1
|
Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 2023; 8:239. [PMID: 37291105 PMCID: PMC10248351 DOI: 10.1038/s41392-023-01502-8] [Citation(s) in RCA: 182] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Aging is characterized by systemic chronic inflammation, which is accompanied by cellular senescence, immunosenescence, organ dysfunction, and age-related diseases. Given the multidimensional complexity of aging, there is an urgent need for a systematic organization of inflammaging through dimensionality reduction. Factors secreted by senescent cells, known as the senescence-associated secretory phenotype (SASP), promote chronic inflammation and can induce senescence in normal cells. At the same time, chronic inflammation accelerates the senescence of immune cells, resulting in weakened immune function and an inability to clear senescent cells and inflammatory factors, which creates a vicious cycle of inflammation and senescence. Persistently elevated inflammation levels in organs such as the bone marrow, liver, and lungs cannot be eliminated in time, leading to organ damage and aging-related diseases. Therefore, inflammation has been recognized as an endogenous factor in aging, and the elimination of inflammation could be a potential strategy for anti-aging. Here we discuss inflammaging at the molecular, cellular, organ, and disease levels, and review current aging models, the implications of cutting-edge single cell technologies, as well as anti-aging strategies. Since preventing and alleviating aging-related diseases and improving the overall quality of life are the ultimate goals of aging research, our review highlights the critical features and potential mechanisms of inflammation and aging, along with the latest developments and future directions in aging research, providing a theoretical foundation for novel and practical anti-aging strategies.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
| | - Chentao Li
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Wanying Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Selle J, Bohl K, Höpker K, Wilke R, Dinger K, Kasper P, Abend B, Schermer B, Müller RU, Kurschat C, Nüsken KD, Nüsken E, Meyer D, Savai Pullamsetti S, Schumacher B, Dötsch J, Alcazar MAA. Perinatal Obesity Sensitizes for Premature Kidney Aging Signaling. Int J Mol Sci 2023; 24:ijms24032508. [PMID: 36768831 PMCID: PMC9916864 DOI: 10.3390/ijms24032508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 01/31/2023] Open
Abstract
Chronic Kidney Disease (CKD), a global health burden, is strongly associated with age-related renal function decline, hypertension, and diabetes, which are all frequent consequences of obesity. Despite extensive studies, the mechanisms determining susceptibility to CKD remain insufficiently understood. Clinical evidence together with prior studies from our group showed that perinatal metabolic disorders after intrauterine growth restriction or maternal obesity adversely affect kidney structure and function throughout life. Since obesity and aging processes converge in similar pathways we tested if perinatal obesity caused by high-fat diet (HFD)-fed dams sensitizes aging-associated mechanisms in kidneys of newborn mice. The results showed a marked increase of γH2AX-positive cells with elevated 8-Oxo-dG (RNA/DNA damage), both indicative of DNA damage response and oxidative stress. Using unbiased comprehensive transcriptomics we identified compartment-specific differentially-regulated signaling pathways in kidneys after perinatal obesity. Comparison of these data to transcriptomic data of naturally aged kidneys and prematurely aged kidneys of genetic modified mice with a hypomorphic allele of Ercc1, revealed similar signatures, e.g., inflammatory signaling. In a biochemical approach we validated pathways of inflammaging in the kidneys after perinatal obesity. Collectively, our initial findings demonstrate premature aging-associated processes as a consequence of perinatal obesity that could determine the susceptibility for CKD early in life.
