1
|
Kim J, Bang H, Seong C, Kim ES, Kim SY. Transcription factors and hormone receptors: Sex‑specific targets for cancer therapy (Review). Oncol Lett 2025; 29:93. [PMID: 39691589 PMCID: PMC11650965 DOI: 10.3892/ol.2024.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Despite advancements in diagnostic and therapeutic technologies, cancer continues to pose a challenge to disease-free longevity in humans. Numerous factors contribute to the onset and progression of cancer, among which sex differences, as an intrinsic biological condition, warrant further attention. The present review summarizes the roles of hormone receptors estrogen receptor α (ERα), estrogen receptor β (ERβ) and androgen receptor (AR) in seven types of cancer: Breast, prostate, ovarian, lung, gastric, colon and liver cancer. Key cancer-related transcription factors known to be activated through interactions with these hormone receptors have also been discussed. To assess the impact of sex hormone receptors on different cancer types, hormone-related transcription factors were analyzed using the SignaLink 3.0 database. Further analysis focused on six key transcription factors: CCCTC-binding factor, forkhead box A1, retinoic acid receptor α, PBX homeobox 1, GATA binding protein 2 and CDK inhibitor 1A. The present review demonstrates that these transcription factors significantly influence hormone receptor activity across various types of cancer, and elucidates the complex interactions between these transcription factors and hormone receptors, offering new insights into their roles in cancer progression. The findings suggest that targeting these common transcription factors could improve the efficacy of hormone therapy and provide a unified approach to treating various types of cancer. Understanding the dual and context-dependent roles of these transcription factors deepens the current understanding of the molecular mechanisms underlying hormone-driven tumor progression and could lead to more effective targeted therapeutic strategies.
Collapse
Affiliation(s)
- Juyeon Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyobin Bang
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Cheyun Seong
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
2
|
Rao J, Qian S, Li X, Xu Y. Single nucleotide polymorphisms of estrogen receptors are risk factors for the progression of adolescent idiopathic scoliosis: a systematic review and meta-analyses. J Orthop Surg Res 2024; 19:605. [PMID: 39342385 PMCID: PMC11438150 DOI: 10.1186/s13018-024-05102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND There have been some studies on the occurrence of ESR1 and 2 polymorphisms and AIS, but some data extraction is wrong, and there are no studies on the progress of AIS. METHODS Computer searches were conducted on PubMed, EMBASE, ScienceDirect and Scopus from the establishment of the database to April 2024. Cross-sectional and case-control studies on estrogen receptor ESR1, two single nucleotide polymorphisms, and the occurrence and development of AIS were collected, and statistical analysis was performed using the Revman 5.3 software. RESULTS In the comparison of the association between single nucleotide polymorphisms of estrogen receptors ESR1 and 2 and the occurrence and development of AIS, eight studies were included, including 2706 cases and 1736 controls.The results showed that the AA genotype [OR = 0.50,95%Cl(0.34,0.72),P = 0.0003] at the XbaI locus of ESR1,CC genotype [OR = 1.67,95%Cl(1.16,2.42), P = 0.006], C allele [OR = 1.28,95%Cl(1.03,1.59),P = 0.03], and T allele [OR = 0.78,95%] Cl(0.63,0.97),P = 0.03] at the PvuII locus of ESR1 and TT genotype [OR = 0.50,95%Cl(0.26,0.93),P = 0.03] at the AlwNI locus of ESR2 showed statistically significant differences between the progressive and stable AIS patients. CONCLUSION Single nucleotide polymorphisms of ESR1 and ESR2 were not related to the occurrence of AIS; however, some of them were related to the progression of AIS.
Collapse
Affiliation(s)
- Jingyi Rao
- The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen City, Guangdong Province, China
- Sun Yat-sen University School of Medicine, 66 Gongchang Road, Guangming District, Shenzhen City, Guangdong Province, China
- A The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Shuping Qian
- The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen City, Guangdong Province, China
- Sun Yat-sen University School of Medicine, 66 Gongchang Road, Guangming District, Shenzhen City, Guangdong Province, China
- A The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Xuan Li
- The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen City, Guangdong Province, China
- Sun Yat-sen University School of Medicine, 66 Gongchang Road, Guangming District, Shenzhen City, Guangdong Province, China
- A The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Yi Xu
- The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen City, Guangdong Province, China.
- Sun Yat-sen University School of Medicine, 66 Gongchang Road, Guangming District, Shenzhen City, Guangdong Province, China.
- A The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Yuexiu District, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
3
|
Manna PR, Molehin D, Ahmed AU, Yang S, Reddy PH. Acetylation of Steroidogenic Acute Regulatory Protein Sensitizes 17β-Estradiol Regulation in Hormone-Sensitive Breast Cancer Cells. Int J Mol Sci 2024; 25:8732. [PMID: 39201419 PMCID: PMC11354777 DOI: 10.3390/ijms25168732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
An imbalance in estrogen signaling is a critical event in breast tumorigenesis. The majority of breast cancers (BCs) are hormone-sensitive; they majorly express the estrogen receptor (ER+) and are activated by 17β-estradiol (E2). The steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in steroid biosynthesis. The dysregulation of the epigenetic machinery, modulating E2 levels, is a primary occurrence for promoting breast tumorigenesis. StAR expression, concomitant with E2 synthesis, was reported to be aberrantly high in human and mouse hormone-dependent BC cells compared with their non-cancerous counterparts. However, the mechanism of action of StAR remains poorly understood. We discovered StAR as an acetylated protein and have identified a number of lysine (K) residues that are putatively acetylated in malignant and non-malignant breast cells, using LC-MS/MS (liquid chromatography-tandem mass spectrometry), suggesting they differently influence E2 synthesis in mammary tissue. The treatment of hormone-sensitive MCF7 cells with a variety of histone deacetylase inhibitors (HDACIs), at therapeutically and clinically relevant doses, identified a few additional StAR acetylated lysine residues. Among a total of fourteen StAR acetylomes undergoing acetylation and deacetylation, K111 and K253 were frequently recognized either endogenously or in response to HDACIs. Site-directed mutagenesis studies of these two StAR acetylomes, pertaining to K111Q and K253Q acetylation mimetic states, resulted in increases in E2 levels in ER+ MCF7 and triple negative MB-231 BC cells, compared with their values seen with human StAR. Conversely, these cells carrying K111R and K253R deacetylation mutants diminished E2 biosynthesis. These findings provide novel and mechanistic insights into intra-tumoral E2 regulation by elucidating the functional importance of this uncovered StAR post-translational modification (PTM), involving acetylation and deacetylation events, underscoring the potential of StAR as a therapeutic target for hormone-sensitive BC.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Deborah Molehin
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Ahsen U. Ahmed
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA;
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
4
|
Nagandla H, Thomas C. Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor. RECEPTORS (BASEL, SWITZERLAND) 2024; 3:182-200. [PMID: 39175529 PMCID: PMC11340209 DOI: 10.3390/receptors3020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERβ opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERβ has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERβ activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERβ is now available, which is the focus of discussion in the present article.
Collapse
Affiliation(s)
- Harika Nagandla
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Christoforos Thomas
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
5
|
Kranjčević JK, Čonkaš J, Ozretić P. The Role of Estrogen and Estrogen Receptors in Head and Neck Tumors. Cancers (Basel) 2024; 16:1575. [PMID: 38672656 PMCID: PMC11049451 DOI: 10.3390/cancers16081575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common histological form of head and neck tumors (HNTs), which originate from the epithelium of the lips and oral cavity, pharynx, larynx, salivary glands, nasal cavity, and sinuses. The main risk factors include consumption of tobacco in all forms and alcohol, as well as infections with high-risk human papillomaviruses or the Epstein-Barr virus. Regardless of the etiological agent, the risk of developing different types of HNTs is from two to more than six times higher in males than in females. The reason for such disparities probably lies in a combination of both biological and psychosocial factors. Therefore, it is hypothesized that exposure to female sex hormones, primarily estrogen, provides women with protection against the formation and metastasis of HNTs. In this review, we synthesized available knowledge on the role of estrogen and estrogen receptors (ERs) in the development and progression of HNTs, with special emphasis on membrane ERs, which are much less studied. We can summarize that in addition to epidemiologic studies unequivocally pointing to the protective effect of estrogen in women, an increased expression of both nuclear ERs, ERα, and ERβ, and membrane ERs, ERα36, GPER1, and NaV1.2, was present in different types of HNSCC, for which anti-estrogens could be used as an effective therapeutic approach.
Collapse
Affiliation(s)
| | | | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia (J.Č.)
| |
Collapse
|
6
|
Manna PR, Yang S, Reddy PH. Epigenetic Dysregulation and Its Correlation with the Steroidogenic Machinery Impacting Breast Pathogenesis: Data Mining and Molecular Insights into Therapeutics. Int J Mol Sci 2023; 24:16488. [PMID: 38003678 PMCID: PMC10671690 DOI: 10.3390/ijms242216488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous condition and comprises molecularly distinct subtypes. An imbalance in the levels of epigenetic histone deacetylases (HDACs), modulating estrogen accumulation, especially 17β-estradiol (E2), promotes breast tumorigenesis. In the present study, analyses of The Cancer Genome Atlas (TCGA) pan-cancer normalized RNA-Seq datasets revealed the dysregulation of 16 epigenetic enzymes (among a total of 18 members) in luminal BC subtypes, in comparison to their non-cancerous counterparts. Explicitly, genomic profiling of these epigenetic enzymes displayed increases in HDAC1, 2, 8, 10, 11, and Sirtuins (SIRTs) 6 and 7, and decreases in HDAC4-7, -9, and SIRT1-4 levels, respectively, in TCGA breast tumors. Kaplan-Meier plot analyses showed that these HDACs, with the exception of HDAC2 and SIRT2, were not correlated with the overall survival of BC patients. Additionally, disruption of the epigenetic signaling in TCGA BC subtypes, as assessed using both heatmaps and boxplots, was associated with the genomic expression of factors that are instrumental for cholesterol trafficking/utilization for accelerating estrogen/E2 levels, in which steroidogenic acute regulatory protein (STAR) mediates the rate-limiting step in steroid biosynthesis. TCGA breast samples showed diverse expression patterns of a variety of key steroidogenic markers and hormone receptors, including LIPE, CYP27A1, STAR, STARD3, CYP11A1, CYP19A1, ER, PGR, and ERBB2. Moreover, regulation of STAR-governed steroidogenic machinery was found to be influenced by various transcription factors, i.e., CREB1, CREM, SF1, NR4A1, CEBPB, SREBF1, SREBF2, SP1, FOS, JUN, NR0B1, and YY1. Along these lines, ingenuity pathway analysis (IPA) recognized a number of new targets and downstream effectors influencing BCs. Of note, genomic, epigenomic, transcriptional, and hormonal anomalies observed in human primary breast tumors were qualitatively similar in pertinent BC cell lines. These findings identify the functional correlation between dysregulated epigenetic enzymes and estrogen/E2 accumulation in human breast tumors, providing the molecular insights into more targeted therapeutic approaches involving the inhibition of HDACs for combating this life-threatening disease.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
7
|
Itoh N, Itoh Y, Stiles L, Voskuhl R. Sex differences in the neuronal transcriptome and synaptic mitochondrial function in the cerebral cortex of a multiple sclerosis model. Front Neurol 2023; 14:1268411. [PMID: 38020654 PMCID: PMC10654219 DOI: 10.3389/fneur.2023.1268411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Multiple sclerosis (MS) affects the cerebral cortex, inducing cortical atrophy and neuronal and synaptic pathology. Despite the fact that women are more susceptible to getting MS, men with MS have worse disability progression. Here, sex differences in neurodegenerative mechanisms are determined in the cerebral cortex using the MS model, chronic experimental autoimmune encephalomyelitis (EAE). Methods Neurons from cerebral cortex tissues of chronic EAE, as well as age-matched healthy control, male and female mice underwent RNA sequencing and gene expression analyses using RiboTag technology. The morphology of mitochondria in neurons of cerebral cortex was assessed using Thy1-CFP-MitoS mice. Oxygen consumption rates were determined using mitochondrial respirometry assays from intact as well as permeabilized synaptosomes. Results RNA sequencing of neurons in cerebral cortex during chronic EAE in C57BL/6 mice showed robust differential gene expression in male EAE compared to male healthy controls. In contrast, there were few differences in female EAE compared to female healthy controls. The most enriched differential gene expression pathways in male mice during EAE were mitochondrial dysfunction and oxidative phosphorylation. Mitochondrial morphology in neurons showed significant abnormalities in the cerebral cortex of EAE males, but not EAE females. Regarding function, synaptosomes isolated from cerebral cortex of male, but not female, EAE mice demonstrated significantly decreased oxygen consumption rates during respirometry assays. Discussion Cortical neuronal transcriptomics, mitochondrial morphology, and functional respirometry assays in synaptosomes revealed worse neurodegeneration in male EAE mice. This is consistent with worse neurodegeneration in MS men and reveals a model and a target to develop treatments to prevent cortical neurodegeneration and mitigate disability progression in MS men.
