1
|
Gharibi S, Vaillend C, Lindsay A. The unconditioned fear response in vertebrates deficient in dystrophin. Prog Neurobiol 2024; 235:102590. [PMID: 38484964 DOI: 10.1016/j.pneurobio.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.
Collapse
Affiliation(s)
- Saba Gharibi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay 91400, France.
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Department of Medicine, University of Otago, Christchurch 8014, New Zealand.
| |
Collapse
|
2
|
Haqani MI, Nakano M, Nagano AJ, Nakamura Y, Tsudzuki M. Association analysis of production traits of Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Sci Rep 2023; 13:21307. [PMID: 38042890 PMCID: PMC10693557 DOI: 10.1038/s41598-023-48293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
This study was designed to perform an association analysis and identify SNP markers associated with production traits of Japanese quail using restriction-site-associated DNA sequencing. Weekly body weight data from 805 quail were collected from hatching to 16 weeks of age. A total number of 3990 eggs obtained from 399 female quail were used to assess egg quality traits. Egg-related traits were measured at the beginning of egg production (first stage) and at 12 weeks of age (second stage). Five eggs were analyzed at each stage. Traits, such as egg weight, egg length and short axes, eggshell strength and weight, egg equator thickness, yolk weight, diameter, and colour, albumen weight, age of first egg, total number of laid eggs, and egg production rate, were assessed. A total of 383 SNPs and 1151 associations as well as 734 SNPs and 1442 associations were identified in relation to quail production traits using general linear model (GLM) and mixed linear model (MLM) approaches, respectively. The GLM-identified SNPs were located on chromosomes 1-13, 15, 17-20, 24, 26-28, and Z, underlying phenotypic traits, except for egg and albumen weight at the first stage and yolk yellowness at the second stage. The MLM-identified SNPs were positioned on defined chromosomes associated with phenotypic traits except for the egg long axis at the second stage of egg production. Finally, 35 speculated genes were identified as candidate genes for the targeted traits based on their nearest positions. Our findings provide a deeper understanding and allow a more precise genetic improvement of production traits of Galliformes, particularly in Japanese quail.
Collapse
Affiliation(s)
- Mohammad Ibrahim Haqani
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
| | - Michiharu Nakano
- Faculty of Agriculture and Marine Sciences, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0017, Japan
| | - Yoshiaki Nakamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan
| | - Masaoki Tsudzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
| |
Collapse
|
3
|
Brain Dp140 alters glutamatergic transmission and social behaviour in the mdx52 mouse model of Duchenne muscular dystrophy. Prog Neurobiol 2022; 216:102288. [PMID: 35654209 DOI: 10.1016/j.pneurobio.2022.102288] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/23/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disorder caused by DMD mutations and is characterized by neurobehavioural comorbidities due to dystrophin deficiency in the brain. The lack of Dp140, a dystrophin short isoform, is clinically associated with intellectual disability and autism spectrum disorders (ASDs), but its postnatal functional role is not well understood. To investigate synaptic function in the presence or absence of brain Dp140, we utilized two DMD mouse models, mdx23 and mdx52 mice, in which Dp140 is preserved or lacking, respectively. ASD-like behaviours were observed in pups and 8-week-old mdx52 mice lacking Dp140. Paired-pulse ratio of excitatory postsynaptic currents, glutamatergic vesicle number in basolateral amygdala neurons, and glutamatergic transmission in medial prefrontal cortex-basolateral amygdala projections were significantly reduced in mdx52 mice compared to those in wild-type and mdx23 mice. ASD-like behaviour and electrophysiological findings in mdx52 mice were ameliorated by restoration of Dp140 following intra-cerebroventricular injection of antisense oligonucleotide drug-induced exon 53 skipping or intra-basolateral amygdala administration of Dp140 mRNA-based drug. Our results implicate Dp140 in ASD-like behaviour via altered glutamatergic transmission in the basolateral amygdala of mdx52 mice.