Collapse
Affiliation(s)
- Jaco Selle
- Translational Experimental Pediatrics—Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Katrin Bohl
- Department of Medicine II, Nephrology Research Laboratory, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Katja Höpker
- Department of Medicine II, Nephrology Research Laboratory, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Rebecca Wilke
- Translational Experimental Pediatrics—Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Katharina Dinger
- Translational Experimental Pediatrics—Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Philipp Kasper
- Department of Gastroenterology and Hepatology, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Bastian Abend
- Translational Experimental Pediatrics—Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Bernhard Schermer
- Department of Medicine II, Nephrology Research Laboratory, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Roman-Ulrich Müller
- Department of Medicine II, Nephrology Research Laboratory, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Christine Kurschat
- Department of Medicine II, Nephrology Research Laboratory, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Eva Nüsken
- Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - David Meyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Universities of Gießen and Marburg Lung Centre (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center of Lung Research (DZL), 35392 Gießen, Germany
| | - Björn Schumacher
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Miguel A. Alejandre Alcazar
- Translational Experimental Pediatrics—Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Institute for Lung Health (ILH), Universities of Gießen and Marburg Lung Centre (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center of Lung Research (DZL), 35392 Gießen, Germany
- Correspondence: ; Tel.: +49-221-478-96876; Fax: +49-221-478-46868
| |
Collapse
|
3
|
Arvanitaki ES, Stratigi K, Garinis GA. DNA damage, inflammation and aging: Insights from mice. FRONTIERS IN AGING 2022; 3:973781. [PMID: 36160606 PMCID: PMC9490123 DOI: 10.3389/fragi.2022.973781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Persistent DNA lesions build up with aging triggering inflammation, the body’s first line of immune defense strategy against foreign pathogens and irritants. Once established, DNA damage-driven inflammation takes on a momentum of its own, due to the amplification and feedback loops of the immune system leading to cellular malfunction, tissue degenerative changes and metabolic complications. Here, we discuss the use of murine models with inborn defects in genome maintenance and the DNA damage response for understanding how irreparable DNA lesions are functionally linked to innate immune signaling highlighting their relevance for developing novel therapeutic strategies against the premature onset of aging-associated diseases.
Collapse
Affiliation(s)
- Ermioni S. Arvanitaki
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | | | - George A. Garinis
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
- *Correspondence: George A. Garinis,
| |
Collapse
|
4
|
van Thiel BS, van der Linden J, Ridwan Y, Garrelds IM, Vermeij M, Clahsen-van Groningen MC, Qadri F, Alenina N, Bader M, Roks AJM, Danser AHJ, Essers J, van der Pluijm I. In Vivo Renin Activity Imaging in the Kidney of Progeroid Ercc1 Mutant Mice. Int J Mol Sci 2021; 22:ijms222212433. [PMID: 34830315 PMCID: PMC8619549 DOI: 10.3390/ijms222212433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Changes in the renin–angiotensin system, known for its critical role in the regulation of blood pressure and sodium homeostasis, may contribute to aging and age-related diseases. While the renin–angiotensin system is suppressed during aging, little is known about its regulation and activity within tissues. However, this knowledge is required to successively treat or prevent renal disease in the elderly. Ercc1 is involved in important DNA repair pathways, and when mutated causes accelerated aging phenotypes in humans and mice. In this study, we hypothesized that unrepaired DNA damage contributes to accelerated kidney failure. We tested the use of the renin-activatable near-infrared fluorescent probe ReninSense680™ in progeroid Ercc1d/− mice and compared renin activity levels in vivo to wild-type mice. First, we validated the specificity of the probe by detecting increased intrarenal activity after losartan treatment and the virtual absence of fluorescence in renin knock-out mice. Second, age-related kidney pathology, tubular anisokaryosis, glomerulosclerosis and increased apoptosis were confirmed in the kidneys of 24-week-old Ercc1d/− mice, while initial renal development was normal. Next, we examined the in vivo renin activity in these Ercc1d/− mice. Interestingly, increased intrarenal renin activity was detected by ReninSense in Ercc1d/− compared to WT mice, while their plasma renin concentrations were lower. Hence, this study demonstrates that intrarenal RAS activity does not necessarily run in parallel with circulating renin in the aging mouse. In addition, our study supports the use of this probe for longitudinal imaging of altered RAS signaling in aging.
Collapse
Affiliation(s)
- Bibi S. van Thiel
- Department of Molecular Genetics, Cancer Genomics Center, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (B.S.v.T.); (J.v.d.L.); (Y.R.)
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (I.M.G.); (A.J.M.R.); (A.H.J.D.)
- Department of Vascular Surgery, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands
| | - Janette van der Linden
- Department of Molecular Genetics, Cancer Genomics Center, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (B.S.v.T.); (J.v.d.L.); (Y.R.)
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (I.M.G.); (A.J.M.R.); (A.H.J.D.)
- Department of Experimental Cardiology, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands
| | - Yanto Ridwan
- Department of Molecular Genetics, Cancer Genomics Center, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (B.S.v.T.); (J.v.d.L.); (Y.R.)