Collapse
Affiliation(s)
- Noriko Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linsey Stiles
- Department of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rhonda Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Pratap UP, Tidwell M, Balinda HU, Clanton NA, Yang X, Viswanadhapalli S, Sareddy GR, Liang D, Xie H, Chen Y, Lai Z, Tekmal RR, McHardy SF, Brenner AJ, Vadlamudi RK. Preclinical Development of Brain Permeable ERβ Agonist for the Treatment of Glioblastoma. Mol Cancer Ther 2023; 22:1248-1260. [PMID: 37493258 PMCID: PMC10811744 DOI: 10.1158/1535-7163.mct-23-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/13/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive type of adult brain tumors with low 5-year overall survival rates. Epidemiologic data suggest that estrogen may decrease brain tumor growth, and estrogen receptor beta (ERβ) has been demonstrated to exert antitumor functions in GBM. The lack of potent, selective, and brain permeable ERβ agonist to promote its antitumor action is limiting the therapeutic promise of ERβ. In this study, we discovered that Indanone and tetralone-keto or hydroxyl oximes are a new class of ERβ agonists. Because of its high activity in ERβ reporter assays, specific binding to ERβ in polar screen assays, and potent growth inhibitory activity in GBM cells, CIDD-0149897 was discovered as a possible hit by screening a library of compounds. CIDD-0149897 is more selective for ERβ than ERα (40-fold). Treatment with CIDD-0149897 markedly reduced GBM cell viability with an IC50 of ∼7 to 15 μmol/L, while having little to no effect on ERβ-KO cells and normal human astrocytes. Further, CIDD-0149897 treatment enhanced expression of known ERβ target genes and promoted apoptosis in established and patient-derived GSC models. Pharmacokinetic studies confirmed that CIDD-0149897 has systemic exposure, and good bioavailability in the brain. Mice tolerated daily intraperitoneal treatment of CIDD-0149897 (50 mg/kg) with a 7-day repeat dosage with no toxicity. In addition, CIDD-0149897 treatment significantly decreased tumor growth in U251 xenograft model and extended the survival of orthotopic GBM tumor-bearing mice. Collectively, these findings pointed to CIDD-0149897 as a new class of ERβ agonist, offering patients with GBM a potential means of improving survival.
Collapse
Affiliation(s)
- Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Michael Tidwell
- Department of Chemistry, Center for Innovative Drug Discovery, University of Texas Health San Antonio, Texas
| | | | - Nicholas A Clanton
- Department of Chemistry, Center for Innovative Drug Discovery, University of Texas Health San Antonio, Texas
| | - Xue Yang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas
| | - Huan Xie
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Stanton F McHardy
- Department of Chemistry, Center for Innovative Drug Discovery, University of Texas Health San Antonio, Texas
| | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Hematology & Oncology, University of Texas San Antonio, Texas
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Audie L. Murphy South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
9
|
Seo H, Seo H, Byrd N, Kim H, Lee KG, Lee SH, Park Y. Human cell-based estrogen receptor beta dimerization assay. Chem Biol Interact 2023; 369:110264. [PMID: 36402211 DOI: 10.1016/j.cbi.2022.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Estrogen is not only responsible for important functions in the human body, such as cell growth, reproduction, differentiation, and development, but it is also deeply related to pathological processes, such as cancer, metabolic and cardiovascular diseases, and neurodegeneration. Estrogens and other estrogenic compounds have transcriptional activities through binding with the estrogen receptor (ER) to induce ER dimerization. The two estrogen receptor subtypes, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), show structural differences and have different expression ratios in specific cells and tissues. Currently, the methods for confirming the estrogenic properties of compounds are the binding (Test guideline no. 493) and transactivation (Test guideline no. 455) assays provided by the Organization for Economic Co-operation and Development (OECD). In a previous study, we developed an ERα dimerization assay based on the bioluminescence resonance energy transfer (BRET) system, but there are currently no available tests that can confirm the effect of estrogenic compounds on ERβ. Therefore, in this study, we developed a BRET-based ERβ dimerization assay to confirm the estrogenic prosperities of compounds. The BRET-based ERβ dimerization assay was verified using nine representative ER ligands and the results were compared with the dimerization activity of ERα. In conclusion, our BRET-based ERβ dimerization assay can provide information on the ERβ dimerization potential of estrogenic compounds.
Collapse
Affiliation(s)
- Hyeyeong Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Huiwon Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Nick Byrd
- Department of Chemistry and Biochemistry, Campden BRI, Chipping Campden, GL55 6LD, UK
| | - Hyejin Kim
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea.
| |
Collapse
|
10
|
Hanusek K, Karczmarski J, Litwiniuk A, Urbańska K, Ambrozkiewicz F, Kwiatkowski A, Martyńska L, Domańska A, Bik W, Paziewska A. Obesity as a Risk Factor for Breast Cancer-The Role of miRNA. Int J Mol Sci 2022; 23:ijms232415683. [PMID: 36555323 PMCID: PMC9779381 DOI: 10.3390/ijms232415683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most common cancer diagnosed among women in the world, with an ever-increasing incidence rate. Due to the dynamic increase in the occurrence of risk factors, including obesity and related metabolic disorders, the search for new regulatory mechanisms is necessary. This will help a complete understanding of the pathogenesis of breast cancer. The review presents the mechanisms of obesity as a factor that increases the risk of developing breast cancer and that even initiates the cancer process in the female population. The mechanisms presented in the paper relate to the inflammatory process resulting from current or progressive obesity leading to cell metabolism disorders and disturbed hormonal metabolism. All these processes are widely regulated by the action of microRNAs (miRNAs), which may constitute potential biomarkers influencing the pathogenesis of breast cancer and may be a promising target of anti-cancer therapies.
Collapse
Affiliation(s)
- Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Jakub Karczmarski
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Katarzyna Urbańska
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, 128 Szaserów St, 04-141 Warsaw, Poland
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
| | - Andrzej Kwiatkowski
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, 128 Szaserów St, 04-141 Warsaw, Poland
| | - Lidia Martyńska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anita Domańska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- Faculty of Medical and Health Sciences, Institute of Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Correspondence:
| |
Collapse
|
11
|
Sereda EE, Kolegova ES, Kakurina GV, Korshunov DA, Sidenko EA, Doroshenko AV, Slonimskaya EM, Kondakova IV. Five-year survival in luminal breast cancer patients: relation with intratumoral activity of proteasomes. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2022; 3:23. [PMID: 38751528 PMCID: PMC11093047 DOI: 10.21037/tbcr-22-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/14/2022] [Indexed: 05/18/2024]
Abstract
Background The purpose of the study was to analyze the relationship between the caspase-like (CL) and chymotrypsin-like (ChTL) activities of proteasomes and the 5-year overall and metastasis-free survival rates in patients with luminal breast cancer. Methods The study included 117 patients with primary operable invasive breast cancer (T1-2N0-1M0). Tissue samples from breast cancer patients were obtained as a result of the radical mastectomy or breast conserving surgery, which was a first line of therapy. The ChTL and CL proteasomes activities in the tumor tissue and in the surrounding adjacent breast tissues were assessed using the fluorometric method. The coefficients of ChTL (cChTL) and CL (cCL) proteasomes activities were also determined. The coefficients were calculated as the ratio of the corresponding proteasomes activity in the tumor tissue to the surrounding adjacent breast tissues. Within 5 years of follow-up, hematogenous metastases occurred in 14% of patients with luminal A breast cancer, in 31% of patients with luminal B human epidermal growth factor receptor-2 (HER-2) negative and in 23% of patients with luminal B HER-2 positive breast cancers. The study protocol was approved by the Local Ethics Committee of the Cancer Research Institute of Tomsk National Research Medical Center. Written informed consent was obtained from all patients. Results An increase in the ChTL and CL proteasomes activities was shown in all studied molecular subtypes of breast cancer compared to adjacent tissues. It was found that the cChTL of >35.9 U/mg protein and the cCL of >2.21 in breast cancer patients were associated with the development of distant metastases. In patients with luminal A breast cancer, the 5-year metastasis-free survival rates were associated only with the value of cCL of proteasomes (log-rank test: P=0.008). In patients with luminal B HER-2 negative breast cancer, the 5-year metastasis-free survival rates were associated with the levels of ChTL and cCL proteasomes activities (log-rank test: P=0.02 and P=0.04, respectively). Conclusions The data obtained on the correlation of 5-year metastasis-free survival rates with the level of proteasomes activities indicate the possibility of their use as additional prognostic criteria for breast cancer.
Collapse
Affiliation(s)
- Elena E. Sereda
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, Tomsk, Russia
| | - Elena. S. Kolegova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Gelena V. Kakurina
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, Tomsk, Russia
| | - Dmitriy A. Korshunov
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Evgenia A. Sidenko
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Artem V. Doroshenko
- General Oncology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Elena M. Slonimskaya
- General Oncology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina V. Kondakova
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
12
|
Kim JH, Lee ST. Polyamine Oxidase Expression Is Downregulated by 17β-Estradiol via Estrogen Receptor 2 in Human MCF-7 Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23147521. [PMID: 35886868 PMCID: PMC9317983 DOI: 10.3390/ijms23147521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Polyamine levels decrease with menopause; however, little is known about the mechanisms regulated by menopause. In this study, we found that among the genes involved in the polyamine pathway, polyamine oxidase (PAOX) mRNA levels were the most significantly reduced by treatment with 17β-estradiol in estrogen receptor (ESR)-positive MCF-7 breast cancer cells. Treatment with 17β-estradiol also reduced the PAOX protein levels. Treatment with selective ESR antagonists and knockdown of ESR members revealed that estrogen receptor 2 (ESR2; also known as ERβ) was responsible for the repression of PAOX by 17β-estradiol. A luciferase reporter assay showed that 17β-estradiol downregulates PAOX promoter activity and that 17β-estradiol-dependent PAOX repression disappeared after deletions (−3126/−2730 and −1271/−1099 regions) or mutations of activator protein 1 (AP-1) binding sites in the PAOX promoter. Chromatin immunoprecipitation analysis showed that ESR2 interacts with AP-1 bound to each of the two AP-1 binding sites. These results demonstrate that 17β-estradiol represses PAOX transcription by the interaction of ESR2 with AP-1 bound to the PAOX promoter. This suggests that estrogen deficiency may upregulate PAOX expression and decrease polyamine levels.
