1
|
Babkin IV, Tikunov AY, Baykov IK, Morozova VV, Tikunova NV. Genome Analysis of Epsilon CrAss-like Phages. Viruses 2024; 16:513. [PMID: 38675856 PMCID: PMC11054128 DOI: 10.3390/v16040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family.
Collapse
Affiliation(s)
- Igor V. Babkin
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
| | - Artem Y. Tikunov
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
| | - Ivan K. Baykov
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
- Shared Research Facility “Siberian Circular Photon Source” (SRF “SKIF”) of Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
| | - Vera V. Morozova
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
| | - Nina V. Tikunova
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
| |
Collapse
|
2
|
Doré H, Eisenberg AR, Junkins EN, Leventhal GE, Ganesh A, Cordero OX, Paul BG, Valentine DL, O’Malley MA, Wilbanks EG. Targeted hypermutation of putative antigen sensors in multicellular bacteria. Proc Natl Acad Sci U S A 2024; 121:e2316469121. [PMID: 38354254 PMCID: PMC10907252 DOI: 10.1073/pnas.2316469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Diversity-generating retroelements (DGRs) are used by bacteria, archaea, and viruses as a targeted mutagenesis tool. Through error-prone reverse transcription, DGRs introduce random mutations at specific genomic loci, enabling rapid evolution of these targeted genes. However, the function and benefits of DGR-diversified proteins in cellular hosts remain elusive. We find that 82% of DGRs from one of the major monophyletic lineages of DGR reverse transcriptases are encoded by multicellular bacteria, which often have two or more DGR loci in their genomes. Using the multicellular purple sulfur bacterium Thiohalocapsa sp. PB-PSB1 as an example, we characterized nine distinct DGR loci capable of generating 10282 different combinations of target proteins. With environmental metagenomes from individual Thiohalocapsa aggregates, we show that most of PB-PSB1's DGR target genes are diversified across its biogeographic range, with spatial heterogeneity in the diversity of each locus. In Thiohalocapsa PB-PSB1 and other bacteria hosting this lineage of cellular DGRs, the diversified target genes are associated with NACHT-domain anti-phage defenses and putative ternary conflict systems previously shown to be enriched in multicellular bacteria. We propose that these DGR-diversified targets act as antigen sensors that confer a form of adaptive immunity to their multicellular consortia, though this remains to be experimentally tested. These findings could have implications for understanding the evolution of multicellularity, as the NACHT-domain anti-phage systems and ternary systems share both domain homology and conceptual similarities with the innate immune and programmed cell death pathways of plants and metazoans.
Collapse
Affiliation(s)
- H. Doré
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
| | - A. R. Eisenberg
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
| | - E. N. Junkins
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
| | - G. E. Leventhal
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Anakha Ganesh
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - O. X. Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - B. G. Paul
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - D. L. Valentine
- Department of Earth Science, University of California, Santa Barbara, CA93106
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - M. A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
- Department of Bioengineering, University of California, Santa Barbara, CA93106
| | - E. G. Wilbanks
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
- Department of Bioengineering, University of California, Santa Barbara, CA93106
| |
Collapse
|
3
|
Baykov IK, Tikunov AY, Babkin IV, Fedorets VA, Zhirakovskaia EV, Tikunova NV. Tentaclins-A Novel Family of Phage Receptor-Binding Proteins That Can Be Hypermutated by DGR Systems. Int J Mol Sci 2023; 24:17324. [PMID: 38139153 PMCID: PMC10743442 DOI: 10.3390/ijms242417324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Diversity-generating retroelements (DGRs) are prokaryotic systems providing rapid modification and adaptation of target proteins. In phages, the main targets of DGRs are receptor-binding proteins that are usually parts of tail structures and the variability of such host-recognizing structures enables phage adaptation to changes on the bacterial host surface. Sometimes, more than one target gene containing a hypermutated variable repeat (VR) can be found in phage DGRs. The role of mutagenesis of two functionally different genes is unclear. In this study, several phage genomes that contain DGRs with two target genes were found in the gut virome of healthy volunteers. Bioinformatics analysis of these genes indicated that they encode proteins with different topology; however, both proteins contain the C-type lectin (C-lec) domain with a hypermutated beta-hairpin on its surface. One of the target proteins belongs to a new family of proteins with a specific topology: N-terminal C-lec domain followed by one or more immunoglobulin domains. Proteins from the new family were named tentaclins after TENTACLe + proteIN. The genes encoding such proteins were found in the genomes of prophages and phages from the gut metagenomes. We hypothesized that tentaclins are involved in binding either to bacterial receptors or intestinal/immune cells.