Collapse
|
4
|
Carli G, Farabollini F. Environmental, ecological and methodological factors of Tonic Immobility (TI) modulation. PROGRESS IN BRAIN RESEARCH 2022; 271:101-132. [DOI: 10.1016/bs.pbr.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Lindsay A, Trewin AJ, Sadler KJ, Laird C, Della Gatta PA, Russell AP. Sensitivity to behavioral stress impacts disease pathogenesis in dystrophin-deficient mice. FASEB J 2021; 35:e22034. [PMID: 34780665 DOI: 10.1096/fj.202101163rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Mutation to the gene encoding dystrophin can cause Duchenne muscular dystrophy (DMD) and increase the sensitivity to stress in vertebrate species, including the mdx mouse model of DMD. Behavioral stressors can exacerbate some dystrophinopathy phenotypes of mdx skeletal muscle and cause hypotension-induced death. However, we have discovered that a subpopulation of mdx mice present with a wildtype-like response to mild (forced downhill treadmill exercise) and moderate (scruff restraint) behavioral stressors. These "stress-resistant" mdx mice are more physically active, capable of super-activating the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone pathways following behavioral stress and they express greater levels of mineralocorticoid and glucocorticoid receptors in striated muscle relative to "stress-sensitive" mdx mice. Stress-resistant mdx mice also presented with a less severe striated muscle histopathology and greater exercise and skeletal muscle oxidative capacity at rest. Most interestingly, female mdx mice were more physically active following behavioral stressors compared to male mdx mice; a response abolished after ovariectomy and rescued with estradiol. We demonstrate that the response to behavioral stress greatly impacts disease severity in mdx mice suggesting the management of stress in patients with DMD be considered as a therapeutic approach to ameliorate disease progression.
Collapse
Affiliation(s)
- Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kate J Sadler
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Claire Laird
- Researcher Development, Deakin Research, Deakin University, Geelong, Victoria, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Saoudi A, Zarrouki F, Sebrié C, Izabelle C, Goyenvalle A, Vaillend C. Emotional behavior and brain anatomy of the mdx52 mouse model of Duchenne muscular dystrophy. Dis Model Mech 2021; 14:dmm049028. [PMID: 34546327 PMCID: PMC8476816 DOI: 10.1242/dmm.049028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
The exon-52-deleted mdx52 mouse is a critical model of Duchenne muscular dystrophy (DMD), as it features a deletion in a hotspot region of the DMD gene, frequently mutated in patients. Deletion of exon 52 impedes expression of several brain dystrophins (Dp427, Dp260 and Dp140), thus providing a key model for studying the cognitive impairment associated with DMD and testing rescuing strategies. Here, using in vivo magnetic resonance imaging and neurohistology, we found no gross brain abnormalities in mdx52 mice, suggesting that the neural dysfunctions in this model are likely at the level of brain cellular functionalities. Then, we investigated emotional behavior and fear learning performance of mdx52 mice compared to mdx mice that only lack Dp427 to focus on behavioral phenotypes that could be used in future comparative preclinical studies. mdx52 mice displayed enhanced anxiety and a severe impairment in learning an amygdala-dependent Pavlovian association. These replicable behavioral outcome measures are reminiscent of the internalizing problems reported in a quarter of DMD patients, and will be useful for preclinical estimation of the efficacy of treatments targeting brain dysfunctions in DMD.
Collapse
Affiliation(s)
- Amel Saoudi
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91190, Gif-sur-Yvette, France
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Faouzi Zarrouki
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91190, Gif-sur-Yvette, France
| | - Catherine Sebrié
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 Orsay, France
| | - Charlotte Izabelle
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91190, Gif-sur-Yvette, France
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91190, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Quantitative trait loci for growth-related traits in Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Mol Genet Genomics 2021; 296:1147-1159. [PMID: 34251529 DOI: 10.1007/s00438-021-01806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to identify quantitative trait loci (QTLs) for growth-related traits by constructing a genetic linkage map based on single nucleotide polymorphism (SNP) markers in Japanese quail. A QTL mapping population of 277 F2 birds was obtained from an intercross between a male of a large-sized strain and three females of a normal-sized strain. Body weight (BW) was measured weekly from hatching to 16 weeks of age. Non-linear regression growth models of Weibull, Logistic, Gompertz, Richards, and Brody were analyzed, and growth curve parameters of Richards was selected as the best model to describe the quail growth curve of the F2 birds. Restriction-site associated DNA sequencing developed 125 SNP markers that were informative between their parental strains. The SNP markers were distributed on 16 linkage groups that spanned 795.9 centiMorgan (cM) with an average marker interval of 7.3 cM. QTL analysis of phenotypic traits revealed four main-effect QTLs. Detected QTLs were located on chromosomes 1 and 3 and were associated with BW from 4 to 16 weeks of age and asymptotic weight of Richards model at genome-wide significant at 1% or 5% level. No QTL was detected for BW from 0 to 3 weeks of age. This is the first report identified QTLs for asymptotic weight of the Richards parameter in Japanese quail. These results highlight that the combination of QTL studies and the RAD-seq method will aid future breeding programs identify genes underlying the QTL and the application of marker-assisted selection in the poultry industry, particularly the Japanese quail.
