1
|
Zhimulev I, Vatolina T, Levitsky V, Tsukanov A. Developmental and Housekeeping Genes: Two Types of Genetic Organization in the Drosophila Genome. Int J Mol Sci 2024; 25:4068. [PMID: 38612878 PMCID: PMC11012173 DOI: 10.3390/ijms25074068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
We developed a procedure for locating genes on Drosophila melanogaster polytene chromosomes and described three types of chromosome structures (gray bands, black bands, and interbands), which differed markedly in morphological and genetic properties. This was reached through the use of our original methods of molecular and genetic analysis, electron microscopy, and bioinformatics data processing. Analysis of the genome-wide distribution of these properties led us to a bioinformatics model of the Drosophila genome organization, in which the genome was divided into two groups of genes. One was constituted by 65, in which the genome was divided into two groups, 62 genes that are expressed in most cell types during life cycle and perform basic cellular functions (the so-called "housekeeping genes"). The other one was made up of 3162 genes that are expressed only at particular stages of development ("developmental genes"). These two groups of genes are so different that we may state that the genome has two types of genetic organization. Different are the timings of their expression, chromatin packaging levels, the composition of activating and deactivating proteins, the sizes of these genes, the lengths of their introns, the organization of the promoter regions of the genes, the locations of origin recognition complexes (ORCs), and DNA replication timings.
Collapse
Affiliation(s)
- Igor Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Tatyana Vatolina
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Victor Levitsky
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (V.L.); (A.T.)
| | - Anton Tsukanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (V.L.); (A.T.)
| |
Collapse
|
2
|
Super-resolution microscopy reveals stochastic initiation of replication in Drosophila polytene chromosomes. Chromosome Res 2022; 30:361-383. [PMID: 35226231 PMCID: PMC9771856 DOI: 10.1007/s10577-021-09679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/25/2023]
Abstract
Studying the probability distribution of replication initiation along a chromosome is a huge challenge. Drosophila polytene chromosomes in combination with super-resolution microscopy provide a unique opportunity for analyzing the probabilistic nature of replication initiation at the ultrastructural level. Here, we developed a method for synchronizing S-phase induction among salivary gland cells. An analysis of the replication label distribution in the first minutes of S phase and in the following hours after the induction revealed the dynamics of replication initiation. Spatial super-resolution structured illumination microscopy allowed identifying multiple discrete replication signals and to investigate the behavior of replication signals in the first minutes of the S phase at the ultrastructural level. We identified replication initiation zones where initiation occurs stochastically. These zones differ significantly in the probability of replication initiation per time unit. There are zones in which initiation occurs on most strands of the polytene chromosome in a few minutes. In other zones, the initiation on all strands takes several hours. Compact bands are free of replication initiation events, and the replication runs from outer edges to the middle, where band shapes may alter.
Collapse
|
3
|
In Vivo Silencing of Genes Coding for dTip60 Chromatin Remodeling Complex Subunits Affects Polytene Chromosome Organization and Proper Development in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22094525. [PMID: 33926075 PMCID: PMC8123692 DOI: 10.3390/ijms22094525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Chromatin organization is developmentally regulated by epigenetic changes mediated by histone-modifying enzymes and chromatin remodeling complexes. In Drosophila melanogaster, the Tip60 chromatin remodeling complex (dTip60) play roles in chromatin regulation, which are shared by evolutionarily-related complexes identified in animal and plants. Recently, it was found that most subunits previously assigned to the dTip60 complex are shared by two related complexes, DOM-A.C and DOM-B.C, defined by DOM-A and DOM-B isoforms, respectively. In this work, we combined classical genetics, cell biology, and reverse genetics approaches to further investigate the biological roles played during Drosophila melanogaster development by a number of subunits originally assigned to the dTip60 complex.
Collapse
|
4
|
Sabirov M, Kyrchanova O, Pokholkova GV, Bonchuk A, Klimenko N, Belova E, Zhimulev IF, Maksimenko O, Georgiev P. Mechanism and functional role of the interaction between CP190 and the architectural protein Pita in Drosophila melanogaster. Epigenetics Chromatin 2021; 14:16. [PMID: 33752739 PMCID: PMC7983404 DOI: 10.1186/s13072-021-00391-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Pita is required for Drosophila development and binds specifically to a long motif in active promoters and insulators. Pita belongs to the Drosophila family of zinc-finger architectural proteins, which also includes Su(Hw) and the conserved among higher eukaryotes CTCF. The architectural proteins maintain the active state of regulatory elements and the long-distance interactions between them. In particular, Pita is involved in the formation of several boundaries between regulatory domains that controlled the expression of three hox genes in the Bithorax complex (BX-C). The CP190 protein is recruited to chromatin through interaction with the architectural proteins. Results Using in vitro pull-down analysis, we precisely mapped two unstructured regions of Pita that interact with the BTB domain of CP190. Then we constructed transgenic lines expressing the Pita protein of the wild-type and mutant variants lacking CP190-interacting regions. We have demonstrated that CP190-interacting region of the Pita can maintain nucleosome-free open chromatin and is critical for Pita-mediated enhancer blocking activity in BX-C. At the same time, interaction with CP190 is not required for the in vivo function of the mutant Pita protein, which binds to the same regions of the genome as the wild-type protein. Unexpectedly, we found that CP190 was still associated with the most of genome regions bound by the mutant Pita protein, which suggested that other architectural proteins were continuing to recruit CP190 to these regions. Conclusions The results directly demonstrate role of CP190 in insulation and support a model in which the regulatory elements are composed of combinations of binding sites that interact with several architectural proteins with similar functions. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00391-x.