Collapse
Affiliation(s)
- Ivan K. Baykov
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | | | | | | | - Nina V. Tikunova
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Macadangdang BR, Makanani SK, Miller JF. Accelerated Evolution by Diversity-Generating Retroelements. Annu Rev Microbiol 2022; 76:389-411. [PMID: 35650669 DOI: 10.1146/annurev-micro-030322-040423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diversity-generating retroelements (DGRs) create vast amounts of targeted, functional diversity by facilitating the rapid evolution of ligand-binding protein domains. Thousands of DGRs have been identified in bacteria, archaea, and their respective viruses. They are broadly distributed throughout the microbial world, with enrichment observed in certain taxa and environments. The diversification machinery works through a novel mechanism termed mutagenic retrohoming, whereby nucleotide sequence information is copied from an invariant DNA template repeat (TR) into an RNA intermediate, selectively mutagenized at TR adenines during cDNA synthesis by a DGR-encoded reverse transcriptase, and transferred to a variable repeat (VR) region within a variable-protein gene (54). This unidirectional flow of information leaves TR-DNA sequences unmodified, allowing for repeated rounds of mutagenic retrohoming to optimize variable-protein function. DGR target genes are often modular and can encode one or more of a wide variety of discrete functional domains appended to a diversifiable ligand-binding motif. Bacterial variable proteins often localize to cell surfaces, although a subset appear to be cytoplasmic, while phage-encoded DGRs commonly diversify tail fiber-associated receptor-binding proteins. Here, we provide a comprehensive review of the mechanism and consequences of accelerated protein evolution by these unique and beneficial genetic elements. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Benjamin R Macadangdang
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, USA; .,California NanoSystems Institute, University of California, Los Angeles, California, USA
| | - Sara K Makanani
- California NanoSystems Institute, University of California, Los Angeles, California, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; .,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA;
| | - Jeff F Miller
- California NanoSystems Institute, University of California, Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA; .,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
5
|
Paul BG, Eren AM. Eco-evolutionary significance of domesticated retroelements in microbial genomes. Mob DNA 2022; 13:6. [PMID: 35197094 PMCID: PMC8867640 DOI: 10.1186/s13100-022-00262-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 01/03/2023] Open
Abstract
Since the first discovery of reverse transcriptase in bacteria, and later in archaea, bacterial and archaeal retroelements have been defined by their common enzyme that coordinates diverse functions. Yet, evolutionary refinement has produced distinct retroelements across the tree of microbial life that are perhaps best described in terms of their programmed RNA-a compact sequence that preserves core information for a sophisticated mechanism. From this perspective, reverse transcriptase has been selected as the modular tool for carrying out nature's instructions in various RNA templates. Beneficial retroelements-those that can provide a fitness advantage to their host-evolved to their extant forms in a wide array of microorganisms and their viruses, spanning nearly all habitats. Within each specialized retroelement class, several universal features seem to be shared across diverse taxa, while specific functional and mechanistic insights are based on only a few model retroelement systems from clinical isolates. Currently, little is known about the diversity of cellular functions and ecological significance of retroelements across different biomes. With increasing availability of isolate, metagenome-assembled, and single-amplified genomes, the taxonomic and functional breadth of prokaryotic retroelements is coming into clearer view. This review explores the recently characterized classes of beneficial, yet accessory retroelements of bacteria and archaea. We describe how these specialized mechanisms exploit a form of fixed mobility, whereby the retroelements do not appear to proliferate selfishly throughout the genome. Moreover, we discuss computational approaches for systematic identification of retroelements from vast sequence repositories and highlight recent discoveries in terms of their apparent distribution and ecological significance in nature. Lastly, we present a new perspective on the eco-evolutionary significance of these genetic elements in marine bacteria and demonstrate approaches that enable the characterization of their environmental diversity through metagenomics.
Collapse
Affiliation(s)
- Blair G Paul
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA.
| | - A Murat Eren
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA.