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (I.M.G.); (A.J.M.R.); (A.H.J.D.)
| | - Ingrid M. Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (I.M.G.); (A.J.M.R.); (A.H.J.D.)
| | - Marcel Vermeij
- Department of Pathology, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (M.V.); (M.C.C.-v.G.)
| | | | | | - Natalia Alenina
- Max Delbrück Center, 13125 Berlin, Germany; (F.Q.); (N.A.); (M.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Michael Bader
- Max Delbrück Center, 13125 Berlin, Germany; (F.Q.); (N.A.); (M.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Charité—University Medicine, 10117 Berlin, Germany
- Institute for Biology, University of Lübeck, 23562 Lübeck, Germany
| | - Anton J. M. Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (I.M.G.); (A.J.M.R.); (A.H.J.D.)
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (I.M.G.); (A.J.M.R.); (A.H.J.D.)
| | - Jeroen Essers
- Department of Molecular Genetics, Cancer Genomics Center, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (B.S.v.T.); (J.v.d.L.); (Y.R.)
- Department of Vascular Surgery, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands
- Correspondence: (J.E.); (I.v.d.P.); Tel.: +31-10-7043604 (J.E.); +31-10-7043724 (I.v.d.P.); Fax: +31-10-7044743 (J.E. & I.v.d.P.)
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Cancer Genomics Center, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (B.S.v.T.); (J.v.d.L.); (Y.R.)
- Department of Vascular Surgery, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands
- Correspondence: (J.E.); (I.v.d.P.); Tel.: +31-10-7043604 (J.E.); +31-10-7043724 (I.v.d.P.); Fax: +31-10-7044743 (J.E. & I.v.d.P.)
| |
Collapse
|
5
|
Severe ineffective erythropoiesis discriminates prognosis in myelodysplastic syndromes: analysis based on 776 patients from a single centre. Blood Cancer J 2020; 10:83. [PMID: 32801296 PMCID: PMC7429953 DOI: 10.1038/s41408-020-00349-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
The underlying mechanisms and clinical significance of ineffective erythropoiesis in myelodysplastic syndromes (MDS) remain to be fully defined. We conducted the ex vivo erythroid differentiation of megakaryocytic-erythroid progenitors (MEPs) from MDS patients and discovered that patient-derived erythroblasts exhibit precocity and premature aging phenotypes, partially by inducing the pro-aging genes, like ERCC1. Absolute reticulocyte count (ARC) was chosen as a biomarker to evaluate the severity of ineffective erythropoiesis in 776 MDS patients. We found that patients with severe ineffective erythropoiesis displaying lower ARC (<20 × 109/L), were more likely to harbor complex karyotypes and high-risk somatic mutations (p < 0.05). Lower ARCs are associated with shorter overall survival (OS) in univariate analysis (p < 0.001) and remain significant in multivariable analysis. Regardless of patients of lower-risk who received immunosuppressive therapy or higher-risk who received decitabine treatment, patients with lower ARC had shorter OS (p < 0.001). Whereas no difference in OS was found between patients receiving allo-hematopoietic stem cell transplantations (Allo-HSCT) (p = 0.525). Our study revealed that ineffective erythropoiesis in MDS may be partially caused by premature aging and apoptosis during erythroid differentiation. MDS patients with severe ineffective erythropoiesis have significant shorter OS treated with immunosuppressive or hypo-methylating agents, but may benefit from Allo-HSCT.
Collapse
|
6
|
Hishikawa A, Hayashi K, Abe T, Kaneko M, Yokoi H, Azegami T, Nakamura M, Yoshimoto N, Kanda T, Sakamaki Y, Itoh H. Decreased KAT5 Expression Impairs DNA Repair and Induces Altered DNA Methylation in Kidney Podocytes. Cell Rep 2020; 26:1318-1332.e4. [PMID: 30699357 DOI: 10.1016/j.celrep.2019.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/18/2018] [Accepted: 12/28/2018] [Indexed: 01/19/2023] Open
Abstract
Altered DNA methylation plays an important role in the onset and progression of kidney disease. However, little is known about how the changes arise in disease states. Here, we report that KAT5-mediated DNA damage repair is essential for the maintenance of kidney podocytes and is associated with DNA methylation status. Podocyte-specific KAT5-knockout mice develop severe albuminuria with increased DNA double-strand breaks (DSBs), increased DNA methylation of the nephrin promoter region, and decreased nephrin expression. Podocyte KAT5 expression is decreased, whereas DNA DSBs and DNA methylation are increased in diabetic nephropathy; moreover, KAT5 restoration by gene transfer attenuates albuminuria. Furthermore, KAT5 decreases DNA DSBs and DNA methylation at the same nephrin promoter region, which indicates that KAT5-mediated DNA repair may be related to DNA methylation status. These results suggest a concept in which an environment of DNA damage repair, which occurs with decreased KAT5, may affect DNA methylation status.
