1
|
Do Ty3/Gypsy Transposable Elements Play Preferential Roles in Sex Chromosome Differentiation? Life (Basel) 2022; 12:life12040522. [PMID: 35455013 PMCID: PMC9025612 DOI: 10.3390/life12040522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) comprise a substantial portion of eukaryotic genomes. They have the unique ability to integrate into new locations and serve as the main source of genomic novelties by mediating chromosomal rearrangements and regulating portions of functional genes. Recent studies have revealed that TEs are abundant in sex chromosomes. In this review, we propose evolutionary relationships between specific TEs, such as Ty3/Gypsy, and sex chromosomes in different lineages based on the hypothesis that these elements contributed to sex chromosome differentiation processes. We highlight how TEs can drive the dynamics of sex-determining regions via suppression recombination under a selective force to affect the organization and structural evolution of sex chromosomes. The abundance of TEs in the sex-determining regions originates from TE-poor genomic regions, suggesting a link between TE accumulation and the emergence of the sex-determining regions. TEs are generally considered to be a hallmark of chromosome degeneration. Finally, we outline recent approaches to identify TEs and study their sex-related roles and effects in the differentiation and evolution of sex chromosomes.
Collapse
|
2
|
Baena-Díaz F, Zemp N, Widmer A. Insights into the genetic architecture of sexual dimorphism from an interspecific cross between two diverging Silene (Caryophyllaceae) species. Mol Ecol 2019; 28:5052-5067. [PMID: 31605646 DOI: 10.1111/mec.15271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 08/15/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
Abstract
The evolution of sexual dimorphism in species with separate sexes is influenced by the resolution of sexual conflicts creating sex differences through genetic linkage or sex-biased expression. Plants with different degrees of sexual dimorphism are thus ideal to study the genetic basis of sexual dimorphism. In this study we explore the genetic architecture of sexual dimorphism between Silene latifolia and Silene dioica. These species have chromosomal sex determination and differ in the extent of sexual dimorphism. To test whether QTL for sexually dimorphic traits have accumulated on the sex chromosomes and to quantify their contribution to species differences, we create a linkage map and performed QTL analysis of life history, flower and vegetative traits using an unidirectional interspecific F2 hybrid cross. We found support for an accumulation of QTL on the sex chromosomes and that sex differences explained a large proportion of the variance between species, suggesting that both natural and sexual selection contributed to species divergence. Sexually dimorphic traits that also differed between species displayed transgressive segregation. We observed a reversal in sexual dimorphism in the F2 population, where males tended to be larger than females, indicating that sexual dimorphism is constrained within populations but not in recombinant hybrids. This study contributes to the understanding of the genetic basis of sexual dimorphism and its evolution in Silene.
Collapse
Affiliation(s)
| | | | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
3
|
Trevoy SAL, Janes JK, Muirhead K, Sperling FAH. Repurposing population genetics data to discern genomic architecture: A case study of linkage cohort detection in mountain pine beetle ( Dendroctonus ponderosae). Ecol Evol 2019; 9:1147-1159. [PMID: 30805148 PMCID: PMC6374669 DOI: 10.1002/ece3.4803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Genetic surveys of the population structure of species can be used as resources for exploring their genomic architecture. By adjusting filtering assumptions, genome-wide single-nucleotide polymorphism (SNP) datasets can be reused to give new insights into the genetic basis of divergence and speciation without targeted resampling of specimens. Filtering only for missing data and minor allele frequency, we used a combination of principal components analysis and linkage disequilibrium network analysis to distinguish three cohorts of variable SNPs in the mountain pine beetle in western Canada, including one that was sex-linked and one that was geographically associated. These marker cohorts indicate genomically localized differentiation, and their detection demonstrates an accessible and intuitive method for discovering potential islands of genomic divergence without a priori knowledge of a species' genomic architecture. Thus, this method has utility for directly addressing the genomic architecture of species and generating new hypotheses for functional research.