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
González-Delgado A, Mestre MR, Martínez-Abarca F, Toro N. Prokaryotic reverse transcriptases: from retroelements to specialized defense systems. FEMS Microbiol Rev 2021; 45:fuab025. [PMID: 33983378 PMCID: PMC8632793 DOI: 10.1093/femsre/fuab025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
Reverse transcriptases (RTs) catalyze the polymerization of DNA from an RNA template. These enzymes were first discovered in RNA tumor viruses in 1970, but it was not until 1989 that they were found in prokaryotes as a key component of retrons. Apart from RTs encoded by the 'selfish' mobile retroelements known as group II introns, prokaryotic RTs are extraordinarily diverse, but their function has remained elusive. However, recent studies have revealed that different lineages of prokaryotic RTs, including retrons, those associated with CRISPR-Cas systems, Abi-like RTs and other yet uncharacterized RTs, are key components of different lines of defense against phages and other mobile genetic elements. Prokaryotic RTs participate in various antiviral strategies, including abortive infection (Abi), in which the infected cell is induced to commit suicide to protect the host population, adaptive immunity, in which a memory of previous infection is used to build an efficient defense, and other as yet unidentified mechanisms. These prokaryotic enzymes are attracting considerable attention, both for use in cutting-edge technologies, such as genome editing, and as an emerging research topic. In this review, we discuss what is known about prokaryotic RTs, and the exciting evidence for their domestication from retroelements to create specialized defense systems.
Collapse
Affiliation(s)
- Alejandro González-Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Mario Rodríguez Mestre
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
| | - Francisco Martínez-Abarca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
7
|
Sozhamannan S, Hofmann ER. The State of the Art in Biodefense Related Bacterial Pathogen Detection Using Bacteriophages: How It Started and How It's Going. Viruses 2020; 12:v12121393. [PMID: 33291831 PMCID: PMC7762055 DOI: 10.3390/v12121393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Accurate pathogen detection and diagnosis is paramount in clinical success of treating patients. There are two general paradigms in pathogen detection: molecular and immuno-based, and phage-based detection is a third emerging paradigm due to its sensitivity and selectivity. Molecular detection methods look for genetic material specific for a given pathogen in a sample usually by polymerase chain reaction (PCR). Immuno-methods look at the pathogen components (antigens) by antibodies raised against that pathogen specific antigens. There are different variations and products based on these two paradigms with advantages and disadvantages. The third paradigm at least for bacterial pathogen detection entails bacteriophages specific for a given bacterium. Sensitivity and specificity are the two key parameters in any pathogen detection system. By their very nature, bacteriophages afford the best sensitivity for bacterial detection. Bacteria and bacteriophages form the predator-prey pair in the evolutionary arms race and has coevolved over time to acquire the exquisite specificity of the pair, in some instances at the strain level. This specificity has been exploited for diagnostic purposes of various pathogens of concern in clinical and other settings. Many recent reviews focus on phage-based detection and sensor technologies. In this review, we focus on a very special group of pathogens that are of concern in biodefense because of their potential misuse in bioterrorism and their extremely virulent nature and as such fall under the Centers for Disease and Prevention (CDC) Category A pathogen list. We describe the currently available phage methods that are based on the usual modalities of detection from culture, to molecular and immuno- and fluorescent methods. We further highlight the gaps and the needs for more modern technologies and sensors drawing from technologies existing for detection and surveillance of other pathogens of clinical relevance.
Collapse
Affiliation(s)
- Shanmuga Sozhamannan
- National Security Science & Technology, Management Advisory Services, Logistics Management Institute, 7940 Jones Branch Drive, Tysons, VA 22102, USA;
- Defense Biological Product Assurance Office (DBPAO), Joint Program Executive Office (JPEO) for Chemical, Biological, Radiological and Nuclear Defense (CBRND) Joint Project Lead (JPL) CBRND Enabling Biotechnologies (EB), 110 Thomas Johnson Drive, Suite 250, Frederick, MD 21702, USA
| | - Edward R. Hofmann
- EXCET, Inc., 6225 Brandon Ave #360, Springfield, VA 22150, USA
- US Army Combat Capabilities Development Command, Chemical Biological Center, 8908 Guard St, E3831, Edgewood, MD 21010, USA
- Correspondence:
| |
Collapse
|
8
|
Kaur G, Burroughs AM, Iyer LM, Aravind L. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 2020; 9:e52696. [PMID: 32101166 PMCID: PMC7159879 DOI: 10.7554/elife.52696] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
9
|
Yan F, Yu X, Duan Z, Lu J, Jia B, Qiao Y, Sun C, Wei C. Discovery and characterization of the evolution, variation and functions of diversity-generating retroelements using thousands of genomes and metagenomes. BMC Genomics 2019; 20:595. [PMID: 31324156 PMCID: PMC6642488 DOI: 10.1186/s12864-019-5951-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background Diversity-generating retroelements (DGRs) are a unique family of retroelements that generate sequence diversity of DNA to benefit their hosts by introducing variations and accelerating the evolution of target proteins. They exist widely in bacteria, archaea, phage and plasmid. However, our understanding about DGRs in natural environments was still very limited. Results We developed an efficient computational algorithm to identify DGRs, and applied it to characterize DGRs in more than 80,000 sequenced bacterial genomes as well as more than 4,000 human metagenome datasets. In total, we identified 948 non-redundant DGRs, which expanded the number of known DGRs in bacterial genomes and human microbiomes by about 55%, and provided a much more comprehensive reference for the study of DGRs. Phylogenetic analysis was done for identified DGRs. The putative target genes of DGRs were searched, and the functions of these target genes were investigated with a comprehensive alignment against the nr database. Conclusions DGR system is a powerful and universal mechanism to generate diversity. DGR evolution is closely associated with the living environment and their cassette structures. Furthermore, it may impact a wide range of functional processes in addition to receptor-binding. These results significantly improved our understanding about DGRs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5951-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fazhe Yan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xuelin Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhongqu Duan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinyuan Lu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ben Jia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai, 201203, China
| | - Yuyang Qiao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Sun
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chaochun Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. .,Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai, 201203, China.