Collapse
|
13
|
Manna PR, Ahmed AU, Molehin D, Narasimhan M, Pruitt K, Reddy PH. Hormonal and Genetic Regulatory Events in Breast Cancer and Its Therapeutics: Importance of the Steroidogenic Acute Regulatory Protein. Biomedicines 2022; 10:biomedicines10061313. [PMID: 35740335 PMCID: PMC9220045 DOI: 10.3390/biomedicines10061313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Estrogen promotes the development and survival of the majority of breast cancers (BCs). Aromatase is the rate-limiting enzyme in estrogen biosynthesis, and it is immensely expressed in both cancerous and non-cancerous breast tissues. Endocrine therapy based on estrogen blockade, by aromatase inhibitors, has been the mainstay of BC treatment in post-menopausal women; however, resistance to hormone therapy is the leading cause of cancer death. An improved understanding of the molecular underpinnings is the key to develop therapeutic strategies for countering the most prevalent hormone receptor positive BCs. Of note, cholesterol is the precursor of all steroid hormones that are synthesized in a variety of tissues and play crucial roles in diverse processes, ranging from organogenesis to homeostasis to carcinogenesis. The rate-limiting step in steroid biosynthesis is the transport of cholesterol from the outer to the inner mitochondrial membrane, a process that is primarily mediated by the steroidogenic acute regulatory (StAR) protein. Advances in genomic and proteomic technologies have revealed a dynamic link between histone deacetylases (HDACs) and StAR, aromatase, and estrogen regulation. We were the first to report that StAR is abundantly expressed, along with large amounts of 17β-estradiol (E2), in hormone-dependent, but not hormone-independent, BCs, in which StAR was also identified as a novel acetylated protein. Our in-silico analyses of The Cancer Genome Atlas (TCGA) datasets, for StAR and steroidogenic enzyme genes, revealed an inverse correlation between the amplification of the StAR gene and the poor survival of BC patients. Additionally, we reported that a number of HDAC inhibitors, by altering StAR acetylation patterns, repress E2 synthesis in hormone-sensitive BC cells. This review highlights the current understanding of molecular pathogenesis of BCs, especially for luminal subtypes, and their therapeutics, underlining that StAR could serve not only as a prognostic marker, but also as a therapeutic candidate, in the prevention and treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Correspondence: ; Tel.: +1-806-743-3573; Fax: +1-806-743-3143
| | - Ahsen U. Ahmed
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA;
| | - Deborah Molehin
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (D.M.); (K.P.)
| | - Madhusudhanan Narasimhan
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (D.M.); (K.P.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
14
|
Patel JM, Jeselsohn RM. Estrogen Receptor Alpha and ESR1 Mutations in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:171-194. [DOI: 10.1007/978-3-031-11836-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Song D, He H, Indukuri R, Huang Z, Stepanauskaite L, Sinha I, Haldosén LA, Zhao C, Williams C. ERα and ERβ Homodimers in the Same Cellular Context Regulate Distinct Transcriptomes and Functions. Front Endocrinol (Lausanne) 2022; 13:930227. [PMID: 35872983 PMCID: PMC9299245 DOI: 10.3389/fendo.2022.930227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The two estrogen receptors ERα and ERβ are nuclear receptors that bind estrogen (E2) and function as ligand-inducible transcription factors. They are homologues and can form dimers with each other and bind to the same estrogen-response element motifs in the DNA. ERα drives breast cancer growth whereas ERβ has been reported to be anti-proliferative. However, they are rarely expressed in the same cells, and it is not fully investigated to which extent their functions are different because of inherent differences or because of different cellular context. To dissect their similarities and differences, we here generated a novel estrogen-dependent cell model where ERα homodimers can be directly compared to ERβ homodimers within the identical cellular context. By using CRISPR-cas9 to delete ERα in breast cancer MCF7 cells with Tet-Off-inducible ERβ expression, we generated MCF7 cells that express ERβ but not ERα. MCF7 (ERβ only) cells exhibited regulation of estrogen-responsive targets in a ligand-dependent manner. We demonstrated that either ER was required for MCF7 proliferation, but while E2 increased proliferation via ERα, it reduced proliferation through a G2/M arrest via ERβ. The two ERs also impacted migration differently. In absence of ligand, ERβ increased migration, but upon E2 treatment, ERβ reduced migration. E2 via ERα, on the other hand, had no significant impact on migration. RNA sequencing revealed that E2 regulated a transcriptome of around 800 genes via each receptor, but over half were specific for either ERα or ERβ (417 and 503 genes, respectively). Functional gene ontology enrichment analysis reinforced that E2 regulated cell proliferation in opposite directions depending on the ER, and that ERβ specifically impacted extracellular matrix organization. We corroborated that ERβ bound to cis-regulatory chromatin of its unique proposed migration-related direct targets ANXA9 and TFAP2C. In conclusion, we demonstrate that within the same cellular context, the two ERs regulate cell proliferation in the opposite manner, impact migration differently, and each receptor also regulates a distinct set of target genes in response to E2. The developed cell model provides a novel and valuable resource to further complement the mechanistic understanding of the two different ER isoforms.
Collapse
Affiliation(s)
- Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Huan He
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Public Health, Jilin University, Changchun, China
| | - Rajitha Indukuri
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lina Stepanauskaite
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Indranil Sinha
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Arne Haldosén
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cecilia Williams
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
- *Correspondence: Cecilia Williams,
| |
Collapse
|
16
|
The Estrogen Receptor α Signaling Pathway Controls Alternative Splicing in the Absence of Ligands in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13246261. [PMID: 34944881 PMCID: PMC8699117 DOI: 10.3390/cancers13246261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The transcriptional activity of estrogen receptor α (ERα) in breast cancer (BC) is extensively characterized. Our group has previously shown that ERα controls the expression of a number of genes in its unliganded form (apoERα), among which a large group of RNA-binding proteins (RBPs) encode genes, suggesting its role in the control of co- and post-transcriptional events. Methods: apoERα-mediated RNA processing events were characterized by the analysis of transcript usage and alternative splicing changes in an RNA-sequencing dataset from MCF-7 cells after siRNA-induced ERα downregulation. Results: ApoERα depletion induced an expression change of 681 RBPs, including 84 splicing factors involved in translation, ribonucleoprotein complex assembly, and 3′end processing. ApoERα depletion results in 758 isoform switching events with effects on 3′end length and the splicing of alternative cassette exons. The functional enrichment of these events shows that post-transcriptional regulation is part of the mechanisms by which apoERα controls epithelial-to-mesenchymal transition and BC cell proliferation. In primary BCs, the inclusion levels of the experimentally identified alternatively spliced exons are associated with overall and disease-free survival. Conclusion: Our data supports the role of apoERα in maintaining the luminal phenotype of BC cells by extensively regulating gene expression at the alternative splicing level.
Collapse
|
17
|
Porras L, Ismail H, Mader S. Positive Regulation of Estrogen Receptor Alpha in Breast Tumorigenesis. Cells 2021; 10:cells10112966. [PMID: 34831189 PMCID: PMC8616513 DOI: 10.3390/cells10112966] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor alpha (ERα, NR3A1) contributes through its expression in different tissues to a spectrum of physiological processes, including reproductive system development and physiology, bone mass maintenance, as well as cardiovascular and central nervous system functions. It is also one of the main drivers of tumorigenesis in breast and uterine cancer and can be targeted by several types of hormonal therapies. ERα is expressed in a subset of luminal cells corresponding to less than 10% of normal mammary epithelial cells and in over 70% of breast tumors (ER+ tumors), but the basis for its selective expression in normal or cancer tissues remains incompletely understood. The mapping of alternative promoters and regulatory elements has delineated the complex genomic structure of the ESR1 gene and shed light on the mechanistic basis for the tissue-specific regulation of ESR1 expression. However, much remains to be uncovered to better understand how ESR1 expression is regulated in breast cancer. This review recapitulates the current body of knowledge on the structure of the ESR1 gene and the complex mechanisms controlling its expression in breast tumors. In particular, we discuss the impact of genetic alterations, chromatin modifications, and enhanced expression of other luminal transcription regulators on ESR1 expression in tumor cells.
Collapse
|
18
|
Saravanabavan S, Rangan GK. Possible role of the mitochondrial genome in the pathogenesis of autosomal dominant polycystic kidney disease. Nephrology (Carlton) 2021; 26:920-930. [PMID: 34331378 DOI: 10.1111/nep.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic renal disease in adults and is due to heterozygous germ line variants in either PKD1, PKD2 or rarely other genes. It is characterized by marked intra-familial disease variability suggesting that other genetic and/or environmental factors are involved in determining the lifetime course ADPKD. Recently, research indicates that polycystin-mediated mitochondrial dysfunction and metabolic re-programming contributes to the progression of ADPKD. Although biochemical abnormalities have gained the most interest, variants in the mitochondrial genome could be one of the mechanisms underlying the phenotypic variability in ADPKD. This narrative review aims to evaluate the role of the mitochondrial genome in the pathogenesis of APDKD.
Collapse
Affiliation(s)
- Sayanthooran Saravanabavan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Gopala K Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
19
|
Inkster AM, Yuan V, Konwar C, Matthews AM, Brown CJ, Robinson WP. A cross-cohort analysis of autosomal DNA methylation sex differences in the term placenta. Biol Sex Differ 2021; 12:38. [PMID: 34044884 PMCID: PMC8162041 DOI: 10.1186/s13293-021-00381-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human placental DNA methylation (DNAme) data is a valuable resource for studying sex differences during gestation, as DNAme profiles after delivery reflect the cumulative effects of gene expression patterns and exposures across gestation. Here, we present an analysis of sex differences in autosomal DNAme in the uncomplicated term placenta (n = 343) using the Illumina 450K array. RESULTS At a false discovery rate < 0.05 and a mean sex difference in DNAme beta value of > 0.10, we identified 162 autosomal CpG sites that were differentially methylated by sex and replicated in an independent cohort of samples (n = 293). Several of these differentially methylated CpG sites were part of larger correlated regions of sex differential DNAme. Although global DNAme levels did not differ by sex, the majority of significantly differentially methylated CpGs were more highly methylated in male placentae, the opposite of what is seen in differential methylation analyses of somatic tissues. Patterns of autosomal DNAme at these 162 CpGs were significantly associated with maternal age (in males) and newborn birthweight standard deviation (in females). CONCLUSIONS Our results provide a comprehensive analysis of sex differences in autosomal DNAme in the term human placenta. We report a list of high-confidence autosomal sex-associated differentially methylated CpGs and identify several key features of these loci that suggest their relevance to sex differences observed in normative and complicated pregnancies.
Collapse
Affiliation(s)
- Amy M. Inkster
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Victor Yuan
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Chaini Konwar
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
| | - Allison M. Matthews
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, V6T 1Z7 Canada
| | - Carolyn J. Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| |
Collapse
|
20
|
Ribon-Demars A, Jochmans-Lemoine A, Ganouna-Cohen G, Boreau A, Marcouiller F, Bairam A, Pialoux V, Joseph V. Lung oxidative stress and transcriptional regulations induced by estradiol and intermittent hypoxia. Free Radic Biol Med 2021; 164:119-129. [PMID: 33385539 DOI: 10.1016/j.freeradbiomed.2020.12.433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022]
Abstract
We determined the effects of chronic intermittent hypoxia (CIH) and estradiol (E2) on oxidative stress and gene expression in the lungs. Female Sprague-Dawley rats were left intact (sham) or ovariectomized (OVX) and implanted with pumps delivering vehicle or E2 (0.5 mg/kg/day). Two weeks following surgery, the rats were exposed to room air (RA) or CIH for 7 days (10% O2, 10 cycles/hour, 8 h/day). Lung samples were used to measure the activities of pro- (NADPH and xanthine oxidases) and antioxidant (superoxide dismutase, catalase and glutathione peroxidase) enzymes, and concentrations of advanced oxidation of protein products (AOPP). We determined gene expression with an RNA microarray and enrichment analysis of differentially expressed genes. In rats exposed to RA, OVX and E2 supplementation increased pro- and antioxidant activities and AOPP concentration. In rats exposed to CIH, AOPP concentration, pro- and antioxidant enzymes activities increased in sham, did not changed in OVX-Veh rats, and were reduced in OVX-E2 rats. In rats exposed to RA, genes involved in extracellular matrix were up-regulated by OVX and down-regulated by E2, while E2 up-regulated genes involved in cell mobility/adherence and leukocytes migration. OVX downregulated expression of roughly 200 olfactory receptor genes without effect of E2. CIH altered gene expression in sham and OVX-E2, but not in OVX-Veh rats. Enrichment analysis confirmed the antioxidant effects of E2 under CIH. There are important interactions between ovarian hormones and CIH that can be relevant to better understand the consequences of sleep apnea (i.e. CIH) on the occurrence of lung pathologies in women.