Collapse
Affiliation(s)
- Akihito Hishikawa
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kaori Hayashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Takaya Abe
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, Hyogo 650-0047, Japan
| | - Mari Kaneko
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, Hyogo 650-0047, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo, Kyoto 606-8507, Japan
| | - Tatsuhiko Azegami
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mari Nakamura
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Norifumi Yoshimoto
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Kanda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yusuke Sakamaki
- Department of Internal Medicine, Tokyo Dental College Hospital, 5-11-13 Sugano, Ichikawa-shi, Chiba 272-8513, Japan
| | - Hiroshi Itoh
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
7
|
Angelova DM, Brown DR. Microglia and the aging brain: are senescent microglia the key to neurodegeneration? J Neurochem 2019; 151:676-688. [PMID: 31478208 DOI: 10.1111/jnc.14860] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Abstract
The single largest risk factor for etiology of neurodegenerative diseases like Alzheimer's disease is increased age. Therefore, understanding the changes that occur as a result of aging is central to any possible prevention or cure for such conditions. Microglia, the resident brain glial population most associated with both protection of neurons in health and their destruction is disease, could be a significant player in age related changes. Microglia can adopt an aberrant phenotype sometimes referred to either as dystrophic or senescent. While aged microglia have been frequently identified in neurodegenerative diseases such as Alzheimer's disease, there is no conclusive evidence that proves a causal role. This has been hampered by a lack of models of aged microglia. We have recently generated a model of senescent microglia based on the observation that all dystrophic microglia show iron overload. Iron-overloading cultured microglia causes them to take on a senescent phenotype and can cause changes in models of neurodegeneration similar to those observed in patients. This review considers how this model could be used to determine the role of senescent microglia in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dafina M Angelova
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - David R Brown
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
8
|
Braun F, Rinschen MM, Bartels V, Frommolt P, Habermann B, Hoeijmakers JHJ, Schumacher B, Dollé MET, Müller RU, Benzing T, Schermer B, Kurschat CE. Altered lipid metabolism in the aging kidney identified by three layered omic analysis. Aging (Albany NY) 2017; 8:441-57. [PMID: 26886165 PMCID: PMC4833139 DOI: 10.18632/aging.100900] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Valerie Bartels
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Cardiology and Angiology, University of Münster, Münster, Germany
| | - Peter Frommolt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bianca Habermann
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jan H J Hoeijmakers
- Department of Cell Biology and Genetics, Medical Genetics Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Björn Schumacher
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany
| | - Martijn E T Dollé
- National Institute of Public Health and the Environment, Centre for Health Protection, Bilthoven, The Netherlands
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Christine E Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Visser WE, Bombardieri CR, Zevenbergen C, Barnhoorn S, Ottaviani A, van der Pluijm I, Brandt R, Kaptein E, van Heerebeek R, van Toor H, Garinis GA, Peeters RP, Medici M, van Ham W, Vermeij WP, de Waard MC, de Krijger RR, Boelen A, Kwakkel J, Kopchick JJ, List EO, Melis JPM, Darras VM, Dollé MET, van der Horst GTJ, Hoeijmakers JHJ, Visser TJ. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging. PLoS One 2016; 11:e0149941. [PMID: 26953569 PMCID: PMC4783069 DOI: 10.1371/journal.pone.0149941] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 02/07/2016] [Indexed: 01/24/2023] Open
Abstract
DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging.