| |
Collapse
|
10
|
Wu L, Gingery M, Abebe M, Arambula D, Czornyj E, Handa S, Khan H, Liu M, Pohlschroder M, Shaw KL, Du A, Guo H, Ghosh P, Miller JF, Zimmerly S. Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey. Nucleic Acids Res 2019; 46:11-24. [PMID: 29186518 PMCID: PMC5758913 DOI: 10.1093/nar/gkx1150] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/04/2017] [Indexed: 01/12/2023] Open
Abstract
Diversity-generating retroelements (DGRs) are novel genetic elements that use reverse transcription to generate vast numbers of sequence variants in specific target genes. Here, we present a detailed comparative bioinformatic analysis that depicts the landscape of DGR sequences in nature as represented by data in GenBank. Over 350 unique DGRs are identified, which together form a curated reference set of putatively functional DGRs. We classify target genes, variable repeats and DGR cassette architectures, and identify two new accessory genes. The great variability of target genes implies roles of DGRs in many undiscovered biological processes. There is much evidence for horizontal transfers of DGRs, and we identify lineages of DGRs that appear to have specialized properties. Because GenBank contains data from only 10% of described species, the compilation may not be wholly representative of DGRs present in nature. Indeed, many DGR subtypes are present only once in the set and DGRs of the candidate phylum radiation bacteria, and Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea archaea, are exceptionally diverse in sequence, with little information available about functions of their target genes. Nonetheless, this study provides a detailed framework for classifying and studying DGRs as they are uncovered and studied in the future.
Collapse
Affiliation(s)
- Li Wu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mari Gingery
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Abebe
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Diego Arambula
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth Czornyj
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sumit Handa
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Hamza Khan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Minghsun Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Kharissa L Shaw
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Amy Du
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Huatao Guo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Jeff F Miller
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Zimmerly
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
Sharifi F, Ye Y. MyDGR: a server for identification and characterization of diversity-generating retroelements. Nucleic Acids Res 2019; 47:W289-W294. [PMID: 31049585 PMCID: PMC6602519 DOI: 10.1093/nar/gkz329] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023] Open
Abstract
MyDGR is a web server providing integrated prediction and visualization of Diversity-Generating Retroelements (DGR) systems in query nucleotide sequences. It is built upon an enhanced version of DGRscan, a tool we previously developed for identification of DGR systems. DGR systems are remarkable genetic elements that use error-prone reverse transcriptases to generate vast sequence variants in specific target genes, which have been shown to benefit their hosts (bacteria, archaea or phages). As the first web server for annotation of DGR systems, myDGR is freely available on the web at http://omics.informatics.indiana.edu/myDGR with all major browsers supported. MyDGR accepts query nucleotide sequences in FASTA format, and outputs all the important features of a predicted DGR system, including a reverse transcriptase, a template repeat and one (or more) variable repeats and their alignment featuring A-to-N (N can be C, T or G) substitutions, and VR-containing target gene(s). In addition to providing the results as text files for download, myDGR generates a visual summary of the results for users to explore the predicted DGR systems. Users can also directly access pre-calculated, putative DGR systems identified in currently available reference bacterial genomes and a few other collections of sequences (including human microbiomes).