Collapse
Affiliation(s)
- Alexandra Ribon-Demars
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie Du Québec, Université Laval, Québec, QC, Canada; Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Inter-Universitaire de Biologie de La Motricité, Lyon, France
| | - Alexandra Jochmans-Lemoine
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie Du Québec, Université Laval, Québec, QC, Canada
| | - Gauthier Ganouna-Cohen
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie Du Québec, Université Laval, Québec, QC, Canada
| | - Anaëlle Boreau
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Inter-Universitaire de Biologie de La Motricité, Lyon, France
| | - François Marcouiller
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie Du Québec, Université Laval, Québec, QC, Canada
| | - Aida Bairam
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie Du Québec, Université Laval, Québec, QC, Canada
| | - Vincent Pialoux
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Inter-Universitaire de Biologie de La Motricité, Lyon, France; Institut Universitaire de France, Paris, France
| | - Vincent Joseph
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie Du Québec, Université Laval, Québec, QC, Canada.
| |
Collapse
|
21
|
Regulatory Interplay between miR-181a-5p and Estrogen Receptor Signaling Cascade in Breast Cancer. Cancers (Basel) 2021; 13:cancers13030543. [PMID: 33535487 PMCID: PMC7867078 DOI: 10.3390/cancers13030543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Despite huge efforts in breast cancer care programs, patient’s survival rates greatly vary. Differences in response to therapy still represent the major challenge for clinicians and biologists. Define new anticancer mechanisms and innovative predictors for resistance could be a valid strategy to permanently defeat breast cancer. Here we propose the epigenetic based reprogramming of breast cancer, which leverages on the crosstalk between miR-181a-5p and Estrogen Receptor α. This simultaneously approach allows to induce miR-181a-5p and reduce the receptor expression, blocking the estrogen-dependent proliferative pathway underlying breast cancer progression. Since the epigenetic approach insists on transcriptional regulation, it is mostly independent of the acquired resistance mechanisms typically induced by prolonged endocrine therapy and therefore can be used as a sensitizer, neoadjuvant, or in combination with the standard in care treatments against breast cancer. Abstract The efficacy and side effects of endocrine therapy in breast cancer (BC) depend largely on estrogen receptor alpha (ERα) expression, the specific drug administered, and treatment scheduling. Although the benefits of endocrine therapy outweigh any adverse effects in the initial stages of BC, later- or advanced-stage tumors acquire resistance to treatments. The mechanisms underlying tumor resistance to therapy are still not well understood, posing a major challenge for BC patient care. Epigenetic regulation and miRNA expression may be involved in the switch from a treatment-sensitive to a treatment-resistant state and could provide a valid therapeutic strategy for ERα negative BC. Here, a hybrid lysine-specific histone demethylase inhibitor, MC3324, displaying selective estrogen receptor down-regulator-like activities in BC, was used to highlight the interplay between epigenetic and ERα signaling. MC3324 anticancer action is mediated by microRNA (miRNA) expression regulation, indicating an innovative function for this molecule. Integrated analysis suggests a crosstalk between estrogen signaling, ERα interactors, miRNAs, and their putative targets. Specifically, miR-181a-5p expression is regulated by MC3324 and has an impact on cellular levels of ERα. A comparison of breast tumor versus healthy mammary tissues confirmed the important role of miR-181a-5p in ERα regulation and points to its putative predictive function in BC therapy.
Collapse
|
22
|
Pratap UP, Sareddy GR, Liu Z, Venkata PP, Liu J, Tang W, Altwegg KA, Ebrahimi B, Li X, Tekmal RR, Viswanadhapalli S, McHardy S, Brenner AJ, Vadlamudi RK. Histone deacetylase inhibitors enhance estrogen receptor beta expression and augment agonist-mediated tumor suppression in glioblastoma. Neurooncol Adv 2021; 3:vdab099. [PMID: 34485908 PMCID: PMC8412056 DOI: 10.1093/noajnl/vdab099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are the most lethal primary brain tumors. Estrogen receptor β (ESR2/ERβ) function as a tumor suppressor in GBM, however, ERβ expression is commonly suppressed during glioma progression. In this study, we examined whether drugs that reverse epigenetic modifications will enhance ERβ expression and augment ERβ agonist-mediated tumor suppression. METHODS We tested the utility of epigenetic drugs which act as an inhibitor of histone deacetylases (HDACs), histone methylases, and BET enzymes. Mechanistic studies utilized RT-qPCR, chromatin immunoprecipitation (ChIP), and western blotting. Cell viability, apoptosis, colony formation, and invasion were measured using in vitro assays. An orthotopic GBM model was used to test the efficacy of in vivo. RESULTS Of all inhibitors tested, HDACi (panobinostat and romidepsin) showed the potential to increase the expression of ERβ in GBM cells. Treatment with HDACi uniquely upregulated ERβ isoform 1 expression that functions as a tumor suppressor but not ERβ isoform 5 that drives oncogenic functions. Further, combination therapy of HDACi with the ERβ agonist, LY500307, potently reduced cell viability, invasion, colony formation, and enhanced apoptosis. Mechanistic studies showed that HDACi induced ERβ is functional, as it enhanced ERβ reporter activities and ERβ target genes expression. ChIP analysis confirmed alterations in the histone acetylation at the ERβ and its target gene promoters. In orthotopic GBM model, combination therapy of panobinostat and LY500307 enhanced survival of tumor-bearing mice. CONCLUSIONS Our results suggest that the combination therapy of HDACi and LY500307 provides therapeutic utility in overcoming the suppression of ERβ expression that commonly occurs in GBM progression.
Collapse
Affiliation(s)
- Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Zexuan Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Junhao Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Weiwei Tang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Stanton McHardy
- Department of Chemistry, University of Texas San Antonio, San Antonio, Texas, USA
| | - Andrew J Brenner
- Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
23
|
Nameki R, Chang H, Reddy J, Corona RI, Lawrenson K. Transcription factors in epithelial ovarian cancer: histotype-specific drivers and novel therapeutic targets. Pharmacol Ther 2020; 220:107722. [PMID: 33137377 DOI: 10.1016/j.pharmthera.2020.107722] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Transcription factors (TFs) are major contributors to cancer risk and somatic development. In preclinical and clinical studies, direct or indirect inhibition of TF-mediated oncogenic gene expression profiles have proven to be effective in many tumor types, highlighting this group of proteins as valuable therapeutic targets. In spite of this, our understanding of TFs in epithelial ovarian cancer (EOC) is relatively limited. EOC is a heterogeneous disease composed of five major histologic subtypes; high-grade serous, low-grade serous, endometrioid, clear cell and mucinous. Each histology is associated with unique clinical etiologies, sensitivity to therapies, and molecular signatures - including diverse transcriptional regulatory programs. While some TFs are shared across EOC subtypes, a set of TFs are expressed in a histotype-specific manner and likely explain part of the histologic diversity of EOC subtypes. Targeting TFs present with unique opportunities for development of novel precision medicine strategies for ovarian cancer. This article reviews the critical TFs in EOC subtypes and highlights the potential of exploiting TFs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Robbin Nameki
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heidi Chang
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Reddy
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosario I Corona
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Treeck O, Schüler-Toprak S, Ortmann O. Estrogen Actions in Triple-Negative Breast Cancer. Cells 2020; 9:cells9112358. [PMID: 33114740 PMCID: PMC7692567 DOI: 10.3390/cells9112358] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) lacks estrogen receptor (ER) α, but the expression of estrogen receptors ERβ and G protein-coupled estrogen receptor 1 (GPER-1) is able to trigger estrogen-responsivity in TNBC. Estrogen signaling in TNBC can also be activated and modulated by the constitutively active estrogen-related receptors (ERRs). In this review article, we discuss the role of ERβ and GPER-1 as mediators of E2 action in TNBC as well as the function of ERRs as activators and modulators of estrogen signaling in this cancer entity. For this purpose, original research articles on estrogen actions in TNBC were considered, which are listed in the PubMed database. Additionally, we performed meta-analyses of publicly accessible integrated gene expression and survival data to elucidate the association of ERβ, GPER-1, and ERR expression levels in TNBC with survival. Finally, options for endocrine therapy strategies for TNBC were discussed.
Collapse
|
25
|
Mechanisms Underlying the Regulation of Mitochondrial Respiratory Chain Complexes by Nuclear Steroid Receptors. Int J Mol Sci 2020; 21:ijms21186683. [PMID: 32932692 PMCID: PMC7555717 DOI: 10.3390/ijms21186683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial respiratory chain complexes play important roles in energy production via oxidative phosphorylation (OXPHOS) to drive various biochemical processes in eukaryotic cells. These processes require coordination with other cell organelles, especially the nucleus. Factors encoded by both nuclear and mitochondrial DNA are involved in the formation of active respiratory chain complexes and 'supercomplexes', the higher-order structures comprising several respiratory chain complexes. Various nuclear hormone receptors are involved in the regulation of OXPHOS-related genes. In this article, we review the roles of nuclear steroid receptors (NR3 class nuclear receptors), including estrogen receptors (ERs), estrogen-related receptors (ERRs), glucocorticoid receptors (GRs), mineralocorticoid receptors (MRs), progesterone receptors (PRs), and androgen receptors (ARs), in the regulatory mechanisms of mitochondrial respiratory chain complex and supercomplex formation.
Collapse
|
26
|
Estrogen Induces Selective Transcription of Caveolin1 Variants in Human Breast Cancer through Estrogen Responsive Element-Dependent Mechanisms. Int J Mol Sci 2020; 21:ijms21175989. [PMID: 32825330 PMCID: PMC7503496 DOI: 10.3390/ijms21175989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
The estrogen receptor (ER) signaling regulates numerous physiological processes mainly through activation of gene transcription (genomic pathways). Caveolin1 (CAV1) is a membrane-resident protein that behaves as platform to enable different signaling molecules and receptors for membrane-initiated pathways. CAV1 directly interacts with ERs and allows their localization on membrane with consequent activation of ER-non-genomic pathways. Loss of CAV1 function is a common feature of different types of cancers, including breast cancer. Two protein isoforms, CAV1α and CAV1β, derived from two alternative translation initiation sites, are commonly described for this gene. However, the exact transcriptional regulation underlying CAV1 expression pattern is poorly elucidated. In this study, we dissect the molecular mechanism involved in selective expression of CAV1β isoform, induced by estrogens and downregulated in breast cancer. Luciferase assays and Chromatin immunoprecipitation demonstrate that transcriptional activation is triggered by estrogen-responsive elements embedded in CAV1 intragenic regions and DNA-binding of estrogen-ER complexes. This regulatory control is dynamically established by local chromatin changes, as proved by the occurrence of histone H3 methylation/demethylation events and association of modifier proteins as well as modification of H3 acetylation status. Thus, we demonstrate for the first time, an estrogen-ERs-dependent regulatory circuit sustaining selective CAV1β expression.
Collapse
|
27
|
Gou Y, Li X, Li P, Zhang H, Xu T, Wang H, Wang B, Ma X, Jiang X, Zhang Z. Estrogen receptor β upregulates CCL2 via NF-κB signaling in endometriotic stromal cells and recruits macrophages to promote the pathogenesis of endometriosis. Hum Reprod 2020; 34:646-658. [PMID: 30838396 DOI: 10.1093/humrep/dez019] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/24/2019] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION How is the activation of estrogen receptor β (ERβ) in endometriotic stromal cells (ESCs) involved in macrophage recruitment to promote the pathogenesis of endometriosis? SUMMARY ANSWER ERβ modulates the production of C-C motif chemokine ligand 2 (CCL2) via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in ESCs and thus recruits macrophages to ectopic lesions to promote pathogenesis. WHAT IS KNOWN ALREADY Macrophages are mainly recruited to the peritoneal cavity to promote the pathogenesis of endometriosis. Recent studies have demonstrated that ERβ plays an important role in the progression of endometriosis through modulating apoptosis and inflammation. STUDY DESIGN, SIZE, DURATION An observational study consisting of 22 cases (women with endometriosis, diagnosed by laparoscopy and histological analysis) and 14 controls (without endometriosis) was carried out. PARTICIPANTS/MATERIALS, SETTING, METHODS Tissues and stromal cells that were isolated from 22 patients with ovarian endometrioma and deeply infiltrating endometriosis were compared with tissues and stromal cells from 14 patients with normal cycling endometrium using immunohistochemistry, quantitative PCR, Western blot, cell migration assay and cloning formation assay. P values < 0.05 were considered significant, and experiments were repeated in at least three different cell preparations. MAIN RESULTS AND THE ROLE OF CHANCE We observed that accumulated macrophages were recruited to the ectopic milieu and mainly adopted an alternatively activated macrophage (M2) phenotype. To reveal the underlying mechanism for this, we conducted a series of experiments and found that high expression of ERβ led to the production of CCL2 via NF-κB signaling and macrophages were recruited to the ectopic milieu. An in vitro co-culture assay also suggested that the recruited macrophages in turn could promote the proliferation and clonogenic ability of ESCs. Overall, the activation of ERβ in ESCs is involved in macrophage recruitment via NF-κB/CCL2 signaling and subsequently appears to promote the pathogenesis of endometriosis. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Due to the limitations of obtaining surgical specimens, endometrioma tissues were collected mainly from women diagnosed with middle to late stage endometriosis. We identified the predominant presence of M2 macrophages in the samples used in our study, but the underlying mechanism of how recruited macrophages acquire the M2 phenotype is undefined. WIDER IMPLICATIONS OF THE FINDINGS This work provides novel insight into the mechanism by which ERβ may modulate macrophage infiltration and promote pathogenesis, which may provide a new therapeutic target for endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Natural Science Foundation of China (81671430). The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Yanling Gou
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peiling Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyan Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tenghan Xu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Beidi Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuesong Ma
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Jiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zongfeng Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy. Int J Mol Sci 2020; 21:ijms21124349. [PMID: 32570961 PMCID: PMC7352873 DOI: 10.3390/ijms21124349] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal–fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a “new” UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.