Collapse
Affiliation(s)
- W. Edward Visser
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- * E-mail:
| | - Cíntia R. Bombardieri
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Chantal Zevenbergen
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander Barnhoorn
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexandre Ottaviani
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
- Institute for Research on Cancer and Aging, Nice (IRCAN), UMR 7284 CNRS U1081 INSERM UNS, 28 avenue de Valombrose Faculté de Médecine, Nice, France
| | - Ingrid van der Pluijm
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Renata Brandt
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ellen Kaptein
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Hans van Toor
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - George A. Garinis
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robin P. Peeters
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marco Medici
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Willy van Ham
- Laboratory of Comparative Endocrinology, Biology Department, KULeuven, Leuven, Belgium
| | - Wilbert P. Vermeij
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Monique C. de Waard
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Anita Boelen
- Dept of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Joan Kwakkel
- Dept of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - John J. Kopchick
- Dept of Biomedical Sciences, Edison Biotechnology Institute, Ohio University, Athens, Ohio, United States of America
| | - Edward O. List
- Dept of Biomedical Sciences, Edison Biotechnology Institute, Ohio University, Athens, Ohio, United States of America
| | - Joost P. M. Melis
- Dept of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Biology Department, KULeuven, Leuven, Belgium
| | - Martijn E. T. Dollé
- Centre for Health Protection Research, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Jan H. J. Hoeijmakers
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo J. Visser
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
A novel mutation in the C7orf11 gene causes nonphotosensitive trichothiodystrophy in a multiplex highly consanguineous kindred. Eur J Med Genet 2015; 58:685-8. [DOI: 10.1016/j.ejmg.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 01/10/2023]
|
11
|
Vermeij WP, Hoeijmakers JHJ, Pothof J. Genome Integrity in Aging: Human Syndromes, Mouse Models, and Therapeutic Options. Annu Rev Pharmacol Toxicol 2015; 56:427-45. [PMID: 26514200 DOI: 10.1146/annurev-pharmtox-010814-124316] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human syndromes and mouse mutants that exhibit accelerated but bona fide aging in multiple organs and tissues have been invaluable for the identification of nine denominators of aging: telomere attrition, genome instability, epigenetic alterations, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular communication, loss of proteostasis, cellular senescence and adult stem cell exhaustion. However, whether and how these instigators of aging interrelate or whether they have one root cause is currently largely unknown. Rare human progeroid syndromes and corresponding mouse mutants with resolved genetic defects highlight the dominant importance of genome maintenance for aging. A second class of aging-related disorders reveals a cross connection with metabolism. As genome maintenance and metabolism are closely interconnected, they may constitute the main underlying biology of aging. This review focuses on the role of genome stability in aging, its crosstalk with metabolism, and options for nutritional and/or pharmaceutical interventions that delay age-related pathology.
Collapse
Affiliation(s)
- Wilbert P Vermeij
- Department of Genetics, Erasmus University Medical Center, Postbus 2040, 3000 CA, Rotterdam, The Netherlands; , ,
| | - Jan H J Hoeijmakers
- Department of Genetics, Erasmus University Medical Center, Postbus 2040, 3000 CA, Rotterdam, The Netherlands; , ,
| | - Joris Pothof
- Department of Genetics, Erasmus University Medical Center, Postbus 2040, 3000 CA, Rotterdam, The Netherlands; , ,
| |
Collapse
|
12
|
Gurkar AU, Niedernhofer LJ. Comparison of mice with accelerated aging caused by distinct mechanisms. Exp Gerontol 2015; 68:43-50. [PMID: 25617508 DOI: 10.1016/j.exger.2015.01.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 02/05/2023]
Abstract
Aging is the primary risk factor for numerous chronic, debilitating diseases. These diseases impact quality of life of the elderly and consume a large portion of health care costs. The cost of age-related diseases will only increase as the world's population continues to live longer. Thus it would be advantageous to consider aging itself as a therapeutic target, potentially stemming multiple age-related diseases simultaneously. While logical, this is extremely challenging as the molecular mechanisms that drive aging are still unknown. Furthermore, clinical trials to treat aging are impractical. Even in preclinical models, testing interventions to extend healthspan in old age are lengthy and therefore costly. One approach to expedite aging studies is to take advantage of mouse strains that are engineered to age rapidly. These strains are genetically and phenotypically quite diverse. This review aims to offer a comparison of several of these strains to highlight their relative strengths and weaknesses as models of mammalian and more specifically human aging. Additionally, careful identification of commonalities among the strains may lead to the identification of fundamental pathways of aging.
Collapse
Affiliation(s)
- Aditi U Gurkar
- Department of Metabolism and Aging, Scripps Florida, 130 Scripps Way #3B3, Jupiter, FL 33458, USA
| | - Laura J Niedernhofer
- Department of Metabolism and Aging, Scripps Florida, 130 Scripps Way #3B3, Jupiter, FL 33458, USA.
| |
Collapse
|