Collapse
Affiliation(s)
- Marat Sabirov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Galina V Pokholkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Elena Belova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Igor F Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.
| |
Collapse
|
5
|
Nucleosome Positioning around Transcription Start Site Correlates with Gene Expression Only for Active Chromatin State in Drosophila Interphase Chromosomes. Int J Mol Sci 2020; 21:ijms21239282. [PMID: 33291385 PMCID: PMC7730318 DOI: 10.3390/ijms21239282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 01/09/2023] Open
Abstract
We analyzed the whole-genome experimental maps of nucleosomes in Drosophila melanogaster and classified genes by the expression level in S2 cells (RPKM value, reads per kilobase million) as well as the number of tissues in which a gene was expressed (breadth of expression, BoE). Chromatin in 5′-regions of genes we classified on four states according to the hidden Markov model (4HMM). Only the Aquamarine chromatin state we considered as Active, while the rest three states we defined as Non-Active. Surprisingly, about 20/40% of genes with 5′-regions mapped to Active/Non-Active chromatin possessed the minimal/at least modest RPKM and BoE. We found that regardless of RPKM/BoE the genes of Active chromatin possessed the regular nucleosome arrangement in 5′-regions, while genes of Non-Active chromatin did not show respective specificity. Only for genes of Active chromatin the RPKM/BoE positively correlates with the number of nucleosome sites upstream/around TSS and negatively with that downstream TSS. We propose that for genes of Active chromatin, regardless of RPKM value and BoE the nucleosome arrangement in 5′-regions potentiates transcription, while for genes of Non-Active chromatin, the transcription machinery does not require the substantial support from nucleosome arrangement to influence gene expression.
Collapse
|
6
|
Khoroshko VA, Pokholkova GV, Levitsky VG, Zykova TY, Antonenko OV, Belyaeva ES, Zhimulev IF. Genes Containing Long Introns Occupy Series of Bands and Interbands In Drosophila melanogaster polytene Chromosomes. Genes (Basel) 2020; 11:genes11040417. [PMID: 32290448 PMCID: PMC7230524 DOI: 10.3390/genes11040417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The Drosophila melanogaster polytene chromosomes are the best model for studying the genome organization during interphase. Despite of the long-term studies available on genetic organization of polytene chromosome bands and interbands, little is known regarding long gene location on chromosomes. To analyze it, we used bioinformatic approaches and characterized genome-wide distribution of introns in gene bodies and in different chromatin states, and using fluorescent in situ hybridization we juxtaposed them with the chromosome structures. Short introns up to 2 kb in length are located in the bodies of housekeeping genes (grey bands or lazurite chromatin). In the group of 70 longest genes in the Drosophila genome, 95% of total gene length accrues to introns. The mapping of the 15 long genes showed that they could occupy extended sections of polytene chromosomes containing band and interband series, with promoters located in the interband fragments (aquamarine chromatin). Introns (malachite and ruby chromatin) in polytene chromosomes form independent bands, which can contain either both introns and exons or intron material only. Thus, a novel type of the gene arrangement in polytene chromosomes was discovered; peculiarities of such genetic organization are discussed.
Collapse
Affiliation(s)
- Varvara A. Khoroshko
- Department of the Chromosome Structure and Function, Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (G.V.P.); (T.Y.Z.); (O.V.A.); (E.S.B.); (I.F.Z.)
- Correspondence:
| | - Galina V. Pokholkova
- Department of the Chromosome Structure and Function, Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (G.V.P.); (T.Y.Z.); (O.V.A.); (E.S.B.); (I.F.Z.)
| | - Victor G. Levitsky
- Department of Systems Biology, Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 30090 Novosibirsk, Russia
| | - Tatyana Yu. Zykova
- Department of the Chromosome Structure and Function, Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (G.V.P.); (T.Y.Z.); (O.V.A.); (E.S.B.); (I.F.Z.)
| | - Oksana V. Antonenko
- Department of the Chromosome Structure and Function, Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (G.V.P.); (T.Y.Z.); (O.V.A.); (E.S.B.); (I.F.Z.)
| | - Elena S. Belyaeva
- Department of the Chromosome Structure and Function, Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (G.V.P.); (T.Y.Z.); (O.V.A.); (E.S.B.); (I.F.Z.)
| | - Igor F. Zhimulev
- Department of the Chromosome Structure and Function, Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (G.V.P.); (T.Y.Z.); (O.V.A.); (E.S.B.); (I.F.Z.)