Collapse
|
29
|
Sellitto A, D’Agostino Y, Alexandrova E, Lamberti J, Pecoraro G, Memoli D, Rocco D, Coviello E, Giurato G, Nassa G, Tarallo R, Weisz A, Rizzo F. Insights into the Role of Estrogen Receptor β in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12061477. [PMID: 32516978 PMCID: PMC7353068 DOI: 10.3390/cancers12061477] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that play different roles in gene regulation and show both overlapping and specific tissue distribution patterns. ERβ, contrary to the oncogenic ERα, has been shown to act as an oncosuppressor in several instances. However, while the tumor-promoting actions of ERα are well-known, the exact role of ERβ in carcinogenesis and tumor progression is not yet fully understood. Indeed, to date, highly variable and even opposite effects have been ascribed to ERβ in cancer, including for example both proliferative and growth-inhibitory actions. Recently ERβ has been proposed as a potential target for cancer therapy, since it is expressed in a variety of breast cancers (BCs), including triple-negative ones (TNBCs). Because of the dependence of TNBCs on active cellular signaling, numerous studies have attempted to unravel the mechanism(s) behind ERβ-regulated gene expression programs but the scenario has not been fully revealed. We comprehensively reviewed the current state of knowledge concerning ERβ role in TNBC biology, focusing on the different signaling pathways and cellular processes regulated by this transcription factor, as they could be useful in identifying new diagnostic and therapeutic approaches for TNBC.
Collapse
Affiliation(s)
- Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Ylenia D’Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Jessica Lamberti
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Domenico Rocco
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Elena Coviello
- Genomix4Life, via S. Allende 43/L, 84081 Baronissi (SA), Italy;
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
- CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
- Correspondence: (A.W.); (F.R.); Tel.: (39+)-089-965043 (A.W.); Tel.: (39+)-089-965221 (F.R.)
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
- CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
- Correspondence: (A.W.); (F.R.); Tel.: (39+)-089-965043 (A.W.); Tel.: (39+)-089-965221 (F.R.)
| |
Collapse
|
30
|
Alexandrova E, Lamberti J, Saggese P, Pecoraro G, Memoli D, Mirici Cappa V, Ravo M, Iorio R, Tarallo R, Rizzo F, Collina F, Cantile M, Di Bonito M, Botti G, Nassa G, Weisz A, Giurato G. Small Non-Coding RNA Profiling Identifies miR-181a-5p as a Mediator of Estrogen Receptor Beta-Induced Inhibition of Cholesterol Biosynthesis in Triple-Negative Breast Cancer. Cells 2020; 9:cells9040874. [PMID: 32260128 PMCID: PMC7226848 DOI: 10.3390/cells9040874] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous disease, representing the most aggressive breast cancer (BC) subtype with limited treatment options due to a lack of estrogen receptor alpha (ERα), progesterone receptor (PR), and Erb-B2 receptor tyrosine kinase 2 (HER2/neu) expression. Estrogen receptor beta (ERβ) is present in a fraction of TNBC patients, where its expression correlates with improved patient outcomes, supported by the fact that it exerts oncosuppressive effects in TNBC cell models in vitro. ERβ is involved in microRNA-mediated regulation of gene expression in hormone-responsive BC cells and could mediate its actions through small noncoding RNAs (sncRNAs) in TNBCs also. To verify this possibility, smallRNA sequencing was performed on three ERβ-expressing cell lines from different TNBC molecular subtypes. Several sncRNAs resulted modulated by ERβ, with a subset being regulated in a tumor subtype-independent manner. Interestingly, sncRNA profiling of 12 ERβ+and 32 ERβ− primary TNBC biopsies identified 7 microRNAs, 1 PIWI-interacting RNA (piRNA), and 1 transfer RNA (tRNA) differentially expressed in ERβ+ compared to ERβ− tumors and cell lines. Among them, miR-181a-5p was found to be overexpressed in ERβ+ tumors and predicted target key components of the cholesterol biosynthesis pathway previously found to be inhibited by ERβ in TNBC cells.
Collapse
Affiliation(s)
- Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy
- Genomix4Life Srl, 84081 Baronissi, Italy
| | - Jessica Lamberti
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy
| | - Pasquale Saggese
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy
| | - Valeria Mirici Cappa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy
- Genomix4Life Srl, 84081 Baronissi, Italy
| | | | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy
| | - Francesca Collina
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (A.W.); (G.G.); Tel.: + 39-089-965043 (A.W.)
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (A.W.); (G.G.); Tel.: + 39-089-965043 (A.W.)
| |
Collapse
|
31
|
Kondakova IV, Shashova EE, Sidenko EA, Astakhova TM, Zakharova LA, Sharova NP. Estrogen Receptors and Ubiquitin Proteasome System: Mutual Regulation. Biomolecules 2020; 10:biom10040500. [PMID: 32224970 PMCID: PMC7226411 DOI: 10.3390/biom10040500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
This review provides information on the structure of estrogen receptors (ERs), their localization and functions in mammalian cells. Additionally, the structure of proteasomes and mechanisms of protein ubiquitination and cleavage are described. According to the modern concept, the ubiquitin proteasome system (UPS) is involved in the regulation of the activity of ERs in several ways. First, UPS performs the ubiquitination of ERs with a change in their functional activity. Second, UPS degrades ERs and their transcriptional regulators. Third, UPS affects the expression of ER genes. In addition, the opportunity of the regulation of proteasome functioning by ERs—in particular, the expression of immune proteasomes—is discussed. Understanding the complex mechanisms underlying the regulation of ERs and proteasomes has great prospects for the development of new therapeutic agents that can make a significant contribution to the treatment of diseases associated with the impaired function of these biomolecules.
Collapse
Affiliation(s)
- Irina V. Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; (I.V.K.); (E.E.S.); (E.A.S.)
| | - Elena E. Shashova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; (I.V.K.); (E.E.S.); (E.A.S.)
| | - Evgenia A. Sidenko
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; (I.V.K.); (E.E.S.); (E.A.S.)
| | - Tatiana M. Astakhova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (T.M.A.); (L.A.Z.)
| | - Liudmila A. Zakharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (T.M.A.); (L.A.Z.)
| | - Natalia P. Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (T.M.A.); (L.A.Z.)
- Correspondence: ; Tel.: +7-499-135-7674; Fax: +7-499-135-3322
| |
Collapse
|
32
|
Moldogazieva NT, Ostroverkhova DS, Kuzmich NN, Kadochnikov VV, Terentiev AA, Porozov YB. Elucidating Binding Sites and Affinities of ERα Agonists and Antagonists to Human Alpha-Fetoprotein by In Silico Modeling and Point Mutagenesis. Int J Mol Sci 2020; 21:ijms21030893. [PMID: 32019136 PMCID: PMC7036865 DOI: 10.3390/ijms21030893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Alpha-fetoprotein (AFP) is a major embryo- and tumor-associated protein capable of binding and transporting a variety of hydrophobic ligands, including estrogens. AFP has been shown to inhibit estrogen receptor (ER)-positive tumor growth, which can be attributed to its estrogen-binding ability. Despite AFP having long been investigated, its three-dimensional (3D) structure has not been experimentally resolved and molecular mechanisms underlying AFP–ligand interaction remains obscure. In our study, we constructed a homology-based 3D model of human AFP (HAFP) with the purpose of molecular docking of ERα ligands, three agonists (17β-estradiol, estrone and diethylstilbestrol), and three antagonists (tamoxifen, afimoxifene and endoxifen) into the obtained structure. Based on the ligand-docked scoring functions, we identified three putative estrogen- and antiestrogen-binding sites with different ligand binding affinities. Two high-affinity binding sites were located (i) in a tunnel formed within HAFP subdomains IB and IIA and (ii) on the opposite side of the molecule in a groove originating from a cavity formed between domains I and III, while (iii) the third low-affinity binding site was found at the bottom of the cavity. Here, 100 ns molecular dynamics (MD) simulation allowed us to study their geometries and showed that HAFP–estrogen interactions were caused by van der Waals forces, while both hydrophobic and electrostatic interactions were almost equally involved in HAFP–antiestrogen binding. Molecular mechanics/Generalized Born surface area (MM/GBSA) rescoring method exploited for estimation of binding free energies (ΔGbind) showed that antiestrogens have higher affinities to HAFP as compared to estrogens. We performed in silico point substitutions of amino acid residues to confirm their roles in HAFP–ligand interactions and showed that Thr132, Leu138, His170, Phe172, Ser217, Gln221, His266, His316, Lys453, and Asp478 residues, along with two disulfide bonds (Cys224–Cys270 and Cys269–Cys277), have key roles in both HAFP–estrogen and HAFP–antiestrogen binding. Data obtained in our study contribute to understanding mechanisms underlying protein–ligand interactions and anticancer therapy strategies based on ERα-binding ligands.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.O.); (N.N.K.); (Y.B.P.)
- Correspondence:
| | - Daria S. Ostroverkhova
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.O.); (N.N.K.); (Y.B.P.)
- Department of Bioengineering, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nikolai N. Kuzmich
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.O.); (N.N.K.); (Y.B.P.)
- Department of Drug Safety, I.M. Smorodintsev Research Institute of Influenza, WHO National Influenza Centre of Russia, 197376 Saint Petersburg, Russia
| | - Vladimir V. Kadochnikov
- Department of Food Biotechnology and Engineering, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 Saint-Petersburg, Russia;
| | - Alexander A. Terentiev
- Deparment of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Yuri B. Porozov
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.O.); (N.N.K.); (Y.B.P.)