Collapse
|
8
|
Mapping of Quantitative Trait Loci Controlling Egg-Quality and -Production Traits in Japanese Quail ( Coturnix japonica) Using Restriction-Site Associated DNA Sequencing. Genes (Basel) 2021; 12:genes12050735. [PMID: 34068239 PMCID: PMC8153160 DOI: 10.3390/genes12050735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
This research was conducted to identify quantitative trait loci (QTL) associated with egg-related traits by constructing a genetic linkage map based on single nucleotide polymorphism (SNP) markers using restriction-site associated DNA sequencing (RAD-seq) in Japanese quail. A total of 138 F2 females were produced by full-sib mating of F1 birds derived from an intercross between a male of the large-sized strain with three females of the normal-sized strain. Eggs were investigated at two different stages: the beginning stage of egg-laying and at 12 weeks of age (second stage). Five eggs were analyzed for egg weight, lengths of the long and short axes, egg shell strength and weight, yolk weight and diameter, albumen weight, egg equator thickness, and yolk color (L*, a*, and b* values) at each stage. Moreover, the age at first egg, the cumulative number of eggs laid, and egg production rate were recorded. RAD-seq developed 118 SNP markers and mapped them to 13 linkage groups using the Map Manager QTX b20 software. Markers were spanned on 776.1 cM with an average spacing of 7.4 cM. Nine QTL were identified on chromosomes 2, 4, 6, 10, 12, and Z using the simple interval mapping method in the R/qtl package. The QTL detected affected 10 egg traits of egg weight, lengths of the long and short axes of egg, egg shell strength, yolk diameter and weight, albumen weight, and egg shell weight at the beginning stage, yellowness of the yolk color at the second stage, and age at first egg. This is the first report to perform a quail QTL analysis of egg-related traits using RAD-seq. These results highlight the effectiveness of RAD-seq associated with targeted QTL and the application of marker-assisted selection in the poultry industry, particularly in the Japanese quail.
Collapse
|
9
|
Fogelholm J, Inkabi S, Höglund A, Abbey-Lee R, Johnsson M, Jensen P, Henriksen R, Wright D. Genetical Genomics of Tonic Immobility in the Chicken. Genes (Basel) 2019; 10:genes10050341. [PMID: 31067744 PMCID: PMC6562468 DOI: 10.3390/genes10050341] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 11/17/2022] Open
Abstract
Identifying the molecular mechanisms of animal behaviour is an enduring goal for researchers. Gaining insight into these mechanisms enables us to gain a greater understanding of behaviour and their genetic control. In this paper, we perform Quantitative Trait Loci (QTL) mapping of tonic immobility behaviour in an advanced intercross line between wild and domestic chickens. Genes located within the QTL interval were further investigated using global expression QTL (eQTL) mapping from hypothalamus tissue, as well as causality analysis. This identified five candidate genes, with the genes PRDX4 and ACOT9 emerging as the best supported candidates. In addition, we also investigated the connection between tonic immobility, meat pH and struggling behaviour, as the two candidate genes PRDX4 and ACOT9 have previously been implicated in controlling muscle pH at slaughter. We did not find any phenotypic correlations between tonic immobility, struggling behaviour and muscle pH in a smaller additional cohort, despite these behaviours being repeatable within-test.
Collapse
Affiliation(s)
- Jesper Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| | - Samuel Inkabi
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| | - Andrey Höglund
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| | - Robin Abbey-Lee
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| | - Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland EH25 9RG, UK.
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden.
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden.