- Department of Natural Sciences, Novosibirsk State University, 30090 Novosibirsk, Russia
| |
Collapse
|
7
|
Volkova EI, Andreyenkova NG, Andreyenkov OV, Sidorenko DS, Zhimulev IF, Demakov SA. Structural and Functional Dissection of the 5' Region of the Notch Gene in Drosophila melanogaster. Genes (Basel) 2019; 10:E1037. [PMID: 31842424 PMCID: PMC6947440 DOI: 10.3390/genes10121037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Notch is a key factor of a signaling cascade which regulates cell differentiation in all multicellular organisms. Numerous investigations have been directed mainly at studying the mechanism of Notch protein action; however, very little is known about the regulation of activity of the gene itself. Here, we provide the results of targeted 5'-end editing of the Drosophila Notch gene in its native environment and genetic and cytological effects of these changes. Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9) system in combination with homologous recombination, we obtained a founder fly stock in which a 4-kb fragment, including the 5' nontranscribed region, the first exon, and a part of the first intron of Notch, was replaced by an attachment Phage (attP) site. Then, fly lines carrying a set of six deletions within the 5'untranscribed region of the gene were obtained by ΦC31-mediated integration of transgenic constructs. Part of these deletions does not affect gene activity, but their combinations with transgenic construct in the first intron of the gene cause defects in the Notch target tissues. At the polytene chromosome level we defined a DNA segment (~250 bp) in the Notch5'-nontranscribed region which when deleted leads to disappearance of the 3C6/C7 interband and elimination of CTC-Factor (CTCF) and Chromator (CHRIZ) insulator proteins in this region.
Collapse
Affiliation(s)
- Elena I. Volkova
- Department of the Structure and Function of Chromosomes, Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (E.I.V.); (N.G.A.); (O.V.A.); (D.S.S.); (I.F.Z.)
| | - Natalya G. Andreyenkova
- Department of the Structure and Function of Chromosomes, Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (E.I.V.); (N.G.A.); (O.V.A.); (D.S.S.); (I.F.Z.)
| | - Oleg V. Andreyenkov
- Department of the Structure and Function of Chromosomes, Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (E.I.V.); (N.G.A.); (O.V.A.); (D.S.S.); (I.F.Z.)
| | - Darya S. Sidorenko
- Department of the Structure and Function of Chromosomes, Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (E.I.V.); (N.G.A.); (O.V.A.); (D.S.S.); (I.F.Z.)
| | - Igor F. Zhimulev
- Department of the Structure and Function of Chromosomes, Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (E.I.V.); (N.G.A.); (O.V.A.); (D.S.S.); (I.F.Z.)
- Structural, Functional and Comparative Genomics Laboratory, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey A. Demakov
- Department of the Structure and Function of Chromosomes, Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (E.I.V.); (N.G.A.); (O.V.A.); (D.S.S.); (I.F.Z.)
| |
Collapse
|
8
|
Demakova OV, Demakov SA, Boldyreva LV, Zykova TY, Levitsky VG, Semeshin VF, Pokholkova GV, Sidorenko DS, Goncharov FP, Belyaeva ES, Zhimulev IF. Faint gray bands in Drosophila melanogaster polytene chromosomes are formed by coding sequences of housekeeping genes. Chromosoma 2019; 129:25-44. [PMID: 31820086 DOI: 10.1007/s00412-019-00728-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/04/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
In Drosophila melanogaster, the chromatin of interphase polytene chromosomes appears as alternating decondensed interbands and dense black or thin gray bands. Recently, we uncovered four principle chromatin states (4НММ model) in the fruit fly, and these were matched to the structures observed in polytene chromosomes. Ruby/malachite chromatin states form black bands containing developmental genes, whereas aquamarine chromatin corresponds to interbands enriched with 5' regions of ubiquitously expressed genes. Lazurite chromatin supposedly forms faint gray bands and encompasses the bodies of housekeeping genes. In this report, we test this idea using the X chromosome as the model and MSL1 as a protein marker of the lazurite chromatin. Our bioinformatic analysis indicates that in the X chromosome, it is only the lazurite chromatin that is simultaneously enriched for the proteins and histone marks associated with exons, transcription elongation, and dosage compensation. As a result of FISH and EM mapping of a dosage compensation complex subunit, MSL1, we for the first time provide direct evidence that lazurite chromatin forms faint gray bands. Our analysis proves that overall most of housekeeping genes typically span from the interbands (5' region of the gene) to the gray band (gene body). More rarely, active lazurite chromatin and inactive malachite/ruby chromatin may be found within a common band, where both the housekeeping and the developmental genes reside together.
