachypodium, Setaria and Oryza allows us to infer how the region has evolved by addition and deletion of genes in the approximately 50 million years since these genera diverged from a common progenitor.
Collapse
Affiliation(s)
- Qinghua Wang
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
9
|
Jia Y, Jia MH, Wang X, Liu G. Indica and japonica crosses resulting in linkage block and recombination suppression on rice chromosome 12. PLoS One 2012; 7:e43066. [PMID: 22912788 PMCID: PMC3422337 DOI: 10.1371/journal.pone.0043066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/16/2012] [Indexed: 11/23/2022] Open
Abstract
Understanding linkage block size and molecular mechanisms of recombination suppression is important for plant breeding. Previously large linkage blocks ranging from 14 megabases to 27 megabases were observed around the rice blast resistance gene Pi-ta in rice cultivars and backcross progeny involving an indica and japonica cross. In the present study, the same linkage block was further examined in 456 random recombinant individuals of rice involving 5 crosses ranging from F(2) to F(10) generation, with and without Pi-ta containing genomic indica regions with both indica and japonica germplasm. Simple sequence repeat markers spanning the entire chromosome 12 were used to detect recombination break points and to delimit physical size of linkage blocks. Large linkage blocks ranging from 4.1 megabases to 10 megabases were predicted from recombinant individuals involving genomic regions of indica and japonica. However, a significantly reduced block from less than 800 kb to 2.1megabases was identified from crosses of indica with indica rice regardless of the existence of Pi-ta. These findings suggest that crosses of indica and japonica rice have significant recombination suppression near the centromere on chromosome 12.
Collapse
Affiliation(s)
- Yulin Jia
- Dale Bumpers National Rice Research Center, Agricultural Research Service, United States Department of Agriculture, Stuttgart, Arkansas, United States of America.
| | | | | | | |
Collapse
|
10
|
Advances in biotechnology and linking outputs to variation in complex traits: Plant and Animal Genome meeting January 2012. Funct Integr Genomics 2012; 12:1-9. [DOI: 10.1007/s10142-012-0270-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 12/22/2022]
|
11
|
McCouch SR, McNally KL, Wang W, Sackville Hamilton R. Genomics of gene banks: A case study in rice. AMERICAN JOURNAL OF BOTANY 2012; 99:407-23. [PMID: 22314574 DOI: 10.3732/ajb.1100385] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Only a small fraction of the naturally occurring genetic diversity available in the world's germplasm repositories has been explored to date, but this is expected to change with the advent of affordable, high-throughput genotyping and sequencing technology. It is now possible to examine genome-wide patterns of natural variation and link sequence polymorphisms with downstream phenotypic consequences. In this paper, we discuss how dramatic changes in the cost and efficiency of sequencing and genotyping are revolutionizing the way gene bank scientists approach the responsibilities of their job. Sequencing technology provides a set of tools that can be used to enhance the quality, efficiency, and cost-effectiveness of gene bank operations, the depth of scientific knowledge of gene bank holdings, and the level of public interest in natural variation. As a result, gene banks have the chance to take on new life. Previously seen as "warehouses" where seeds were diligently maintained, but evolutionarily frozen in time, gene banks could transform into vibrant research centers that actively investigate the genetic potential of their holdings. In this paper, we will discuss how genotyping and sequencing can be integrated into the activities of a modern gene bank to revolutionize the way scientists document the genetic identity of their accessions; track seed lots, varieties, and alleles; identify duplicates; and rationalize active collections, and how the availability of genomics data are likely to motivate innovative collaborations with the larger research and breeding communities to engage in systematic and rigorous phenotyping and multilocation evaluation of the genetic resources in gene banks around the world. The objective is to understand and eventually predict how variation at the DNA level helps determine the phenotypic potential of an individual or population. Leadership and vision are needed to coordinate the characterization of collections and to integrate genotypic and phenotypic information in ways that will illuminate the value of these resources. Genotyping of collections represents a powerful starting point that will enable gene banks to become more effective as stewards of crop biodiversity.
Collapse
Affiliation(s)
- Susan R McCouch
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NewYork 14853-1901, USA.
| | | | | | | |
Collapse
|