Collapse
Affiliation(s)
| | - Jasmine K. Janes
- School of Environmental & Rural SciencesUniversity of New EnglandArmidaleNew South WalesAustralia
- Biology DepartmentVancouver Island UniversityNanaimoBritish ColumbiaCanada
| | - Kevin Muirhead
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | |
Collapse
|
4
|
Rodríguez Lorenzo JL, Hobza R, Vyskot B. DNA methylation and genetic degeneration of the Y chromosome in the dioecious plant Silene latifolia. BMC Genomics 2018; 19:540. [PMID: 30012097 PMCID: PMC6048894 DOI: 10.1186/s12864-018-4936-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/10/2018] [Indexed: 02/01/2023] Open
Abstract
Background S. latifolia is a model organism for the study of sex chromosome evolution in plants. Its sex chromosomes include large regions in which recombination became gradually suppressed. The regions tend to expand over time resulting in the formation of evolutionary strata. Non-recombination and later accumulation of repetitive sequences is a putative cause of the size increase in the Y chromosome. Gene decay and accumulation of repetitive DNA are identified as key evolutionary events. Transposons in the X and Y chromosomes are distributed differently and there is a regulation of transposon insertion by DNA methylation of the target sequences, this points to an important role of DNA methylation during sex chromosome evolution in Silene latifolia. The aim of this study was to elucidate whether the reduced expression of the Y allele in S. latifolia is caused by genetic degeneration or if the cause is methylation triggered by transposons and repetitive sequences. Results Gene expression analysis in S. latifolia males has shown expression bias in both X and Y alleles. To determine whether these differences are caused by genetic degeneration or methylation spread by transposons and repetitive sequences, we selected several sex-linked genes with varying degrees of degeneration and from different evolutionary strata. Immunoprecipitation of methylated DNA (MeDIP) from promoter, exon and intron regions was used and validated through bisulfite sequencing. We found DNA methylation in males, and only in the promoter of genes of stratum I (older). The Y alleles in genes of stratum I were methylation enriched compared to X alleles. There was also abundant and high percentage methylation in the CHH context in most sequences, indicating de novo methylation through the RdDM pathway. Conclusions We speculate that TE accumulation and not gene decay is the cause of DNA methylation in the S. latifolia Y sex chromosome with influence on the process of heterochromatinization. Electronic supplementary material The online version of this article (10.1186/s12864-018-4936-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José Luis Rodríguez Lorenzo
- Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic.
| | - Roman Hobza
- Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Boris Vyskot
- Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
5
|
Mahelka V, Krak K, Kopecký D, Fehrer J, Šafář J, Bartoš J, Hobza R, Blavet N, Blattner FR. Multiple horizontal transfers of nuclear ribosomal genes between phylogenetically distinct grass lineages. Proc Natl Acad Sci U S A 2017; 114:1726-1731. [PMID: 28137844 PMCID: PMC5320982 DOI: 10.1073/pnas.1613375114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The movement of nuclear DNA from one vascular plant species to another in the absence of fertilization is thought to be rare. Here, nonnative rRNA gene [ribosomal DNA (rDNA)] copies were identified in a set of 16 diploid barley (Hordeum) species; their origin was traceable via their internal transcribed spacer (ITS) sequence to five distinct Panicoideae genera, a lineage that split from the Pooideae about 60 Mya. Phylogenetic, cytogenetic, and genomic analyses implied that the nonnative sequences were acquired between 1 and 5 Mya after a series of multiple events, with the result that some current Hordeum sp. individuals harbor up to five different panicoid rDNA units in addition to the native Hordeum rDNA copies. There was no evidence that any of the nonnative rDNA units were transcribed; some showed indications of having been silenced via pseudogenization. A single copy of a Panicum sp. rDNA unit present in H. bogdanii had been interrupted by a native transposable element and was surrounded by about 70 kbp of mostly noncoding sequence of panicoid origin. The data suggest that horizontal gene transfer between vascular plants is not a rare event, that it is not necessarily restricted to one or a few genes only, and that it can be selectively neutral.