Collapse
Affiliation(s)
- Olga V Demakova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Sergey A Demakov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Lidiya V Boldyreva
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Tatyana Yu Zykova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Victor G Levitsky
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Institute of Cytology and Genetics, SB RAS, 630090, Novosibirsk, Russia
| | - Valeriy F Semeshin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Galina V Pokholkova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Darya S Sidorenko
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Fedor P Goncharov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Elena S Belyaeva
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Igor F Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
9
|
Sidorenko DS, Sidorenko IA, Zykova TY, Goncharov FP, Larsson J, Zhimulev IF. Molecular and genetic organization of bands and interbands in the dot chromosome of Drosophila melanogaster. Chromosoma 2019; 128:97-117. [PMID: 31041520 PMCID: PMC6536484 DOI: 10.1007/s00412-019-00703-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/09/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
Abstract
The fourth chromosome smallest in the genome of Drosophila melanogaster differs from other chromosomes in many ways. It has high repeat density in conditions of a large number of active genes. Gray bands represent a significant part of this polytene chromosome. Specific proteins including HP1a, POF, and dSETDB1 establish the epigenetic state of this unique chromatin domain. In order to compare maps of localization of genes, bands, and chromatin types of the fourth chromosome, we performed FISH analysis of 38 probes chosen according to the model of four chromatin types. It allowed clarifying the dot chromosome cytological map consisting of 16 loose gray bands, 11 dense black bands, and 26 interbands. We described the relation between chromatin states and bands. Open aquamarine chromatin mostly corresponds to interbands and it contains 5'UTRs of housekeeping genes. Their coding parts are embedded in gray bands substantially composed of lazurite chromatin of intermediate compaction. Polygenic black bands contain most of dense ruby chromatin, and also some malachite and lazurite. Having an accurate map of the fourth chromosome bands and its correspondence to physical map, we found that DNase I hypersensitivity sites, ORC2 protein, and P-elements are mainly located in open aquamarine chromatin, while element 1360, characteristic of the fourth chromosome, occupies band chromatin types. POF and HP1a proteins providing special organization of this chromosome are mostly located in aquamarine and lazurite chromatin. In general, band organization of the fourth chromosome shares the features of the whole Drosophila genome.
Collapse
Affiliation(s)
- Darya S Sidorenko
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8/2, Novosibirsk, Russia, 630090
| | - Ivan A Sidorenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana Yu Zykova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8/2, Novosibirsk, Russia, 630090
| | - Fedor P Goncharov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8/2, Novosibirsk, Russia, 630090
| | - Jan Larsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Igor F Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8/2, Novosibirsk, Russia, 630090. .,Laboratory of structural, functional and comparative genomics of the Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
10
|
Sidorenko DS, Zykova TY, Khoroshko VA, Pokholkova GV, Demakov SA, Larsson J, Belyaeva ES, Zhimulev IF. Polytene chromosomes reflect functional organization of the Drosophila genome. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polytene chromosomes of Drosophila melanogaster are a convenient model for studying interphase chromosomes of eukaryotes. They are giant in size in comparison with diploid cell chromosomes and have a pattern of cross stripes resulting from the ordered chromatid arrangement. Each region of polytene chromosomes has a unique banding pattern. Using the model of four chromatin types that reveals domains of varying compaction degrees, we were able to correlate the physical and cytological maps of some polytene chromosome regions and to show the main properties of genetic and molecular organization of bands and interbands, that we describe in this review. On the molecular map of the genome, the interbands correspond to decompacted aquamarine chromatin and 5’ ends of ubiquitously active genes. Gray bands contain lazurite and malachite chromatin, intermediate in the level of compaction, and, mainly, coding parts of genes. Dense black transcriptionally inactive bands are enriched in ruby chromatin. Localization of several dozens of interbands on the genome molecular map allowed us to study in detail their architecture according to the data of whole genome projects. The distribution of proteins and regulatory elements of the genome in the promoter regions of genes localized in the interbands shows that these parts of interbands are probably responsible for the formation of open chromatin that is visualized in polytene chromosomes as interbands. Thus, the permanent genetic activity of interbands and gray bands and the inactivity of genes in black bands are the basis of the universal banding pattern in the chromosomes of all Drosophila tissues. The smallest fourth chromosome of Drosophila with an atypical protein composition of chromatin is a special case. Using the model of four chromatin states and fluorescent in situ hybridization, its cytological map was refined and the genomic coordinates of all bands and interbands were determined. It was shown that, in spite of the peculiarities of this chromosome, its band organization in general corresponds to the rest of the genome. Extremely long genes of different Drosophila chromosomes do not fit the common scheme, since they can occupy a series of alternating bands and interbands (up to nine chromosomal structures) formed by parts of these genes.