- Department of Food Biotechnology and Engineering, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 Saint-Petersburg, Russia;
| |
Collapse
|
33
|
Li Y, Giorgi EE, Beckman KB, Caberto C, Kazma R, Lum-Jones A, Haiman CA, Marchand LL, Stram DO, Saxena R, Cheng I. Association between mitochondrial genetic variation and breast cancer risk: The Multiethnic Cohort. PLoS One 2019; 14:e0222284. [PMID: 31577800 PMCID: PMC6774509 DOI: 10.1371/journal.pone.0222284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/26/2019] [Indexed: 01/17/2023] Open
Abstract
Background The mitochondrial genome encodes for thirty-seven proteins, among them thirteen are essential for the oxidative phosphorylation (OXPHOS) system. Inherited variation in mitochondrial genes may influence cancer development through changes in mitochondrial proteins, altering the OXPHOS process and promoting the production of reactive oxidative species. Methods To investigate the association between mitochondrial genetic variation and breast cancer risk, we tested 314 mitochondrial SNPs (mtSNPs), capturing four complexes of the mitochondrial OXPHOS pathway and mtSNP groupings for rRNA and tRNA, in 2,723 breast cancer cases and 3,260 controls from the Multiethnic Cohort Study. Results We examined the collective set of 314 mtSNPs as well as subsets of mtSNPs grouped by mitochondrial OXPHOS pathway, complexes, and genes, using the sequence kernel association test and adjusting for age, sex, and principal components of global ancestry. We also tested haplogroup associations using unconditional logistic regression and adjusting for the same covariates. Stratified analyses were conducted by self-reported maternal race/ethnicity. No significant mitochondrial OXPHOS pathway, gene, and haplogroup associations were observed in African Americans, Asian Americans, Latinos, and Native Hawaiians. In European Americans, a global test of all genetic variants of the mitochondrial genome identified an association with breast cancer risk (P = 0.017, q = 0.102). In mtSNP-subset analysis, the gene MT-CO2 (P = 0.001, q = 0.09) in Complex IV (cytochrome c oxidase) and MT-ND2 (P = 0.004, q = 0.19) in Complex I (NADH dehydrogenase (ubiquinone)) were significantly associated with breast cancer risk. Conclusions In summary, our findings suggest that collective mitochondrial genetic variation and particularly in the MT-CO2 and MT-ND2 may play a role in breast cancer risk among European Americans. Further replication is warranted in larger populations and future studies should evaluate the contribution of mitochondrial proteins encoded by both the nuclear and mitochondrial genomes to breast cancer risk.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, California, United States of America
| | - Elena E. Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Kenneth B. Beckman
- University of Minnesota Genomics Center, Minneapolis, Minnesota, United States of America
| | - Christian Caberto
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Remi Kazma
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Annette Lum-Jones
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Daniel O. Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Richa Saxena
- Center for Human Genetic Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Program of Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Palaniappan M, Nguyen L, Grimm SL, Xi Y, Xia Z, Li W, Coarfa C. The genomic landscape of estrogen receptor α binding sites in mouse mammary gland. PLoS One 2019; 14:e0220311. [PMID: 31408468 PMCID: PMC6692022 DOI: 10.1371/journal.pone.0220311] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/12/2019] [Indexed: 01/15/2023] Open
Abstract
Estrogen receptor α (ERα) is the major driving transcription factor in the mammary gland development as well as breast cancer initiation and progression. However, the genomic landscape of ERα binding sites in the normal mouse mammary gland has not been completely elucidated. Here, we mapped genome-wide ERα binding events by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in the mouse mammary gland in response to estradiol. We identified 6237 high confidence ERα binding sites in two biological replicates and showed that many of these were located at distal enhancer regions. Furthermore, we discovered 3686 unique genes in the mouse genome that recruit ER in response to estradiol. Interrogation of ER-DNA binding sites in ER-positive luminal epithelial cells showed that the ERE, PAX2, SF1, and AP1 motifs were highly enriched at distal enhancer regions. In addition, comprehensive transcriptome analysis by RNA-seq revealed that 493 genes are differentially regulated by acute treatment with estradiol in the mouse mammary gland in vivo. Through integration of RNA-seq and ERα ChIP-seq data, we uncovered a novel ERα targetome in mouse mammary epithelial cells. Taken together, our study has identified the genomic landscape of ERα binding events in mouse mammary epithelial cells. Furthermore, our study also highlights the cis-regulatory elements and cofactors that are involved in estrogen signaling and may contribute to ductal elongation in the normal mouse mammary gland.
Collapse
Affiliation(s)
- Murugesan Palaniappan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States of America
- * E-mail:
| | - Loc Nguyen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States of America
| | - Sandra L. Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States of America
| | - Yuanxin Xi
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, United States of America
| | - Zheng Xia
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, United States of America
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, United States of America
| | - Cristian Coarfa
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, United States of America
- Advanced Technology Core, Baylor College of Medicine, Houston, United States of America
| |
Collapse
|
35
|
Tavianatou AG, Piperigkou Z, Barbera C, Beninatto R, Masola V, Caon I, Onisto M, Franchi M, Galesso D, Karamanos NK. Molecular size-dependent specificity of hyaluronan on functional properties, morphology and matrix composition of mammary cancer cells. Matrix Biol Plus 2019; 3:100008. [PMID: 33543007 PMCID: PMC7852304 DOI: 10.1016/j.mbplus.2019.100008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
High levels of hyaluronan (ΗΑ), a major extracellular matrix (ECM) glycosaminoglycan, have been correlated with poor clinical outcome in several malignancies, including breast cancer. The high and low molecular weight HΑ forms exert diverse biological functions. Depending on their molecular size, ΗΑ forms either promote or attenuate signaling cascades that regulate cancer progression. In order to evaluate the effects of different ΗΑ forms on breast cancer cells' behavior, ΗΑ fragments of defined molecular size were synthesized. Breast cancer cells of different estrogen receptor (ER) status - the low metastatic, ERα-positive MCF-7 epithelial cells and the highly aggressive, ERβ-positive MDA-MB-231 mesenchymal cells - were evaluated following treatment with HA fragments. Scanning electron microscopy revealed that HA fragments critically affect the morphology of breast cancer cells in a molecular-size dependent mode. Moreover, the ΗΑ fragments affect cell functional properties, the expression of major ECM mediators and epithelial-to-mesenchymal transition (ΕΜΤ) markers. Notably, treatment with 200 kDa ΗΑ increased the expression levels of the epithelial marker Ε-cadherin and reduced the expression levels of HA synthase 2 and mesenchymal markers, like fibronectin and snail2/slug. These novel data suggest that the effects of HA in breast cancer cells depend on the molecular size and the ER status. An in-depth understanding on the mechanistic basis of these effects may contribute on the development of novel therapeutic strategies for the pharmacological targeting of aggressive breast cancer.
Collapse
Key Words
- BTH, bovine testes hyaluronidase
- Breast cancer
- CD44
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- Epithelial-to-mesenchymal transition
- Estrogen receptors
- HA, hyaluronan or hyaluronic acid
- HAS, hyaluronan synthase
- HMW HA, high molecular weight hyaluronan
- HYAL, hyaluronidase
- Hyaluronan
- LMW HA, low molecular weight hyaluronan
- MET, mesenchymal-to-epithelial transition
- MMPs, matrix metalloproteinases
- SDC, syndecan
- SEM, scanning electron microscopy
- Scanning electron microscopy
- TIMPs, tissue inhibitors of metalloproteinases
- o-HA, hyaluronan oligomers
- s-HA, sulfated hyaluronan
- tPA, tissue plasminogen activator
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Anastasia-Gerasimoula Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme, (PD), Italy
| | - Riccardo Beninatto
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme, (PD), Italy
| | - Valentina Masola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme, (PD), Italy
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| |
Collapse
|
36
|
Liu R, Yu X, Chen X, Zhong H, Liang C, Xu X, Xu W, Cheng Y, Wang W, Yu L, Wu Y, Yan N, Hu X. Individual factors define the overall effects of dietary genistein exposure on breast cancer patients. Nutr Res 2019; 67:1-16. [DOI: 10.1016/j.nutres.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/03/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
|
37
|
Feng Y, Peng Z, Liu W, Yang Z, Shang J, Cui L, Duan F. Evaluation of the epidemiological and prognosis significance of ESR2 rs3020450 polymorphism in ovarian cancer. Gene 2019; 710:316-323. [PMID: 31200086 DOI: 10.1016/j.gene.2019.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022]
Abstract
AIM To investigate the correlation between the polymorphism of estrogen receptor β gene (ESR2) rs3020450 and cancer susceptibility, and explore the epidemiological significance and the effect of ESR2 expression levels on the prognosis of ovarian cancer. METHODS Based on meta-analysis the association between ESR2 rs3020450 polymorphism and cancer susceptibility was estimated and a case-control design was used to verify this result in ovarian cancer. The epidemiological effect of ESR2 rs3020450 polymorphism was assessed by attributable risk percentage (ARP) and population attributable risk percentage (PARP). Kaplan Meier plotters were used to evaluate overall survival (OS) and progression-free survival (PFS) in ovarian cancer patients and GEPIA for the differential expression of ESR2 levels in ovarian cancer and adjacent normal tissues. RESULTS The pooled analysis indicated no significant correlation between the ESR2 rs3020450 polymorphism and the cancer susceptibility. In the stratified analysis by cancer types, significantly decreased risk was found in ovarian cancer (AG vs GG: OR = 0.73, 95%CI: 0.53-0.97, P = 0.03). Unconditional logistic regression results of case-control study in ovarian cancer observed significant differences in all comparisons (AG vs GG: OR = 0.81, 95%CI: 0.62-0.98, P = 0.04; AA vs GG: OR = 0.63, 95%CI: 0.42-0.92, P = 0.01 and AG + AA vs GG: OR = 0.73, 95%CI: 0.53-0.96, P < 0.001). Based on meta-analysis and case-control pooled results, ARP and PARP were evaluated respectively in allele (21.95% and7.97%), heterozygote (36.99% and 12.11%) and dominant model (36.84% and 12.97%) of rs3020450 polymorphism in ovarian cancer. The expression levels of ESR2 in normal tissues was significantly higher than that in cancer tissues (OV, Median, 4.7:0.21), and significant correlations were observed between high ESR2 expression levels and long OS (HR = 0.80, 95%CI: 0.70-0.92, P = 0.002) and PFS (HR = 0.767, 95%Cl: 0.67-0.88, P < 0.001). CONCLUSION Our results indicated that ESR2 rs3020450 polymorphism was associated with ovarian cancer risk from epidemiological perspective, and high ESR2 expression levels was associated with long survival in patients with ovarian cancer.
Collapse
Affiliation(s)
- Yajing Feng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Peng
- Department of Infectious Disease, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Weigang Liu
- Medical Record Statistics Office, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Zhongyu Yang
- The Ohio State University College of Art and Science, Columbus, OH, USA
| | - Jia Shang
- Department of Infectious Disease, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Liuxin Cui
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| | - Fujiao Duan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
38
|
Zhou M, Sareddy GR, Li M, Liu J, Luo Y, Venkata PP, Viswanadhapalli S, Tekmal RR, Brenner A, Vadlamudi RK. Estrogen receptor beta enhances chemotherapy response of GBM cells by down regulating DNA damage response pathways. Sci Rep 2019; 9:6124. [PMID: 30992459 PMCID: PMC6467924 DOI: 10.1038/s41598-019-42313-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed brain tumor that exhibit high mortality rate and chemotherapy resistance is a major clinical problem. Recent studies suggest that estrogen receptor beta (ERβ), may function as a tumor suppressor in GBM. However, the mechanism(s) by which ERβ contributes to GBM suppression and chemotherapy response remains unknown. We examined the role of ERβ in the DNA damage response of GBM cells, and tested whether ERβ sensitizes GBM cells to chemotherapy. Cell viability and survival assays using multiple epitope tagged ERβ expressing established and primary GBM cells demonstrated that ERβ sensitizes GBM cells to DNA damaging agents including temozolomide (TMZ). RNA-seq studies using ERβ overexpression models revealed downregulation of number of genes involved in DNA recombination and repair, ATM signaling and cell cycle check point control. Gene set enrichment analysis (GSEA) suggested that ERβ–modulated genes were correlated negatively with homologous recombination, mismatch repair and G2M checkpoint genes. Further, RT-qPCR analysis revealed that chemotherapy induced activation of cell cycle arrest and apoptosis genes were attenuated in ERβKO cells. Additionally, ERβ overexpressing cells had a higher number of γH2AX foci following TMZ treatment. Mechanistic studies showed that ERβ plays an important role in homologous recombination (HR) mediated repair and ERβ reduced expression and activation of ATM upon DNA damage. More importantly, GBM cells expressing ERβ had increased survival when compared to control GBM cells in orthotopic GBM models. ERβ overexpression further enhanced the survival of mice to TMZ therapy in both TMZ sensitive and TMZ resistant GBM models. Additionally, IHC analysis revealed that ERβ tumors had increased expression of γH2AX and cleaved caspase-3. Using ERβ-overexpression and ERβ-KO GBM model cells, we have provided the evidence that ERβ is required for optimal chemotherapy induced DNA damage response and apoptosis in GBM cells.