Collapse
MESH Headings
- Cell Nucleus/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Diploidy
- Evolution, Molecular
- Gene Transfer, Horizontal
- Genes, Plant/genetics
- Hordeum/classification
- Hordeum/genetics
- Phylogeny
- Poaceae/classification
- Poaceae/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Václav Mahelka
- Institute of Botany, The Czech Academy of Sciences, Průhonice 25243, Czech Republic;
| | - Karol Krak
- Institute of Botany, The Czech Academy of Sciences, Průhonice 25243, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 6 16500, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
| | - Judith Fehrer
- Institute of Botany, The Czech Academy of Sciences, Průhonice 25243, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
| | - Jan Bartoš
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
| | - Roman Hobza
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
- Institute of Biophysics, The Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Nicolas Blavet
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
| | - Frank R Blattner
- Experimental Taxonomy, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Moore RC, Harkess AE, Weingartner LA. How to be a seXY plant model: A holistic view of sex-chromosome research. AMERICAN JOURNAL OF BOTANY 2016; 103:1379-1382. [PMID: 27370315 DOI: 10.3732/ajb.1600054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Richard C Moore
- Miami University, Department of Botany, 316 Pearson Hall, Oxford, Ohio 45056 USA
| | - Alex E Harkess
- University of Georgia, Department of Plant Biology, 120 Carlton St, Athens, Georgia 30602 USA
| | - Laura A Weingartner
- Indiana University, Department of Biology, 1001 E Third St., Bloomington, Indiana 47405 USA
| |
Collapse
|
7
|
Zhang JJ, Montgomery BR, Huang SQ. Evidence for asymmetrical hybridization despite pre- and post-pollination reproductive barriers between two Silene species. AOB PLANTS 2016; 8:plw032. [PMID: 27178066 PMCID: PMC4940505 DOI: 10.1093/aobpla/plw032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/27/2016] [Indexed: 05/14/2023]
Abstract
Interspecific hybridization is widespread among plants; nevertheless, pre- and post-zygotic isolating mechanisms may maintain species integrity for interfertile species in sympatry despite some gene flow. Interspecific hybridization and potential isolating barriers were evaluated between co-flowering Silene asclepiadea and Silene yunnanensis in an alpine community in southwest China. We investigated morphological and molecular (nuclear microsatellites and chloroplast gene sequence) variation in sympatric populations of S. asclepiadea and S. yunnanensis. Additionally, we analyzed pollinator behaviour and compared reproductive success between the putative hybrids and their parental species. Both the molecular and morphological data indicate that there were putative natural hybrids in the field, with S. asclepiadae the ovule parent and S. yunnanensis the pollen parent. Bumblebees were the primary visitors to S. asclepiadae and putative hybrids, while butterflies were the primary visitors to S. yunnanensis Pollen production and viability were significantly lower in putative hybrids than the parental species. The direction of hybridization is quite asymmetric from S. yunnanensis to S. asclepiadea Protandry combined with later peak flowering of S. yunnanensis, and pollinator preference may have contributed to the asymmetric pattern of hybridization, but putative hybrids were rare. Our results thus suggest that despite gene flow, S. asclepiadea and S. yunnanensis can maintain species boundaries, perhaps as a result of floral isolation and low fecundity of the hybrids.
Collapse
Affiliation(s)
- Jin-Ju Zhang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Benjamin R Montgomery
- Division of Natural Sciences & Engineering, University of South Carolina Upstate, Spartanburg, SC 29303, USA
| | - Shuang-Quan Huang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
8
|
Abstract