Collapse
Affiliation(s)
| | | | | | | | | | - J. Larsson
- Department of Molecular Biology, Umea University
| | | | - I. F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS; 3 Laboratory of Structural, Functional and Comparative Genomics of the Novosibirsk State University
| |
Collapse
|
11
|
Kolesnikova TD. Banding Pattern of Polytene Chromosomes as a Representation of Universal Principles of Chromatin Organization into Topological Domains. BIOCHEMISTRY (MOSCOW) 2018; 83:338-349. [PMID: 29626921 DOI: 10.1134/s0006297918040053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drosophila polytene chromosomes are widely used as a model of eukaryotic interphase chromosomes. The most noticeable feature of polytene chromosome is transverse banding associated with alternation of dense stripes (dark or black bands) and light diffuse areas that encompass alternating less compact gray bands and interbands visible with an electron microscope. In recent years, several approaches have been developed to predict location of morphological structures of polytene chromosomes based on the distribution of proteins on the molecular map of Drosophila genome. Comparison of these structures with the results of analysis of the three-dimensional chromatin organization by the Hi-C method indicates that the morphology of polytene chromosomes represents direct visualization of the interphase nucleus spatial organization into topological domains. Compact black bands correspond to the extended topological domains of inactive chromatin, while interbands are the barriers between the adjacent domains. Here, we discuss the prospects of using polytene chromosomes to study mechanisms of spatial organization of interphase chromosomes, as well as their dynamics and evolution.
Collapse
Affiliation(s)
- T D Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
12
|
Sharakhov IV, Bondarenko SM, Artemov GN, Onufriev AV. The Role of Chromosome–Nuclear Envelope Attachments in 3D Genome Organization. BIOCHEMISTRY (MOSCOW) 2018; 83:350-358. [DOI: 10.1134/s0006297918040065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Kolesnikova TD, Goncharov FP, Zhimulev IF. Similarity in replication timing between polytene and diploid cells is associated with the organization of the Drosophila genome. PLoS One 2018; 13:e0195207. [PMID: 29659604 PMCID: PMC5902040 DOI: 10.1371/journal.pone.0195207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Morphologically, polytene chromosomes of Drosophila melanogaster consist of compact “black” bands alternating with less compact “grey” bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the Drosophila genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in Drosophila.
Collapse
Affiliation(s)
- Tatyana D. Kolesnikova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Fedor P. Goncharov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
14
|
Pokholkova GV, Demakov SA, Andreenkov OV, Andreenkova NG, Volkova EI, Belyaeva ES, Zhimulev IF. Tethering of CHROMATOR and dCTCF proteins results in decompaction of condensed bands in the Drosophila melanogaster polytene chromosomes but does not affect their transcription and replication timing. PLoS One 2018; 13:e0192634. [PMID: 29608600 PMCID: PMC5880345 DOI: 10.1371/journal.pone.0192634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/26/2018] [Indexed: 01/20/2023] Open
Abstract
Instulator proteins are central to domain organization and gene regulation in the genome. We used ectopic tethering of CHROMATOR (CHRIZ/CHRO) and dCTCF to pre-defined regions of the genome to dissect the influence of these proteins on local chromatin organization, to analyze their interaction with other key chromatin proteins and to evaluate the effects on transcription and replication. Specifically, using UAS-GAL4DBD system, CHRO and dCTCF were artificially recruited into highly compacted polytene chromosome bands that share the features of silent chromatin type known as intercalary heterochromatin (IH). This led to local chromatin decondensation, formation of novel DHSes and recruitment of several "open chromatin" proteins. CHRO tethering resulted in the recruitment of CP190 and Z4 (PZG), whereas dCTCF tethering attracted CHRO, CP190, and Z4. Importantly, formation of a local stretch of open chromatin did not result in the reactivation of silent marker genes yellow and mini-white immediately adjacent to the targeting region (UAS), nor did RNA polII become recruited into this chromatin. The decompacted region retained late replicated, similarly to the wild-type untargeted region.