Collapse
Affiliation(s)
- Mei Zhou
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Department of Gastroenterology, The Second Xiangya hospital, Central South University, Changsha Shi, Hunan, 410008, P. R. China
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Mengxing Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Department of Respiratory Medicine, Xiangya hospital, Central South University, Changsha Shi, Hunan, 410008, P. R. China
| | - Jinyou Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Department of Oncology, The Second Xiangya hospital, Central South University, Changsha Shi, Hunan, 410008, P. R. China
| | - Yiliao Luo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha Shi, Hunan, 410008, P. R. China
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Andrew Brenner
- Hematology & Oncology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA. .,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
39
|
Advances in targeting epidermal growth factor receptor signaling pathway in mammary cancer. Cell Signal 2018; 51:99-109. [PMID: 30071291 DOI: 10.1016/j.cellsig.2018.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/28/2018] [Accepted: 07/28/2018] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common malignancy among women worldwide. The role of epidermal growth factor receptor (EGFR) in many epithelial malignancies has been established, since it is dysregulated, overexpressed or mutated. Its overexpression has been associated with increased aggressiveness and metastatic potential in breast cancer. The well-established interplay between EGFR signaling pathway and estrogen receptors (ERs) as well as major extracellular matrix (ECM) mediators is crucial for regulating basic functional properties of breast cancer cells, including migration, proliferation, adhesion and invasion. EGFR activation leads to endocytosis of the receptor with implications in the regulation of downstream signaling effectors, the modulation of autophagy and cell survival. Therefore, EGFR is considered as a promising therapeutic target in breast cancer. Several anti-EGFR therapies (i.e. monoclonal antibodies and tyrosine kinase inhibitors) have been evaluated both in vitro and in vivo, making their way to clinical trials. However, the response rates of anti-EGFR therapies in the clinical trials is low mainly due to chemoresistance. Novel drug design, phytochemicals and microRNAs (miRNAs) are assessed as new therapeutic approaches against EGFR. The main goal of this review is to highlight the importance of targeting EGFR signaling pathway in terms of its crosstalk with ERs, the involvement of ECM effectors and epigenetics. Moreover, recent insights into the design of specialized delivery systems contributing in the development of novel diagnostic and therapeutic approaches in breast cancer are addressed.
Collapse
|
40
|
Abstract
Estrogens coordinate and integrate cellular metabolism and mitochondrial activities by direct and indirect mechanisms mediated by differential expression and localization of estrogen receptors (ER) in a cell-specific manner. Estrogens regulate transcription and cell signaling pathways that converge to stimulate mitochondrial function- including mitochondrial bioenergetics, mitochondrial fusion and fission, calcium homeostasis, and antioxidant defense against free radicals. Estrogens regulate nuclear gene transcription by binding and activating the classical genomic estrogen receptors α and β (ERα and ERβ) and by activating plasma membrane-associated mERα, mERβ, and G-protein coupled ER (GPER, GPER1). Localization of ERα and ERβ within mitochondria and in the mitochondrial membrane provides additional mechanisms of regulation. Here we review the mechanisms of rapid and longer-term effects of estrogens and selective ER modulators (SERMs, e.g., tamoxifen (TAM)) on mitochondrial biogenesis, morphology, and function including regulation of Nuclear Respiratory Factor-1 (NRF-1, NRF1) transcription. NRF-1 is a nuclear transcription factor that promotes transcription of mitochondrial transcription factor TFAM (mtDNA maintenance factorFA) which then regulates mtDNA-encoded genes. The nuclear effects of estrogens on gene expression directly controlling mitochondrial biogenesis, oxygen consumption, mtDNA transcription, and apoptosis are reviewed.
Collapse
|
41
|
Bado I, Pham E, Soibam B, Nikolos F, Gustafsson JÅ, Thomas C. ERβ alters the chemosensitivity of luminal breast cancer cells by regulating p53 function. Oncotarget 2018; 9:22509-22522. [PMID: 29854295 PMCID: PMC5976481 DOI: 10.18632/oncotarget.25147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/21/2018] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptor α (ERα)-positive breast cancers tend to develop resistance to both endocrine therapy and chemotherapy. Despite recent progress in defining molecular pathways that confer endocrine resistance, the mechanisms that regulate chemotherapy response in luminal tumors remain largely elusive. Luminal tumors often express wild-type p53 that is a major determinant of the cellular DNA damage response. Similar to p53, the second ER subtype, ERβ, has been reported to inhibit breast tumorigenesis by acting alone or in collaboration with p53. However, a synergistic mechanism of action has not been described. Here, we suggest that ERβ relies on p53 to elicit its tumor repressive actions in ERα-positive breast cancer cells. Upregulation of ERβ and treatment with ERβ agonists potentiates the tumor suppressor function of p53 resulting in decreased survival. This effect requires molecular interaction between the two proteins that disrupts the inhibitory action of ERα on p53 leading to increased transcriptional activity of p53. In addition, we show that the same interaction alters the chemosensitivity of endocrine-resistant cells including their response to tamoxifen therapy. Our results suggest a collaboration of ERβ and p53 tumor suppressor activity in breast cancer cells that indicates the importance of ligand-regulated ERβ as a tool to target p53 activity and improve the clinical management of resistant disease.
Collapse
Affiliation(s)
- Igor Bado
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Eric Pham
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Benjamin Soibam
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, Huston, Texas, USA
| | - Fotis Nikolos
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Christoforos Thomas
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| |
Collapse
|
42
|
Wang SE, Lin RJ. MicroRNA and HER2-overexpressing cancer. Microrna 2018; 2:137-47. [PMID: 25070783 PMCID: PMC4120065 DOI: 10.2174/22115366113029990011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/26/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023]
Abstract
The discovery of microRNAs (miRNAs) has opened up new avenues for studying cancer at the molecular level, featuring a post-genomic era of biomedical research. These non-coding regulatory RNA molecules of ~22 nucleotides have emerged as important cancer biomarkers, effectors, and targets. In this review, we focus on the dysregulated biogenesis and function of miRNAs in cancers with an overexpression of the proto-oncogene HER2. Many of the studies reviewed here were carried out in breast cancer, where HER2 overexpression has been extensively studied and HER2-targeted therapy practiced for more than a decade. MiRNA signatures that can be used to classify tumors with different HER2 status have been reported but little consensus can be established among various studies, emphasizing the needs for additional well-controlled profiling approaches and meta-analyses in large and well-balanced patient cohorts. We further discuss three aspects of microRNA dysregulation in or contribution to HER2-associated malignancies or therapies: (a) miRNAs that are up- or down-regulated by HER2 and mediate the downstream signaling of HER2; (b) miRNAs that suppress the expression of HER2 or a factor in HER2 receptor complexes, such as HER3; and (c) miRNAs that affect responses to anti-HER2 therapies. The regulatory mechanisms are elaborated using mainly examples of miR-205, miR-125, and miR-21. Understanding the regulation and function of miRNAs in HER2-overexpressing tumors shall shed new light on the pathogenic mechanisms of microRNAs and the HER2 proto-oncogene in cancer, as well as on individualized or combinatorial anti-HER2 therapies.
Collapse
Affiliation(s)
| | - Ren-Jang Lin
- Department of Cancer Biology, Beckman Research Institute of City of Hope, KCRB2007, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
43
|
Rider V, Abdou NI, Kimler BF, Lu N, Brown S, Fridley BL. Gender Bias in Human Systemic Lupus Erythematosus: A Problem of Steroid Receptor Action? Front Immunol 2018; 9:611. [PMID: 29643853 PMCID: PMC5882779 DOI: 10.3389/fimmu.2018.00611] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease resulting from abnormal interactions between T and B cells. The acquisition of SLE is linked to genetic susceptibility, and diverse environmental agents can trigger disease onset in genetically susceptible individuals. However, the strongest risk factor for developing SLE is being female (9:1 female to male ratio). The female sex steroid, estradiol, working through its receptors, contributes to the gender bias in SLE although the mechanisms remain enigmatic. In a small clinical trial, monthly administration of the estrogen receptor (ERα) antagonist, ICI182,780 (fulvestrant), significantly reduced disease indicators in SLE patients. In order to identify changes that could account for improved disease status, the present study utilized fulvestrant (Faslodex) to block ERα action in cultured SLE T cells that were purified from blood samples collected from SLE patients (n = 18, median age 42 years) and healthy control females (n = 25, median age 46 years). The effects of ERα antagonism on estradiol-dependent gene expression and canonical signaling pathways were analyzed. Pathways that were significantly altered by addition of Faslodex included T helper (Th) cell differentiation, steroid receptor signaling [glucocorticoid receptor (GR), ESR1 (ERα)], ubiquitination, and sumoylation pathways. ERα protein expression was significantly lower (p < 0.018) in freshly isolated, resting SLE T cells suggesting ERα turnover is inherently faster in SLE T cells. In contrast, ERα/ERβ mRNA and ERβ protein levels were not significantly different between SLE and normal control T cell samples. Plasma estradiol levels did not differ (p > 0.05) between SLE patients and controls. A previously undetected interaction between GR and ERα signaling pathways suggests posttranslational modification of steroid receptors in SLE T cells may alter ERα/GR actions and contribute to the strong gender bias of this autoimmune disorder.
Collapse
Affiliation(s)
- Virginia Rider
- Department of Biology, Pittsburg State University, Pittsburg, KS, United States
| | - Nabih I Abdou
- Center for Rheumatic Diseases, St. Luke's Hospital, Kansas City, MO, United States
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, MO, United States
| | - Nanyan Lu
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Susan Brown
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, MO, United States
| |
Collapse
|
44
|
Giurato G, Nassa G, Salvati A, Alexandrova E, Rizzo F, Nyman TA, Weisz A, Tarallo R. Quantitative mapping of RNA-mediated nuclear estrogen receptor β interactome in human breast cancer cells. Sci Data 2018; 5:180031. [PMID: 29509190 PMCID: PMC5839158 DOI: 10.1038/sdata.2018.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
The nuclear receptor estrogen receptor 2 (ESR2, ERβ) modulates cancer cell proliferation and tumor growth, exerting an oncosuppressive role in breast cancer (BC). Interaction proteomics by tandem affinity purification coupled to mass spectrometry was previously applied in BC cells to identify proteins acting in concert with ERβ to control key cellular functions, including gene transcription, RNA splicing and post-transcriptional mRNA regulation. These studies revealed an involvement of RNA in ERβ interactome assembly and functions. By applying native protein complex purification followed by nano LC-MS/MS before and after in vitro RNA removal, we generated a large dataset of newly identified nuclear ERβ interactors, including a subset associating with the receptor via RNA bridging. These datasets will be useful to investigate further the role of ERβ, nuclear RNAs and the other proteins identified here in BC and other cell types.
Collapse
Affiliation(s)
- Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy.,Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi (SA), Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, 0372 Oslo, Norway
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy
| |
Collapse
|
45
|
D'Arcangelo D, Facchiano F, Nassa G, Stancato A, Antonini A, Rossi S, Senatore C, Cordella M, Tabolacci C, Salvati A, Tarallo R, Weisz A, Facchiano AM, Facchiano A. PDGFR-alpha inhibits melanoma growth via CXCL10/IP-10: a multi-omics approach. Oncotarget 2018; 7:77257-77275. [PMID: 27764787 PMCID: PMC5363585 DOI: 10.18632/oncotarget.12629] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/25/2016] [Indexed: 12/21/2022] Open
Abstract
Melanoma is the most aggressive skin-cancer, showing high mortality at advanced stages. Platelet Derived Growth Factor Receptor-alpha (PDGFR-alpha) potently inhibits melanoma- and endothelium-proliferation and its expression is significantly reduced in melanoma-biopsies, suggesting that melanoma progression eliminates cells expressing PDGFR-alpha. In the present study transient overexpression of PDGFR-alpha in endothelial (HUVEC) and melanoma (SKMel-28, A375, Preyer) human-cells shows strong anti-proliferative effects, with profound transcriptome and miRNome deregulation. PDGFR-alpha overexpression strongly affects expression of 82 genes in HUVEC (41 up-, 41 down-regulated), and 52 genes in SKMel-28 (43 up-, 9 down-regulated). CXCL10/IP-10 transcript showed up to 20 fold-increase, with similar changes detectable at the protein level. miRNA expression profiling in cells overexpressing PDGFR-alpha identified 14 miRNAs up- and 40 down-regulated, with miR-503 being the most down-regulated (6.4 fold-reduction). miR-503, miR-630 and miR-424 deregulation was confirmed by qRT-PCR. Interestingly, the most upregulated transcript (i.e., CXCL10/IP-10) was a validated miR-503 target and CXCL10/IP-10 neutralization significantly reverted the anti-proliferative action of PDGFR-alpha, and PDGFR-alpha inhibition by Dasatinb totally reverted the CXCL10/IP10 induction, further supporting a functional interplay of these factors. Finally, integration of transcriptomics and miRNomics data highlighted several pathways affected by PDGFR-alpha. This study demonstrates for the first time that PDGFR-alpha strongly inhibits endothelial and melanoma cells proliferation in a CXCL10/IP-10 dependent way, via miR-503 down-regulation.