Background Silene latifolia represents one of the best-studied plant sex chromosome systems. A new approach using RNA-seq data has recently identified hundreds of new sex-linked genes in this species. However, this approach is expected to miss genes that are either not expressed or are expressed at low levels in the tissue(s) used for RNA-seq. Therefore other independent approaches are needed to discover such sex-linked genes. Results Here we used 10 well-characterized S. latifolia sex-linked genes and their homologs in Silene vulgaris, a species without sex chromosomes, to screen BAC libraries of both species. We isolated and sequenced 4 Mb of BAC clones of S. latifolia X and Y and S. vulgaris genomic regions, which yielded 59 new sex-linked genes (with S. vulgaris homologs for some of them). We assembled sequences that we believe represent the tip of the Xq arm. These sequences are clearly not pseudoautosomal, so we infer that the S. latifolia X has a single pseudoautosomal region (PAR) on the Xp arm. The estimated mean gene density in X BACs is 2.2 times lower than that in S. vulgaris BACs, agreeing with the genome size difference between these species. Gene density was estimated to be extremely low in the Y BAC clones. We compared our BAC-located genes with the sex-linked genes identified in previous RNA-seq studies, and found that about half of them (those with low expression in flower buds) were not identified as sex-linked in previous RNA-seq studies. We compiled a set of ~70 validated X/Y genes and X-hemizygous genes (without Y copies) from the literature, and used these genes to show that X-hemizygous genes have a higher probability of being undetected by the RNA-seq approach, compared with X/Y genes; we used this to estimate that about 30 % of our BAC-located genes must be X-hemizygous. The estimate is similar when we use BAC-located genes that have S. vulgaris homologs, which excludes genes that were gained by the X chromosome. Conclusions Our BAC sequencing identified 59 new sex-linked genes, and our analysis of these BAC-located genes, in combination with RNA-seq data suggests that gene losses from the S. latifolia Y chromosome could be as high as 30 %, higher than previous estimates of 10-20 %. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1698-7) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Abstract
Dioecy (separate male and female individuals) ensures outcrossing and is more prevalent in animals than in plants. Although it is common in bryophytes and gymnosperms, only 5% of angiosperms are dioecious. In dioecious higher plants, flowers borne on male and female individuals are, respectively deficient in functional gynoecium and androecium. Dioecy is inherited via three sex chromosome systems: XX/XY, XX/X0 and WZ/ZZ, such that XX or WZ is female and XY, X0 or ZZ are males. The XX/XY system generates the rarer XX/X0 and WZ/ZZ systems. An autosome pair begets XY chromosomes. A recessive loss-of-androecium mutation (ana) creates X chromosome and a dominant gynoecium-suppressing (GYS) mutation creates Y chromosome. The ana/ANA and gys/GYS loci are in the sex-determining region (SDR) of the XY pair. Accumulation of inversions, deleterious mutations and repeat elements, especially transposons, in the SDR of Y suppresses recombination between X and Y in SDR, making Y labile and increasingly degenerate and heteromorphic from X. Continued recombination between X and Y in their pseudoautosomal region located at the ends of chromosomal arms allows survival of the degenerated Y and of the species. Dioecy is presumably a component of the evolutionary cycle for the origin of new species. Inbred hermaphrodite species assume dioecy. Later they suffer degenerate-Y-led population regression. Cross-hybridization between such extinguishing species and heterologous species, followed by genome duplication of segregants from hybrids, give rise to new species.
Collapse
|
10
|
Lappin FM, Medert CM, Hawkins KK, Mardonovich S, Wu M, Moore RC. A polymorphic pseudoautosomal boundary in the Carica papaya sex chromosomes. Mol Genet Genomics 2015; 290:1511-22. [DOI: 10.1007/s00438-015-1000-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/23/2015] [Indexed: 12/14/2022]
|
11
|
Akagi T, Henry IM, Tao R, Comai L. Plant genetics. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 2014; 346:646-50. [PMID: 25359977 DOI: 10.1126/science.1257225] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In plants, multiple lineages have evolved sex chromosomes independently, providing a powerful comparative framework, but few specific determinants controlling the expression of a specific sex have been identified. We investigated sex determinants in the Caucasian persimmon, Diospyros lotus, a dioecious plant with heterogametic males (XY). Male-specific short nucleotide sequences were used to define a male-determining region. A combination of transcriptomics and evolutionary approaches detected a Y-specific sex-determinant candidate, OGI, that displays male-specific conservation among Diospyros species. OGI encodes a small RNA targeting the autosomal MeGI gene, a homeodomain transcription factor regulating anther fertility in a dosage-dependent fashion. This identification of a feminizing gene suppressed by a Y-chromosome-encoded small RNA contributes to our understanding of the evolution of sex chromosome systems in higher plants.