Collapse
Affiliation(s)
- Fatemeh Sharifi
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47405, USA
| | - Yuzhen Ye
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
12
|
Benler S, Cobián-Güemes AG, McNair K, Hung SH, Levi K, Edwards R, Rohwer F. A diversity-generating retroelement encoded by a globally ubiquitous Bacteroides phage. MICROBIOME 2018; 6:191. [PMID: 30352623 PMCID: PMC6199706 DOI: 10.1186/s40168-018-0573-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/08/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Diversity-generating retroelements (DGRs) are genetic cassettes that selectively mutate target genes to produce hypervariable proteins. First characterized in Bordetella bacteriophage BPP-1, the DGR creates a hypervariable phage tail fiber that enables host tropism switching. Subsequent surveys for DGRs conclude that the majority identified to date are bacterial or archaeal in origin. This work examines bacteriophage and bacterial genomes for novel phage-encoded DGRs. RESULTS This survey discovered 92 DGRs that were only found in phages exhibiting a temperate lifestyle. The majority of phage-encoded DGRs were identified as prophages in bacterial hosts from the phyla Bacteroidetes, Proteobacteria, and Firmicutes. Sequence reads from these previously unidentified prophages were present in viral metagenomes (viromes), indicating these prophages can produce functional viruses. Five phages possessed hypervariable proteins with structural similarity to the tail fiber of BPP-1, whereas the functions of the remaining DGR target proteins were unknown. A novel temperate phage that harbors a DGR cassette targeting a protein of unknown function was induced from Bacteroides dorei. This phage, here named Bacteroides dorei Hankyphage, lysogenizes 13 different Bacteroides species and was present in 34% and 21% of whole-community metagenomes and human-associated viromes, respectively. CONCLUSIONS Here, the number of known DGR-containing phages is increased from four to 92. All of these phages exhibit a temperate lifestyle, including a cosmopolitan human-associated phage. Targeted hypervariation by temperate phages may be a ubiquitous mechanism underlying phage-bacteria interaction in the human microbiome.
Collapse
Affiliation(s)
- Sean Benler
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 USA
| | | | - Katelyn McNair
- Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Shr-Hau Hung
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Kyle Levi
- Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Rob Edwards
- Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 USA
| |
Collapse
|
13
|
Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat Microbiol 2017; 2:17045. [PMID: 28368387 PMCID: PMC5436926 DOI: 10.1038/nmicrobiol.2017.45] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/03/2017] [Indexed: 11/08/2022]
Abstract
Major radiations of enigmatic bacteria and archaea with large inventories of uncharacterized proteins are a striking feature of the Tree of Life1,2,3,4,5. The processes that led to functional diversity in these lineages, which may contribute to a host-dependent lifestyle, are poorly understood. Here we show that diversity-generating retroelements (DGRs), which guide site-specific protein hypervariability6,7,8, are prominent features of genomically-reduced organisms from the bacterial candidate phyla radiation (CPR) and yet uncultivated phyla belonging to the DPANN archaeal superphylum. From reconstructed genomes we defined monophyletic bacterial and archaeal DGR lineages that expand known DGR range by 120% and reveal a history of horizontal retroelement transfer. Retroelement-guided diversification is further shown to be active in current CPR and DPANN populations, with an assortment of protein targets potentially involved in attachment, defense, and regulation. Based on observations of DGR abundance, function, and evolutionary history, we find that targeted protein diversification is a pronounced trait of CPR and DPANN phyla compared to other bacterial and archaeal phyla. This diversification mechanism may provide CPR and DPANN organisms a versatile tool that could be used for adaptation to a dynamic, host-dependent, existence.
Collapse
|
14
|
Hannigan GD, Zheng Q, Meisel JS, Minot SS, Bushman FD, Grice EA. Evolutionary and functional implications of hypervariable loci within the skin virome. PeerJ 2017; 5:e2959. [PMID: 28194314 PMCID: PMC5299996 DOI: 10.7717/peerj.2959] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/05/2017] [Indexed: 01/04/2023] Open
Abstract
Localized genomic variability is crucial for the ongoing conflicts between infectious microbes and their hosts. An understanding of evolutionary and adaptive patterns associated with genomic variability will help guide development of vaccines and antimicrobial agents. While most analyses of the human microbiome have focused on taxonomic classification and gene annotation, we investigated genomic variation of skin-associated viral communities. We evaluated patterns of viral genomic variation across 16 healthy human volunteers. Human papillomavirus (HPV) and Staphylococcus phages contained 106 and 465 regions of diversification, or hypervariable loci, respectively. Propionibacterium phage genomes were minimally divergent and contained no hypervariable loci. Genes containing hypervariable loci were involved in functions including host tropism and immune evasion. HPV and Staphylococcus phage hypervariable loci were associated with purifying selection. Amino acid substitution patterns were virus dependent, as were predictions of their phenotypic effects. We identified diversity generating retroelements as one likely mechanism driving hypervariability. We validated these findings in an independently collected skin metagenomic sequence dataset, suggesting that these features of skin virome genomic variability are widespread. Our results highlight the genomic variation landscape of the skin virome and provide a foundation for better understanding community viral evolution and the functional implications of genomic diversification of skin viruses.