| |
Collapse
|
10
|
Lormant F, Cornilleau F, Constantin P, Meurisse M, Lansade L, Leterrier C, Lévy F, Calandreau L. A trait for a high emotionality favors spatial memory to the detriment of cue-based memory in Japanese quail. Behav Processes 2018; 157:256-262. [DOI: 10.1016/j.beproc.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/10/2018] [Accepted: 10/17/2018] [Indexed: 01/22/2023]
|
11
|
Knaga S, Siwek M, Tavaniello S, Maiorano G, Witkowski A, Jezewska-Witkowska G, Bednarczyk M, Zieba G. Identification of quantitative trait loci affecting production and biochemical traits in a unique Japanese quail resource population. Poult Sci 2018; 97:2267-2277. [PMID: 29672744 DOI: 10.3382/ps/pey110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/10/2018] [Indexed: 11/20/2022] Open
Abstract
The objective of the current study was to identify QTL associated with body weight, growth rate, egg quality traits, concentration of selected blood plasma, and yolk lipids as well as concentration of selected macro- and microelements, color, pH, basic chemical composition, and drip loss of breast muscle of Japanese quail (Coturnix japonica). Twenty-two meat-type males (line F33) were crossed with twenty-two laying-type females (line S22) to produce a generation of F1 hybrids. The F2 generation was created by mating 44 randomly chosen F1 hybrids, which were full siblings. The birds were individually weighed from the first to eighth week of age. At the age of 19 wk, 2 to 4 eggs were individually collected from each female and an analysis of the egg quality traits was performed. At slaughter, blood and breast muscles were collected from 324 individuals of the resource population. The basic chemical composition, concentration of chosen macro- and microelements, color, pH, and drip loss were determined in the muscle samples. The concentration of chosen lipids was determined in egg yolk and blood plasma. In total, 30 microsatellite markers located on chromosome 1 and 2 were genotyped. QTL mapping including additive and dominance genetic effects revealed 6 loci on chromosome 1 of the Japanese quail affecting the egg number, egg production rate, egg weight, specific gravity, egg shell weight, concentration of Na in breast muscle. In turn, there were 9 loci on chromosome 2 affecting the body weight in the first, fourth, and sixth week of age, growth rate in the second and seventh week of age, specific gravity, concentration of K and Cu in breast muscle, and the levels of triacylglycerols in blood plasma. In this study, QTL with a potential effect on the Na, K, and Cu content in breast muscles in poultry and on specific gravity in the Japanese quail were mapped for the first time.
Collapse
Affiliation(s)
- S Knaga
- Institute of Biological Bases of Animal Production, University of Life Sciences, Akademicka 13,20-950 Lublin, Poland
| | - M Siwek
- Department of Animal Biochemistry and Biotechnology, UTP University of Sciences and Technology, Bydgoszcz 85-064, Poland
| | - S Tavaniello
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso 86100, Italy
| | - G Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso 86100, Italy
| | - A Witkowski
- Institute of Biological Bases of Animal Production, University of Life Sciences, Akademicka 13,20-950 Lublin, Poland
| | - G Jezewska-Witkowska
- Institute of Biological Bases of Animal Production, University of Life Sciences, Akademicka 13,20-950 Lublin, Poland
| | - M Bednarczyk
- Department of Animal Biochemistry and Biotechnology, UTP University of Sciences and Technology, Bydgoszcz 85-064, Poland
| | - G Zieba
- Institute of Biological Bases of Animal Production, University of Life Sciences, Akademicka 13,20-950 Lublin, Poland
| |
Collapse
|
12
|
Genetic Determinism of Fearfulness, General Activity and Feeding Behavior in Chickens and Its Relationship with Digestive Efficiency. Behav Genet 2016; 47:114-124. [PMID: 27604231 DOI: 10.1007/s10519-016-9807-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
Abstract
The genetic relationships between behavior and digestive efficiency were studied in 860 chickens from a cross between two lines divergently selected on digestive efficiency. At 2 weeks of age each chick was video-recorded in the home pen to characterize general activity and feeding behavior. Tonic immobility and open-field tests were also carried out individually to evaluate emotional reactivity (i.e. the propensity to express fear responses). Digestive efficiency was measured at 3 weeks. Genetic parameters of behavior traits were estimated. Birds were genotyped on 3379 SNP markers to detect QTLs. Heritabilities of behavioral traits were low, apart from tonic immobility (0.17-0.18) and maximum meal length (0.14). The genetic correlations indicated that the most efficient birds fed more frequently and were less fearful. We detected 14 QTL (9 for feeding behavior, 3 for tonic immobility, 2 for frequency of lying). Nine of them co-localized with QTL for efficiency, anatomy of the digestive tract, feed intake or microbiota composition. Four genes involved in fear reactions were identified in the QTL for tonic immobility on GGA1.