Collapse
Affiliation(s)
- Takashi Akagi
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA. Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
12
|
Soukupova M, Nevrtalova E, Cížková J, Vogel I, Cegan R, Hobza R, Vyskot B. The X chromosome is necessary for somatic development in the dioecious Silene latifolia: cytogenetic and molecular evidence and sequencing of a haploid genome. Cytogenet Genome Res 2014; 143:96-103. [PMID: 24993893 DOI: 10.1159/000363431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Silene latifolia (or white campion) possesses a well-established sex determination system with a dominant Y chromosome in males (the mammalian type). The heteromorphic sex chromosomes X and Y in S. latifolia largely stopped recombination; thus, we can expect a gradual genetic degeneration of the Y chromosome. It is well proven that neither diploid nor polyploid S. latifolia sporophytes can survive without at least one X, so the only life stage possessing the Y as the sole sex chromosome is the male gametophyte (pollen tube), while the female gametophyte seems to be X-dependent. Previous studies on anther-derived plants of this species showed that the obtained plants (largely haploid or dihaploid) were phenotypically and cytologically female. In this paper, we provide molecular evidence for the inviability of plants lacking the X chromosome. Using sex-specific PCR primers, we show that all plantlets and plants derived from anther cultures are female. In studying anther-derived diploid females by sequencing of X-linked markers, we demonstrate that these plants are really homozygous dihaploids. A haploid regenerant plant was sequenced (8× genome coverage) using Illumina technology. Genome data are disposable in the EMBL database as a standard for full genome and X chromosome assembly in this model species. Homozygous dihaploids were back-crossed with males to yield a progeny useful for the study of the evolution of the Y chromosome.
Collapse
Affiliation(s)
- Magda Soukupova
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
13
|
Comparative Analysis of Gene Expression by Microarray Analysis of Male and Female Flowers ofAsparagus officinalis. Biosci Biotechnol Biochem 2014; 77:1193-9. [DOI: 10.1271/bbb.120943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Zhang J, Boualem A, Bendahmane A, Ming R. Genomics of sex determination. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:110-6. [PMID: 24682067 DOI: 10.1016/j.pbi.2014.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 05/23/2023]
Abstract
Sex determination is a major switch in the evolutionary history of angiosperm, resulting 11% monoecious and dioecious species. The genomic sequences of papaya sex chromosomes unveiled the molecular basis of recombination suppression in the sex determination region, and candidate genes for sex determination. Identification and analyses of sex determination genes in cucurbits and maize demonstrated conservation of sex determination mechanism in one lineage and divergence between the two systems. Epigenetic control and hormonal influence of sex determination were elucidated in both plants and animals. Intensive investigation of potential sex determination genes in model species will improve our understanding of sex determination gene network. Such network will in turn accelerate the identification of sex determination genes in dioecious species with sex chromosomes, which are burdensome due to no recombination in sex determining regions. The sex determination genes in dioecious species are crucial for understanding the origin of dioecy and sex chromosomes, particularly in their early stage of evolution.
Collapse
Affiliation(s)
- Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Adnane Boualem
- INRA-CNRS-UEVE, UMR1165, ERL8196, Unité de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, Evry F-91057, France
| | - Abdelhafid Bendahmane
- INRA-CNRS-UEVE, UMR1165, ERL8196, Unité de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, Evry F-91057, France.
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
15
|
Pang T, Ye CY, Xia X, Yin W. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Genomics 2013; 14:488. [PMID: 23865740 PMCID: PMC3728141 DOI: 10.1186/1471-2164-14-488] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 07/17/2013] [Indexed: 12/30/2022] Open
Abstract
Background Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f., an evergreen broadleaf legume shrub, is distributed in Mid-Asia where the temperature can be as low as −30°C during the winter. Although A. mongolicus is an ideal model to study the plant response to cold stress, insufficient genomic resources for this species are available in public databases. To identify genes involved in cold acclimation (a phenomenon experienced by plants after low temperature stress), a high-throughput sequencing technology was applied. Results We sequenced cold-treated and control (untreated) samples of A. mongolicus, and obtained 65,075,656 and 67,287,120 high quality reads, respectively. After de novo assembly and quantitative assessment, 82795 all-unigenes were finally generated with an average length of 816 bp. We then obtained functional annotations by aligning all-unigenes with public protein databases including NR, SwissProt, KEGG and COG. Differentially expressed genes (DEGs) were investigated using the RPKM method. Overall, 9309 up-regulated genes and 23419 down-regulated genes were identified. To increase our understanding of these DEGs, we performed GO enrichment and metabolic pathway enrichment analyses. Based on these results, a series of candidate genes involved in cold responsive pathways were selected and discussed. Moreover, we analyzed transcription factors, and found 720 of them are differentially expressed. Finally, 20 of the candidate genes that were up-regulated and known to be associated with cold stress were examined using qRT-PCR. Conclusions In this study, we identified a large set of cDNA unigenes from A. mongolicus. This is the first transcriptome sequencing of this non-model species under cold-acclimation using Illumina/Solexa, a next-generation sequencing technology. We sequenced cold-treated and control (untreated) samples of A. mongolicus and obtained large numbers of unigenes annotated to public databases. Studies of differentially expressed genes involved in cold-related metabolic pathways and transcription factors facilitate the discovery of cold-resistance genes.