Collapse
Affiliation(s)
- Geoffrey D Hannigan
- Department of Dermatology, University of Pennsylvania , Philadelphia, PA , USA
| | - Qi Zheng
- Department of Dermatology, University of Pennsylvania , Philadelphia, PA , USA
| | - Jacquelyn S Meisel
- Department of Dermatology, University of Pennsylvania , Philadelphia, PA , USA
| | | | - Frederick D Bushman
- Department of Microbiology, University of Pennsylvania , Philadelphia, PA , USA
| | - Elizabeth A Grice
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Handa S, Paul BG, Miller JF, Valentine DL, Ghosh P. Conservation of the C-type lectin fold for accommodating massive sequence variation in archaeal diversity-generating retroelements. BMC STRUCTURAL BIOLOGY 2016; 16:13. [PMID: 27578274 PMCID: PMC5006420 DOI: 10.1186/s12900-016-0064-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/19/2016] [Indexed: 12/02/2022]
Abstract
Background Diversity-generating retroelements (DGRs) provide organisms with a unique means for adaptation to a dynamic environment through massive protein sequence variation. The potential scope of this variation exceeds that of the vertebrate adaptive immune system. DGRs were known to exist only in viruses and bacteria until their recent discovery in archaea belonging to the ‘microbial dark matter’, specifically in organisms closely related to Nanoarchaeota. However, Nanoarchaeota DGR variable proteins were unassignable to known protein folds and apparently unrelated to characterized DGR variable proteins. Results To address the issue of how Nanoarchaeota DGR variable proteins accommodate massive sequence variation, we determined the 2.52 Å resolution limit crystal structure of one such protein, AvpA, which revealed a C-type lectin (CLec)-fold that organizes a putative ligand-binding site that is capable of accommodating 1013 sequences. This fold is surprisingly reminiscent of the CLec-folds of viral and bacterial DGR variable protein, but differs sufficiently to define a new CLec-fold subclass, which is consistent with early divergence between bacterial and archaeal DGRs. The structure also enabled identification of a group of AvpA-like proteins in multiple putative DGRs from uncultivated archaea. These variable proteins may aid Nanoarchaeota and these uncultivated archaea in symbiotic relationships. Conclusions Our results have uncovered the widespread conservation of the CLec-fold in viruses, bacteria, and archaea for accommodating massive sequence variation. In addition, to our knowledge, this is the first report of an archaeal CLec-fold protein.
Collapse
Affiliation(s)
- Sumit Handa
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Blair G Paul
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Jeffery F Miller
- Departments of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - David L Valentine
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Earth Science, University of California, Santa Barbara, CA, 93106, USA
| | - Partho Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Nimkulrat S, Lee H, Doak TG, Ye Y. Genomic and Metagenomic Analysis of Diversity-Generating Retroelements Associated with Treponema denticola. Front Microbiol 2016; 7:852. [PMID: 27375574 PMCID: PMC4891356 DOI: 10.3389/fmicb.2016.00852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
Diversity-generating retroelements (DGRs) are genetic cassettes that can produce massive protein sequence variation in prokaryotes. Presumably DGRs confer selective advantages to their hosts (bacteria or viruses) by generating variants of target genes—typically resulting in target proteins with altered ligand-binding specificity—through a specialized error-prone reverse transcription process. The only extensively studied DGR system is from the Bordetella phage BPP-1, although DGRs are predicted to exist in other species. Using bioinformatics analysis, we discovered that the DGR system associated with the Treponema denticola species (a human oral-associated periopathogen) is dynamic (with gains/losses of the system found in the isolates) and diverse (with multiple types found in isolated genomes and the human microbiota). The T. denticola DGR is found in only nine of the 17 sequenced T. denticola strains. Analysis of the DGR-associated template regions and reverse transcriptase gene sequences revealed two types of DGR systems in T. denticola: the ATCC35405-type shared by seven isolates including ATCC35405; and the SP32-type shared by two isolates (SP32 and SP33), suggesting multiple DGR acquisitions. We detected additional variants of the T. denticola DGR systems in the human microbiomes, and found that the SP32-type DGR is more abundant than the ATCC35405-type in the healthy human oral microbiome, although the latter is found in more sequenced isolates. This is the first comprehensive study to characterize the DGRs associated with T. denticola in individual genomes as well as human microbiomes, demonstrating the importance of utilizing both individual genomes and metagenomes for characterizing the elements, and for analyzing their diversity and distribution in human populations.