Collapse
Affiliation(s)
- Galina V. Pokholkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Sergei A. Demakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Oleg V. Andreenkov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Natalia G. Andreenkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Elena I. Volkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Elena S. Belyaeva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
15
|
Boldyreva LV, Goncharov FP, Demakova OV, Zykova TY, Levitsky VG, Kolesnikov NN, Pindyurin AV, Semeshin VF, Zhimulev IF. Protein and Genetic Composition of Four Chromatin Types in Drosophila melanogaster Cell Lines. Curr Genomics 2017; 18:214-226. [PMID: 28367077 PMCID: PMC5345337 DOI: 10.2174/1389202917666160512164913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recently, we analyzed genome-wide protein binding data for the Drosophila cell lines S2, Kc, BG3 and Cl.8 (modENCODE Consortium) and identified a set of 12 proteins enriched in the regions corresponding to interbands of salivary gland polytene chromosomes. Using these data, we developed a bioinformatic pipeline that partitioned the Drosophila genome into four chromatin types that we hereby refer to as aquamarine, lazurite, malachite and ruby. RESULTS Here, we describe the properties of these chromatin types across different cell lines. We show that aquamarine chromatin tends to harbor transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of the genes, is enriched in diverse "open" chromatin proteins, histone modifications, nucleosome remodeling complexes and transcription factors. It encompasses most of the tRNA genes and shows enrichment for non-coding RNAs and miRNA genes. Lazurite chromatin typically encompasses gene bodies. It is rich in proteins involved in transcription elongation. Frequency of both point mutations and natural deletion breakpoints is elevated within lazurite chromatin. Malachite chromatin shows higher frequency of insertions of natural transposons. Finally, ruby chromatin is enriched for proteins and histone modifications typical for the "closed" chromatin. Ruby chromatin has a relatively low frequency of point mutations and is essentially devoid of miRNA and tRNA genes. Aquamarine and ruby chromatin types are highly stable across cell lines and have contrasting properties. Lazurite and malachite chromatin types also display characteristic protein composition, as well as enrichment for specific genomic features. We found that two types of chromatin, aquamarine and ruby, retain their complementary protein patterns in four Drosophila cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Igor F. Zhimulev
- Address correspondence to this author at the Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Tel: +7 383 363-90-41; Fax: +7 383 363-90-78; E-mail:
| |
Collapse
|
16
|
Avva SVSP, Hart CM. Characterization of the Drosophila BEAF-32A and BEAF-32B Insulator Proteins. PLoS One 2016; 11:e0162906. [PMID: 27622635 PMCID: PMC5021357 DOI: 10.1371/journal.pone.0162906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Data implicate the Drosophila 32 kDa Boundary Element-Associated Factors BEAF-32A and BEAF-32B in both chromatin domain insulator element function and promoter function. They might also function as an epigenetic memory by remaining bound to mitotic chromosomes. Both proteins are made from the same gene. They differ in their N-terminal 80 amino acids, which contain single DNA-binding BED fingers. The remaining 200 amino acids are identical in the two proteins. The structure and function of the middle region of 120 amino acids is unknown, while the C-terminal region of 80 amino acids has a putative leucine zipper and a BESS domain and mediates BEAF-BEAF interactions. Here we report a further characterization of BEAF. We show that the BESS domain alone is sufficient to mediate BEAF-BEAF interactions, although the presence of the putative leucine zipper on at least one protein strengthens the interactions. BEAF-32B is sufficient to rescue a null BEAF mutation in flies. Using mutant BEAF-32B rescue transgenes, we show that the middle region and the BESS domain are essential. In contrast, the last 40 amino acids of the middle region, which is poorly conserved among Drosophila species, is dispensable. Deleting the putative leucine zipper results in a hypomorphic mutant BEAF-32B protein. Finally, we document the dynamics of BEAF-32A-EGFP and BEAF-32B-mRFP during mitosis in embryos. A subpopulation of both proteins appears to remain on mitotic chromosomes and also on the mitotic spindle, while much of the fluorescence is dispersed during mitosis. Differences in the dynamics of the two proteins are observed in syncytial embryos, and both proteins show differences between syncytial and later embryos. This characterization of BEAF lays a foundation for future studies into molecular mechanisms of BEAF function.
Collapse
Affiliation(s)
- S. V. Satya Prakash Avva
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Craig M. Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
17
|
Fujioka M, Mistry H, Schedl P, Jaynes JB. Determinants of Chromosome Architecture: Insulator Pairing in cis and in trans. PLoS Genet 2016; 12:e1005889. [PMID: 26910731 PMCID: PMC4765946 DOI: 10.1371/journal.pgen.1005889] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/30/2016] [Indexed: 12/11/2022] Open
Abstract
The chromosomes of multicellular animals are organized into a series of topologically independent looped domains. This domain organization is critical for the proper utilization and propagation of the genetic information encoded by the chromosome. A special set of architectural elements, called boundaries or insulators, are responsible both for subdividing the chromatin into discrete domains and for determining the topological organization of these domains. Central to the architectural functions of insulators are homologous and heterologous insulator:insulator pairing interactions. The former (pairing between copies of the same insulator) dictates the process of homolog alignment and pairing in trans, while the latter (pairing between different insulators) defines the topology of looped domains in cis. To elucidate the principles governing these architectural functions, we use two insulators, Homie and Nhomie, that flank the Drosophila even skipped locus. We show that homologous insulator interactions in trans, between Homie on one homolog and Homie on the other, or between Nhomie on one homolog and Nhomie on the other, mediate transvection. Critically, these homologous insulator:insulator interactions are orientation-dependent. Consistent with a role in the alignment and pairing of homologs, self-pairing in trans is head-to-head. Head-to-head self-interactions in cis have been reported for other fly insulators, suggesting that this is a general principle of self-pairing. Homie and Nhomie not only pair with themselves, but with each other. Heterologous Homie-Nhomie interactions occur in cis, and we show that they serve to delimit a looped chromosomal domain that contains the even skipped transcription unit and its associated enhancers. The topology of this loop is defined by the heterologous pairing properties of Homie and Nhomie. Instead of being head-to-head, which would generate a circular loop, Homie-Nhomie pairing is head-to-tail. Head-to-tail pairing in cis generates a stem-loop, a configuration much like that observed in classical lampbrush chromosomes. These pairing principles provide a mechanistic underpinning for the observed topologies within and between chromosomes. The chromosomes of multicellular animals are organized into a series of topologically independent looped domains. This domain organization is critical for the proper utilization and propagation of the genetic information encoded by the chromosome. A special set of architectural elements, called boundaries or insulators, are responsible for both subdividing the chromatin fiber into discrete domains, and determining the topological organization of these domains. Central to the architectural functions of insulators are heterologous and homologous insulator:insulator pairing interactions. In Drosophila, the former defines the topology of individual looped domains in cis, while the latter dictates the process of homolog alignment and pairing in trans. Here we use two insulators from the even skipped locus to elucidate the principles governing these two architectural functions. These principles align with several longstanding observations, and resolve a number of conundrums regarding chromosome topology and function.