Collapse
|
16
|
Bergero R, Qiu S, Forrest A, Borthwick H, Charlesworth D. Expansion of the pseudo-autosomal region and ongoing recombination suppression in the Silene latifolia sex chromosomes. Genetics 2013; 194:673-86. [PMID: 23733786 PMCID: PMC3697972 DOI: 10.1534/genetics.113.150755] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/20/2013] [Indexed: 11/18/2022] Open
Abstract
There are two very interesting aspects to the evolution of sex chromosomes: what happens after recombination between these chromosome pairs stops and why suppressed recombination evolves. The former question has been intensively studied in a diversity of organisms, but the latter has been studied largely theoretically. To obtain empirical data, we used codominant genic markers in genetic mapping of the dioecious plant Silene latifolia, together with comparative mapping of S. latifolia sex-linked genes in S. vulgaris (a related hermaphrodite species without sex chromosomes). We mapped 29 S. latifolia fully sex-linked genes (including 21 newly discovered from transcriptome sequencing), plus 6 genes in a recombining pseudo-autosomal region (PAR) whose genetic map length is ∼25 cM in both male and female meiosis, suggesting that the PAR may contain many genes. Our comparative mapping shows that most fully sex-linked genes in S. latifolia are located on a single S. vulgaris linkage group and were probably inherited from a single autosome of an ancestor. However, unexpectedly, our maps suggest that the S. latifolia PAR region expanded through translocation events. Some genes in these regions still recombine in S. latifolia, but some genes from both addition events are now fully sex-linked. Recombination suppression is therefore still ongoing in S. latifolia, and multiple recombination suppression events have occurred in a timescale of few million years, much shorter than the timescale of formation of the most recent evolutionary strata of mammal and bird sex chromosomes.
Collapse
Affiliation(s)
- Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab, Edinburgh EH9 3JT, United Kingdom
| | - Suo Qiu
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab, Edinburgh EH9 3JT, United Kingdom
| | | | - Helen Borthwick
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab, Edinburgh EH9 3JT, United Kingdom
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
17
|
Testing for the footprint of sexually antagonistic polymorphisms in the pseudoautosomal region of a plant sex chromosome pair. Genetics 2013; 194:663-72. [PMID: 23733787 DOI: 10.1534/genetics.113.152397] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The existence of sexually antagonistic (SA) polymorphism is widely considered the most likely explanation for the evolution of suppressed recombination of sex chromosome pairs. This explanation is largely untested empirically, and no such polymorphisms have been identified, other than in fish, where no evidence directly implicates these genes in events causing loss of recombination. We tested for the presence of loci with SA polymorphism in the plant Silene latifolia, which is dioecious (with separate male and female individuals) and has a pair of highly heteromorphic sex chromosomes, with XY males. Suppressed recombination between much of the Y and X sex chromosomes evolved in several steps, and the results in Bergero et al. (2013) show that it is still ongoing in the recombining or pseudoautosomal, regions (PARs) of these chromosomes. We used molecular evolutionary approaches to test for the footprints of SA polymorphisms, based on sequence diversity levels in S. latifolia PAR genes identified by genetic mapping. Nucleotide diversity is high for at least four of six PAR genes identified, and our data suggest the existence of polymorphisms maintained by balancing selection in this genome region, since molecular evolutionary (HKA) tests exclude an elevated mutation rate, and other tests also suggest balancing selection. The presence of sexually antagonistic alleles at a locus or loci in the PAR is suggested by the very different X and Y chromosome allele frequencies for at least one PAR gene.
Collapse
|