Collapse
|
13
|
Recoquillay J, Pitel F, Arnould C, Leroux S, Dehais P, Moréno C, Calandreau L, Bertin A, Gourichon D, Bouchez O, Vignal A, Fariello MI, Minvielle F, Beaumont C, Leterrier C, Le Bihan-Duval E. A medium density genetic map and QTL for behavioral and production traits in Japanese quail. BMC Genomics 2015; 16:10. [PMID: 25609057 PMCID: PMC4307178 DOI: 10.1186/s12864-014-1210-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/30/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Behavioral traits such as sociability, emotional reactivity and aggressiveness are major factors in animal adaptation to breeding conditions. In order to investigate the genetic control of these traits as well as their relationships with production traits, a study was undertaken on a large second generation cross (F2) between two lines of Japanese Quail divergently selected on their social reinstatement behavior. All the birds were measured for several social behaviors (social reinstatement, response to social isolation, sexual motivation, aggression), behaviors measuring the emotional reactivity of the birds (reaction to an unknown object, tonic immobility reaction), and production traits (body weight and egg production). RESULTS We report the results of the first genome-wide QTL detection based on a medium density SNP panel obtained from whole genome sequencing of a pool of individuals from each divergent line. A genetic map was constructed using 2145 markers among which 1479 could be positioned on 28 different linkage groups. The sex-averaged linkage map spanned a total of 3057 cM with an average marker spacing of 2.1 cM. With the exception of a few regions, the marker order was the same in Japanese Quail and the chicken, which confirmed a well conserved synteny between the two species. The linkage analyses performed using QTLMAP software revealed a total of 45 QTLs related either to behavioral (23) or production (22) traits. The most numerous QTLs (15) concerned social motivation traits. Interestingly, our results pinpointed putative pleiotropic regions which controlled emotional reactivity and body-weight of birds (on CJA5 and CJA8) or their social motivation and the onset of egg laying (on CJA19). CONCLUSION This study identified several QTL regions for social and emotional behaviors in the Quail. Further research will be needed to refine the QTL and confirm or refute the role of candidate genes, which were suggested by bioinformatics analysis. It can be hoped that the identification of genes and polymorphisms related to behavioral traits in the quail will have further applications for other poultry species (especially the chicken) and will contribute to solving animal welfare issues in poultry production.
Collapse
Affiliation(s)
| | - Frédérique Pitel
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
| | - Cécile Arnould
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.
- CNRS, UMR7247, F-37380, Nouzilly, France.
- Université François Rabelais de Tours, F-37000, Tours, France.
- IFCE, F-37380, Nouzilly, France.
| | - Sophie Leroux
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
| | - Patrice Dehais
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INRA, Sigenae UR875 Biométrie et Intelligence Artificielle, F-31326, Castanet-Tolosan, France.
| | - Carole Moréno
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
| | - Ludovic Calandreau
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.
- CNRS, UMR7247, F-37380, Nouzilly, France.
- Université François Rabelais de Tours, F-37000, Tours, France.
- IFCE, F-37380, Nouzilly, France.
| | - Aline Bertin
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.
- CNRS, UMR7247, F-37380, Nouzilly, France.
- Université François Rabelais de Tours, F-37000, Tours, France.
- IFCE, F-37380, Nouzilly, France.
| | - David Gourichon
- UE1295 Pôle d'Expérimentation Avicole de Tours, F-37380, Nouzilly, France.
| | - Olivier Bouchez
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INRA, GeT-PlaGe Genotoul, F-31326, Castanet-Tolosan, France.
| | - Alain Vignal
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
| | - Maria Ines Fariello
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- Institut Pasteur, Montevideo, Uruguay.
| | - Francis Minvielle
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, F-78530, Jouy-en-Josas, France.
| | | | - Christine Leterrier
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.
- CNRS, UMR7247, F-37380, Nouzilly, France.
- Université François Rabelais de Tours, F-37000, Tours, France.
- IFCE, F-37380, Nouzilly, France.
| | | |
Collapse
|
14
|
Del Priore L, Pigozzi MI. Sex-specific recombination maps for individual macrochromosomes in the Japanese quail (Coturnix japonica). Chromosome Res 2015; 23:199-210. [PMID: 25596820 DOI: 10.1007/s10577-014-9448-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 11/29/2022]
Abstract
Meiotic recombination in the Japanese quail was directly studied by immunolocalization of mutL homolog 1 (MLH1), a mismatch repair protein of mature recombination nodules. In total, 15,862 crossovers were scored along the autosomal synaptonemal complexes in 308 meiotic nuclei from males and females. Crossover frequencies calculated from MLH1 foci show wide similitude between males and females with slightly higher number of foci in females. From this analysis, we predict that the sex-averaged map length of the Japanese quail is 2580 cM, with a genome-wide recombination rate of 1.9 cM/Mb. MLH1 focus mapping along the six largest bivalents showed few intersex differences in the distribution of crossovers along with variant patterns in metacentric and acrocentric macrobivalents. These results provide valuable information to complement linkage map analysis in the species while providing insight into our understanding of the mechanisms of crossover distribution along chromosome arms.