Collapse
Affiliation(s)
- Miki Fujioka
- Deptartment of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Hemlata Mistry
- Departments of Biology and Biochemistry, Widener University, Chester, Pennsylvania, United States of America
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PS); (JBJ)
| | - James B. Jaynes
- Deptartment of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (PS); (JBJ)
| |
Collapse
|
18
|
Zielke T, Glotov A, Saumweber H. High-resolution in situ hybridization analysis on the chromosomal interval 61C7-61C8 of Drosophila melanogaster reveals interbands as open chromatin domains. Chromosoma 2015; 125:423-35. [PMID: 26520107 DOI: 10.1007/s00412-015-0554-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Eukaryotic chromatin is organized in contiguous domains that differ in protein binding, histone modifications, transcriptional activity, and in their degree of compaction. Genome-wide comparisons suggest that, overall, the chromatin organization is similar in different cells within an organism. Here, we compare the structure and activity of the 61C7-61C8 interval in polytene and diploid cells of Drosophila. By in situ hybridization on polytene chromosomes combined with high-resolution microscopy, we mapped the boundaries of the 61C7-8 interband and of the 61C7 and C8 band regions, respectively. Our results demonstrate that the 61C7-8 interband is significantly larger than estimated previously. This interband extends over 20 kbp and is in the range of the flanking band domains. It contains several active genes and therefore can be considered as an open chromatin domain. Comparing the 61C7-8 structure of Drosophila S2 cells and polytene salivary gland cells by ChIP for chromatin protein binding and histone modifications, we observe a highly consistent domain structure for the proximal 13 kbp of the domain in both cell types. However, the distal 7 kbp of the open domain differs in protein binding and histone modification between both tissues. The domain contains four protein-coding genes in the proximal part and two noncoding transcripts in the distal part. The differential transcriptional activity of one of the noncoding transcripts correlates with the observed differences in the chromatin structure between both tissues. The significance of our findings for the organization and structure of open chromatin domains will be discussed.
Collapse
Affiliation(s)
- Thomas Zielke
- Institute of Biology, Cytogenetics Group, Humboldt University Berlin, Chausseestr. 117, 10115, Berlin, Germany
| | - Alexander Glotov
- Institute of Biology, Cytogenetics Group, Humboldt University Berlin, Chausseestr. 117, 10115, Berlin, Germany
| | - Harald Saumweber
- Institute of Biology, Cytogenetics Group, Humboldt University Berlin, Chausseestr. 117, 10115, Berlin, Germany. .,Institut für Biologie-Zytogenetik, Humboldt Universität zu Berlin, Chausseestr. 117, 10115, Berlin, Germany.
| |
Collapse
|
19
|
Zhimulev IF, Zykova TY, Goncharov FP, Khoroshko VA, Demakova OV, Semeshin VF, Pokholkova GV, Boldyreva LV, Demidova DS, Babenko VN, Demakov SA, Belyaeva ES. Genetic organization of interphase chromosome bands and interbands in Drosophila melanogaster. PLoS One 2014; 9:e101631. [PMID: 25072930 PMCID: PMC4114487 DOI: 10.1371/journal.pone.0101631] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022] Open
Abstract
Drosophila melanogaster polytene chromosomes display specific banding pattern; the underlying genetic organization of this pattern has remained elusive for many years. In the present paper, we analyze 32 cytology-mapped polytene chromosome interbands. We estimated molecular locations of these interbands, described their molecular and genetic organization and demonstrate that polytene chromosome interbands contain the 5' ends of housekeeping genes. As a rule, interbands display preferential "head-to-head" orientation of genes. They are enriched for "broad" class promoters characteristic of housekeeping genes and associate with open chromatin proteins and Origin Recognition Complex (ORC) components. In two regions, 10A and 100B, coding sequences of genes whose 5'-ends reside in interbands map to constantly loosely compacted, early-replicating, so-called "grey" bands. Comparison of expression patterns of genes mapping to late-replicating dense bands vs genes whose promoter regions map to interbands shows that the former are generally tissue-specific, whereas the latter are represented by ubiquitously active genes. Analysis of RNA-seq data (modENCODE-FlyBase) indicates that transcripts from interband-mapping genes are present in most tissues and cell lines studied, across most developmental stages and upon various treatment conditions. We developed a special algorithm to computationally process protein localization data generated by the modENCODE project and show that Drosophila genome has about 5700 sites that demonstrate all the features shared by the interbands cytologically mapped to date.