Collapse
Affiliation(s)
- Sutichot Nimkulrat
- School of Informatics and Computing, Indiana University, Bloomington IN, USA
| | - Heewook Lee
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh PA, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, BloomingtonIN, USA; National Center for Genome Analysis Support, Indiana University, BloomingtonIN, USA
| | - Yuzhen Ye
- School of Informatics and Computing, Indiana University, Bloomington IN, USA
| |
Collapse
|
17
|
Abstract
Reverse transcriptases (RTs) are usually thought of as eukaryotic enzymes, but they are also present in bacteria and likely originated in bacteria and migrated to eukaryotes. Only three types of bacterial retroelements have been substantially characterized: group II introns, diversity-generating retroelements, and retrons. Recent work, however, has identified a myriad of uncharacterized RTs and RT-related sequences in bacterial genomes, which exhibit great sequence diversity and a range of domain structures. Apart from group II introns, none of these putative RTs show evidence of active retromobility. Instead, available information suggests that they are involved in useful processes, sometimes related to phages or phage resistance. This article reviews our knowledge of both characterized and uncharacterized RTs in bacteria. The range of their sequences and genomic contexts promises the discovery of new biochemical reactions and biological phenomena.
Collapse
|
18
|
Abstract
Diversity-generating retroelements (DGRs) are DNA diversification machines found in diverse bacterial and bacteriophage genomes that accelerate the evolution of ligand-receptor interactions. Diversification results from a unidirectional transfer of sequence information from an invariant template repeat (TR) to a variable repeat (VR) located in a protein-encoding gene. Information transfer is coupled to site-specific mutagenesis in a process called mutagenic homing, which occurs through an RNA intermediate and is catalyzed by a unique, DGR-encoded reverse transcriptase that converts adenine residues in the TR into random nucleotides in the VR. In the prototype DGR found in the Bordetella bacteriophage BPP-1, the variable protein Mtd is responsible for phage receptor recognition. VR diversification enables progeny phage to switch tropism, accelerating their adaptation to changes in sequence or availability of host cell-surface molecules for infection. Since their discovery, hundreds of DGRs have been identified, and their functions are just beginning to be understood. VR-encoded residues of many DGR-diversified proteins are displayed in the context of a C-type lectin fold, although other scaffolds, including the immunoglobulin fold, may also be used. DGR homing is postulated to occur through a specialized target DNA-primed reverse transcription mechanism that allows repeated rounds of diversification and selection, and the ability to engineer DGRs to target heterologous genes suggests applications for bioengineering. This chapter provides a comprehensive review of our current understanding of this newly discovered family of beneficial retroelements.
Collapse
|
19
|
Paul BG, Bagby SC, Czornyj E, Arambula D, Handa S, Sczyrba A, Ghosh P, Miller JF, Valentine DL. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat Commun 2015; 6:6585. [PMID: 25798780 PMCID: PMC4372165 DOI: 10.1038/ncomms7585] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/09/2015] [Indexed: 11/09/2022] Open
Abstract
In the evolutionary arms race between microbes, their parasites, and their neighbours, the capacity for rapid protein diversification is a potent weapon. Diversity-generating retroelements (DGRs) use mutagenic reverse transcription and retrohoming to generate myriad variants of a target gene. Originally discovered in pathogens, these retroelements have been identified in bacteria and their viruses, but never in archaea. Here we report the discovery of intact DGRs in two distinct intraterrestrial archaeal systems: a novel virus that appears to infect archaea in the marine subsurface, and, separately, two uncultivated nanoarchaea from the terrestrial subsurface. The viral DGR system targets putative tail fibre ligand-binding domains, potentially generating >1018 protein variants. The two single-cell nanoarchaeal genomes each possess ≥4 distinct DGRs. Against an expected background of low genome-wide mutation rates, these results demonstrate a previously unsuspected potential for rapid, targeted sequence diversification in intraterrestrial archaea and their viruses. Diversity-generating retroelements (DGRs) are genetic elements that introduce sequence variation within target genes in bacteria and their viruses. Here, Paul et al. report the discovery of DGRs in an archaeal virus and in two archaea from marine and terrestrial subsurface environments, respectively.