Collapse
Affiliation(s)
- Lucía Del Priore
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 Piso 10, C1121ABG, Buenos Aires, Argentina
| | | |
Collapse
|
15
|
Gonzales NM, Palmer AA. Fine-mapping QTLs in advanced intercross lines and other outbred populations. Mamm Genome 2014; 25:271-92. [PMID: 24906874 DOI: 10.1007/s00335-014-9523-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/25/2014] [Indexed: 12/16/2022]
Abstract
Quantitative genetic studies in model organisms, particularly in mice, have been extremely successful in identifying chromosomal regions that are associated with a wide variety of behavioral and other traits. However, it is now widely understood that identification of the underlying genes will be far more challenging. In the last few years, a variety of populations have been utilized in an effort to more finely map these chromosomal regions with the goal of identifying specific genes. The common property of these newer populations is that linkage disequilibrium spans relatively short distances, which permits fine-scale mapping resolution. This review focuses on advanced intercross lines (AILs) which are the simplest such population. As originally proposed in 1995 by Darvasi and Soller, an AIL is the product of intercrossing two inbred strains beyond the F2 generation. Unlike recombinant inbred strains, AILs are maintained as outbred populations; brother-sister matings are specifically avoided. Each generation of intercrossing beyond the F2 further degrades linkage disequilibrium between adjacent makers, which allows for fine-scale mapping of quantitative trait loci (QTLs). Advances in genotyping technology and techniques for the statistical analysis of AILs have permitted rapid advances in the application of AILs. We review some of the analytical issues and available software, including QTLRel, EMMA, EMMAX, GEMMA, TASSEL, GRAMMAR, WOMBAT, Mendel, and others.
Collapse
Affiliation(s)
- Natalia M Gonzales
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | | |
Collapse
|
16
|
Bonizzoni M, Britton M, Marinotti O, Dunn WA, Fass J, James AA. Probing functional polymorphisms in the dengue vector, Aedes aegypti. BMC Genomics 2013; 14:739. [PMID: 24168143 PMCID: PMC4007706 DOI: 10.1186/1471-2164-14-739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dengue is the most prevalent arboviral disease world-wide and its primary vector is the mosquito Aedes aegypti. The current lack of commercially-available vaccines makes control of vector populations the only effective strategy to prevent dengue transmission. Aedes aegypti geographic populations exhibit great variability in insecticide resistance and susceptibility to dengue infection. The characterization of single nucleotide polymorphisms (SNPs) as molecular markers to study quantitatively this variation is needed greatly because this species has a low abundance of microsatellite markers and limited known restriction fragments length polymorphisms (RFLPs) and single-strand conformation polymorphism (SSCP) markers. RESULTS We used RNA-seq to characterize SNPs in three Ae. aegypti strains, including the Liverpool (LVP) strain, from which the current genome annotation is derived. We identified 131,764 unique genome locations with at least one alternative nucleotide to what is reported in the reference annotation. These comprised changes in both open-reading frames (ORFs) and untranslated regions (UTRs) of transcripts. An in depth-look at sequence variation in immunity genes revealed that those associated with autophagy, MD2-like receptors and Peptidoglycan Recognition Proteins had more sequence variation in their 3'UTRs than mutations associated with non-synonymous changes. This supports the conclusion that these genes had maintained their functional specificity while being adapted to different regulatory domains. In contrast, a number of peroxidases, serpins and Clip-domain serine proteases exhibited conservation of putative UTR regulatory sequences while displaying diversification of the ORFs. Transcriptome evidence also was found for ~2500 novel transcriptional units (NTUs) not annotated in the reference genome. CONCLUSIONS The transcriptome-wide assessment of within and inter-strain polymorphisms in Ae. aegypti adds considerably to the number of molecular markers available for genetic studies in this mosquito. Additionally, data supporting NTU discovery emphasizes the need for continuous amendments of the reference genome annotation.
Collapse
Affiliation(s)
- Mariangela Bonizzoni
- Program in Public Health, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Monica Britton
- Bioinformatics Core of the UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - William Augustine Dunn
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Joseph Fass
- Bioinformatics Core of the UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Anthony A James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
| |
Collapse
|