Collapse
Affiliation(s)
- Igor F. Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Tatyana Yu. Zykova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Fyodor P. Goncharov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Varvara A. Khoroshko
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga V. Demakova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valeriy F. Semeshin
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Galina V. Pokholkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lidiya V. Boldyreva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Darya S. Demidova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir N. Babenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey A. Demakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena S. Belyaeva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
20
|
Abstract
We review the properties and uses of cell lines in Drosophila research, emphasizing the variety of lines, the large body of genomic and transcriptional data available for many of the lines, and the variety of ways the lines have been used to provide tools for and insights into the developmental, molecular, and cell biology of Drosophila and mammals.
Collapse
Affiliation(s)
- Lucy Cherbas
- Drosophila Genomics Resource Center, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA; Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| | - Lei Gong
- Drosophila Genomics Resource Center, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
21
|
Kinney NA, Sharakhov IV, Onufriev AV. Investigation of the chromosome regions with significant affinity for the nuclear envelope in fruit fly--a model based approach. PLoS One 2014; 9:e91943. [PMID: 24651400 PMCID: PMC3961273 DOI: 10.1371/journal.pone.0091943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/18/2014] [Indexed: 12/16/2022] Open
Abstract
Three dimensional nuclear architecture is important for genome function, but is still poorly understood. In particular, little is known about the role of the “boundary conditions” – points of attachment between chromosomes and the nuclear envelope. We describe a method for modeling the 3D organization of the interphase nucleus, and its application to analysis of chromosome-nuclear envelope (Chr-NE) attachments of polytene (giant) chromosomes in Drosophila melanogaster salivary glands. The model represents chromosomes as self-avoiding polymer chains confined within the nucleus; parameters of the model are taken directly from experiment, no fitting parameters are introduced. Methods are developed to objectively quantify chromosome territories and intertwining, which are discussed in the context of corresponding experimental observations. In particular, a mathematically rigorous definition of a territory based on convex hull is proposed. The self-avoiding polymer model is used to re-analyze previous experimental data; the analysis suggests 33 additional Chr-NE attachments in addition to the 15 already explored Chr-NE attachments. Most of these new Chr-NE attachments correspond to intercalary heterochromatin – gene poor, dark staining, late replicating regions of the genome; however, three correspond to euchromatin – gene rich, light staining, early replicating regions of the genome. The analysis also suggests 5 regions of anti-contact, characterized by aversion for the NE, only two of these correspond to euchromatin. This composition of chromatin suggests that heterochromatin may not be necessary or sufficient for the formation of a Chr-NE attachment. To the extent that the proposed model represents reality, the confinement of the polytene chromosomes in a spherical nucleus alone does not favor the positioning of specific chromosome regions at the NE as seen in experiment; consequently, the 15 experimentally known Chr-NE attachment positions do not appear to arise due to non-specific (entropic) forces. Robustness of the key conclusions to model assumptions is thoroughly checked.
Collapse
Affiliation(s)
- Nicholas Allen Kinney
- Genomics Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (IVS); (AVO)
| | - Alexey V. Onufriev
- Department of Physics, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (IVS); (AVO)
| |
Collapse
|
22
|
|
23
|
Zhimulev IF, Belyaeva ES, Vatolina TY, Demakov SA. Banding patterns in Drosophila melanogaster polytene chromosomes correlate with DNA-binding protein occupancy. Bioessays 2012; 34:498-508. [PMID: 22419120 DOI: 10.1002/bies.201100142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The most enigmatic feature of polytene chromosomes is their banding pattern, the genetic organization of which has been a very attractive puzzle for many years. Recent genome-wide protein mapping efforts have produced a wealth of data for the chromosome proteins of Drosophila cells. Based on their specific protein composition, the chromosomes comprise two types of bands, as well as interbands. These differ in terms of time of replication and specific types of proteins. The interbands are characterized by their association with "active" chromatin proteins, nucleosome remodeling, and origin recognition complexes, and so they have three functions: acting as binding sites for RNA pol II, initiation of replication and nucleosome remodeling of short fragments of DNA. The borders and organization of the same band and interband regions are largely identical, irrespective of the cell type studied. This demonstrates that the banding pattern is a universal principle of the organization of interphase polytene and non-polytene chromosomes.
Collapse
Affiliation(s)
- Igor F Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | |
Collapse
|