Collapse
Affiliation(s)
- Blair G Paul
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
| | - Sarah C Bagby
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
| | - Elizabeth Czornyj
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Diego Arambula
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Sumit Handa
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Alexander Sczyrba
- 1] Center for Biotechnology and Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany [2] DOE Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Jeff F Miller
- 1] Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA [2] Molecular Biology Institute, University of California, Los Angeles, California 90095, USA [3] California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - David L Valentine
- 1] Marine Science Institute, University of California, Santa Barbara, California 93106, USA [2] Department of Earth Science, University of California Santa Barbara, Santa Barbara, California 93106 USA
| |
Collapse
|
20
|
Comprehensive phylogenetic analysis of bacterial reverse transcriptases. PLoS One 2014; 9:e114083. [PMID: 25423096 PMCID: PMC4244168 DOI: 10.1371/journal.pone.0114083] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/04/2014] [Indexed: 11/24/2022] Open
Abstract
Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.
Collapse
|
21
|
Schillinger T, Zingler N. The low incidence of diversity-generating retroelements in sequenced genomes. Mob Genet Elements 2014; 2:287-291. [PMID: 23481467 PMCID: PMC3575424 DOI: 10.4161/mge.23244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The insertion of a retrotransposable element is usually associated with adverse or, at best, neutral effects on the host. Diversity-generating retroelements (DGRs) are the first elements that seem to offer a direct selective advantage to their phage or prokaryote host by exact replacement of a short, defined region of a host gene with a hypermutated variant. In a previous study, we presented the software DiGReF for identification of DGRs in genome sequences, and compiled the first comprehensive set of diversity-generating retroelements in public databases. We identified 155 elements in more than 6000 prokaryotic and phage genomes, which was a surprisingly low number. In this commentary, we will discuss the low incidence of these elements and speculate about the biological role of bacterial DGRs.
Collapse
Affiliation(s)
- Thomas Schillinger
- Department of Molecular Genetics; University of Kaiserslautern; Kaiserslautern, Germany
| | | |
Collapse
|
22
|
Identification of diversity-generating retroelements in human microbiomes. Int J Mol Sci 2014; 15:14234-46. [PMID: 25196521 PMCID: PMC4159848 DOI: 10.3390/ijms150814234] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/02/2014] [Accepted: 08/06/2014] [Indexed: 12/19/2022] Open
Abstract
Diversity-generating retroelements (DGRs) are a unique family of retroelements that confer selective advantages to their hosts by accelerating the evolution of target genes through a specialized, error-prone, reverse transcription process. First identified in a Bordetella phage (BPP-1), which mediates the phage tropism specificity by generating variability in an involved gene, DGRs were predicted to be present in a larger collection of viral and bacterial species. A minimal DGR system is comprised of a reverse transcriptase (RTase) gene, a template sequence (TR) and a variable region (VR) within a target gene. We developed a computational tool, DGRscan, to allow either de novo identification (based on the prediction of potential template-variable region pairs) or similarity-based searches of DGR systems using known template sequences as the reference. The application of DGRscan to the human microbiome project (HMP) datasets resulted in the identification of 271 non-redundant DGR systems, doubling the size of the collection of known DGR systems. We further identified a large number of putative target genes (651, which share no more than 90% sequence identity at the amino acid level) that are potentially under diversification by the DGR systems. Our study provides the first survey of the DGR systems in the human microbiome, showing that the DGR systems are frequently found in human-associated bacterial communities, although they are of low incidence in individual genomes. Our study also provides functional clues for a large number of genes (reverse transcriptases and target genes) that were previously annotated as proteins of unknown functions or nonspecific functions.
Collapse
|
23
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
24
|
Structure of the essential diversity-generating retroelement protein bAvd and its functionally important interaction with reverse transcriptase. Structure 2013; 21:266-76. [PMID: 23273427 PMCID: PMC3570691 DOI: 10.1016/j.str.2012.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/17/2012] [Accepted: 11/20/2012] [Indexed: 01/07/2023]
Abstract
Diversity-generating retroelements (DGRs) are the only known source of massive protein sequence variation in prokaryotes. These elements transfer coding information from a template region (TR) through an RNA intermediate to a protein-encoding variable region. This retrohoming process is accompanied by unique adenine-specific mutagenesis and, in the prototypical BPP-1 DGR, requires a reverse transcriptase (bRT) and an accessory variability determinant (bAvd) protein. To understand the role of bAvd, we determined its 2.69 Å resolution structure, which revealed a highly positively charged pentameric barrel. In accordance with its charge, bAvd bound both DNA and RNA, albeit without a discernable sequence preference. We found that the coding sequence of bAvd functioned as part of TR but identified means to mutate bAvd without affecting TR. This mutational analysis revealed a strict correspondence between retrohoming and interaction of bAvd with bRT, suggesting that the bRT-bAvd complex is important for DGR retrohoming.
Collapse
|