Collapse
Affiliation(s)
- Daniela D'Arcangelo
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Francesco Facchiano
- Dipartimento Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery,University of Salerno, Baronissi (SA), Italy.,Genomix4Life srl, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Andrea Stancato
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Annalisa Antonini
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Stefania Rossi
- Dipartimento Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Cinzia Senatore
- Dipartimento Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Cordella
- Dipartimento Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio Tabolacci
- Dipartimento Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery,University of Salerno, Baronissi (SA), Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery,University of Salerno, Baronissi (SA), Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery,University of Salerno, Baronissi (SA), Italy
| | | | - Antonio Facchiano
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| |
Collapse
|
46
|
Mishra AK, Abrahamsson A, Dabrosin C. Fulvestrant inhibits growth of triple negative breast cancer and synergizes with tamoxifen in ERα positive breast cancer by up-regulation of ERβ. Oncotarget 2018; 7:56876-56888. [PMID: 27486755 PMCID: PMC5302959 DOI: 10.18632/oncotarget.10871] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/16/2016] [Indexed: 12/17/2022] Open
Abstract
The estrogen receptor-alpha (ERα) is used as a predictive marker for anti-estrogen therapy in breast cancer patients. In addition to aromatase inhibitors, ERα can be targeted at the receptor level using the receptor modulator tamoxifen or by the pure anti-estrogen fulvestrant. The role of the second ER, ER-beta (ERβ), as a therapeutic target or prognostic marker in breast cancer is still elusive. Hitherto, it is not known if ERα+/ERβ+ breast cancers would benefit from a treatment strategy combining tamoxifen and fulvestrant or if fulvestrant exert any therapeutic effects in ERα-/ERβ+ breast cancer. Here, we report that fulvestrant up-regulated ERβ in ERα+/ERβ+ breast cancer and in triple negative ERβ+ breast cancers (ERα-/ERβ+). In ERα+/ERβ+ breast cancer, a combination therapy of tamoxifen and fulvestrant significantly reduced tumor growth compared to either treatment alone both in vivo and in vitro. In ERα-/ERβ+ breast cancer fulvestrant had potent effects on cancer growth, in vivo as well as in vitro, and this effect was dependent on intrinsically expressed levels of ERβ. The role of ERβ was further confirmed in cells where ERβ was knocked-in or knocked-down. Inhibition of DNA methyltransferase (DNMT) increased the levels of ERβ and fulvestrant exerted similar potency on DNMT activity as the DNMT inhibitor decitabine. We conclude that fulvestrant may have therapeutic potential in additional groups of breast cancer patients; i) in ERα+/ERβ+ breast cancer where fulvestrant synergizes with tamoxifen and ii) in triple negative/ERβ+ breast cancer patients, a subgroup of breast cancer patients with poor prognosis.
Collapse
Affiliation(s)
- Ameet K Mishra
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Annelie Abrahamsson
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
47
|
Coriano CG, Liu F, Sievers CK, Liang M, Wang Y, Lim Y, Yu M, Xu W. A Computational-Based Approach to Identify Estrogen Receptor α/ β Heterodimer Selective Ligands. Mol Pharmacol 2018; 93:197-207. [PMID: 29295894 DOI: 10.1124/mol.117.108696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 12/11/2017] [Indexed: 01/28/2023] Open
Abstract
The biologic effects of estrogens are transduced by two estrogen receptors (ERs), ERα and ERβ, which function in dimer forms. The ERα/α homodimer promotes and the ERβ/β inhibits estrogen-dependent growth of mammary epithelial cells; the functions of ERα/β heterodimers remain elusive. Using compounds that promote ERα/β heterodimerization, we have previously shown that ERα/β heterodimers appeared to inhibit tumor cell growth and migration in vitro. Further dissection of ERα/β heterodimer functions was hampered by the lack of ERα/β heterodimer-specific ligands. Herein, we report a multistep workflow to identify the selective ERα/β heterodimer-inducing compound. Phytoestrogenic compounds were first screened for ER transcriptional activity using reporter assays and ER dimerization preference using a bioluminescence resonance energy transfer assay. The top hits were subjected to in silico modeling to identify the pharmacophore that confers ERα/β heterodimer specificity. The pharmacophore encompassing seven features that are potentially important for the formation of the ERα/β heterodimer was retrieved and subsequently used for virtual screening of large chemical libraries. Four chemical compounds were identified that selectively induce ERα/β heterodimers over their respective homodimers. Such ligands will become unique tools to reveal the functional insights of ERα/β heterodimers.
Collapse
Affiliation(s)
- Carlos G Coriano
- Molecular & Environmental Toxicology Center, Department of Oncology (C.G.C., W.X.), Department of Oncology (C.G.C., F.L., C.K.S., Y.W., W.X.), and Wisconsin Clinical Sciences Center, Department of Biostatistics and Medical Informatics (M.L., M.Y.), University of Wisconsin-Madison, Madison, Wisconsin; and Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Republic of Korea (Y.L.)
| | - Fabao Liu
- Molecular & Environmental Toxicology Center, Department of Oncology (C.G.C., W.X.), Department of Oncology (C.G.C., F.L., C.K.S., Y.W., W.X.), and Wisconsin Clinical Sciences Center, Department of Biostatistics and Medical Informatics (M.L., M.Y.), University of Wisconsin-Madison, Madison, Wisconsin; and Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Republic of Korea (Y.L.)
| | - Chelsie K Sievers
- Molecular & Environmental Toxicology Center, Department of Oncology (C.G.C., W.X.), Department of Oncology (C.G.C., F.L., C.K.S., Y.W., W.X.), and Wisconsin Clinical Sciences Center, Department of Biostatistics and Medical Informatics (M.L., M.Y.), University of Wisconsin-Madison, Madison, Wisconsin; and Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Republic of Korea (Y.L.)
| | - Muxuan Liang
- Molecular & Environmental Toxicology Center, Department of Oncology (C.G.C., W.X.), Department of Oncology (C.G.C., F.L., C.K.S., Y.W., W.X.), and Wisconsin Clinical Sciences Center, Department of Biostatistics and Medical Informatics (M.L., M.Y.), University of Wisconsin-Madison, Madison, Wisconsin; and Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Republic of Korea (Y.L.)
| | - Yidan Wang
- Molecular & Environmental Toxicology Center, Department of Oncology (C.G.C., W.X.), Department of Oncology (C.G.C., F.L., C.K.S., Y.W., W.X.), and Wisconsin Clinical Sciences Center, Department of Biostatistics and Medical Informatics (M.L., M.Y.), University of Wisconsin-Madison, Madison, Wisconsin; and Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Republic of Korea (Y.L.)
| | - Yoongho Lim
- Molecular & Environmental Toxicology Center, Department of Oncology (C.G.C., W.X.), Department of Oncology (C.G.C., F.L., C.K.S., Y.W., W.X.), and Wisconsin Clinical Sciences Center, Department of Biostatistics and Medical Informatics (M.L., M.Y.), University of Wisconsin-Madison, Madison, Wisconsin; and Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Republic of Korea (Y.L.)
| | - Menggang Yu
- Molecular & Environmental Toxicology Center, Department of Oncology (C.G.C., W.X.), Department of Oncology (C.G.C., F.L., C.K.S., Y.W., W.X.), and Wisconsin Clinical Sciences Center, Department of Biostatistics and Medical Informatics (M.L., M.Y.), University of Wisconsin-Madison, Madison, Wisconsin; and Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Republic of Korea (Y.L.)
| | - Wei Xu
- Molecular & Environmental Toxicology Center, Department of Oncology (C.G.C., W.X.), Department of Oncology (C.G.C., F.L., C.K.S., Y.W., W.X.), and Wisconsin Clinical Sciences Center, Department of Biostatistics and Medical Informatics (M.L., M.Y.), University of Wisconsin-Madison, Madison, Wisconsin; and Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Republic of Korea (Y.L.)
| |
Collapse
|
48
|
Tarallo R, Giurato G, Bruno G, Ravo M, Rizzo F, Salvati A, Ricciardi L, Marchese G, Cordella A, Rocco T, Gigantino V, Pierri B, Cimmino G, Milanesi L, Ambrosino C, Nyman TA, Nassa G, Weisz A. The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol 2017; 18:189. [PMID: 29017520 PMCID: PMC5634881 DOI: 10.1186/s13059-017-1321-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. RESULTS Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. CONCLUSIONS These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.
Collapse
Affiliation(s)
- Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Giuseppina Bruno
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Luca Ricciardi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanna Marchese
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | | | - Teresa Rocco
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Biancamaria Pierri
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanni Cimmino
- Department of Cardiothoracic and Respiratory Sciences, University of Campania'L. Vanvitelli', Naples, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segregate, MI, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
- IRGS Biogem, Ariano Irpino, AV, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| |
Collapse
|
49
|
Zhang J, Xu H, Zhou X, Li Y, Liu T, Yin X, Zhang B. Role of metformin in inhibiting estrogen-induced proliferation and regulating ERα and ERβ expression in human endometrial cancer cells. Oncol Lett 2017; 14:4949-4956. [PMID: 29085506 DOI: 10.3892/ol.2017.6877] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/05/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus (DM) is an important factor that contributes to the development of type I endometrial cancer (EC). Previous studies have demonstrated that metformin decreases mortality and risk of neoplasms in patients with DM. Since estrogen and estrogen receptor (ER) expression has been associated with the development of EC, the present study aimed to investigate the effects of metformin on cell proliferation and ER expression in EC cell lines that are sensitive to estrogen. The viability and proliferation of Ishikawa and HEC-1-A cells were measured following treatment with metformin and/or a 5' AMP-activated protein kinase (AMPK) inhibitor (compound C) with or without treatment with estradiol (E2). In addition, the levels of ERα, ERβ, AMPK, ribosomal protein S6 kinase β-1 (p70S6K), myc proto-oncogene protein (c-myc) and proto-oncogene c-fos (c-fos) were measured following treatment. Metformin significantly decreased E2-stimulated cell proliferation; an effect that was rescued in the presence of compound C. Metformin treatment markedly increased the phosphorylation of AMPK while decreasing p70S6K phosphorylation, indicating that metformin exerts its effects through stimulation of AMPK and subsequent inhibition of the mammalian target of rapamycin (mTOR) signaling pathway. In addition, metformin significantly inhibited ERα expression while increasing ERβ expression, whereas treatment with compound C reversed these effects. Reverse transcription-quantitative polymerase chain reaction analysis demonstrated that c-fos and c-myc expression were attenuated by metformin, an effect that was rescued in the presence of compound C. Therefore, metformin regulates the expression of ERs, and inhibits estrogen-mediated proliferation of human EC cells through the activation of AMPK and subsequent inhibition of the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221004, P.R. China
| | - Hui Xu
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221004, P.R. China
| | - Xueyan Zhou
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, P.R. China
| | - Yanyu Li
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221004, P.R. China
| | - Tong Liu
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221004, P.R. China
| | - Xiaoxing Yin
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, P.R. China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
50
|
Effects of low-dose Bisphenol A on calcium ion influx and on genes of proliferation and differentiation in immortalized human gingival cells in vitro: The role of estrogen receptor beta. Dent Mater 2017; 33:1021-1032. [DOI: 10.1016/j.dental.2017.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 01/22/2023]
|